Andrew and Erna Viterbi Faculty of Electrical Engineering Electronics Computers Communications

Signal and Image Processing Lab

Point Cloud Registration Refinement in an Urban Environment using 2D Edge-Maps

David Avidar, David Malah, and Meir Barzohar

Motivation

- High level-of-detail **3D modeling of large-scale** ulleturban environments (i.e., cities).
- How? Registration (3D alignment) between:

- Terrestrial LiDAR Scanning (TLS).
- Airborne LiDAR Scanning (ALS).
- In a previous work we developed an efficient method to find a **coarse registration** between TLS and ALS using a **viewpoint dictionary** (Avidar et al., ICCV17).

- Refinement of a coarse 3D registration between terrestrial and airborne LiDAR scans:
 - Robustness to occlusion and different point

3D Point Cloud to 2D Edge-Map Conversion

 \overline{n}_{j_1}

0.5

density distributions.

Computationally efficient algorithm.

Challenges

- Airborne vs. terrestrial data characteristics:
 - Very different point density distributions _____ (airborne \rightarrow more points on horizontal surfaces, terrestrial \rightarrow more points on vertical surfaces).
 - Missing data, different types of occlusion.
- Large-scale point clouds with millions of data points.

Local-to-Global Point Cloud Registration using a Dictionary of Viewpoint Descriptors Avidar et al., ICCV17

Main concepts:

In collaboration with

 Convert the global cloud into a dictionary of viewpoint descriptors (panoramic rangeimages)

Gravity Direction Estimation

- For each pair of dominant normal vector orientations (\overline{n}_{i_1} and \overline{n}_{i_2}) in the point cloud:
 - Estimate gravity direction $\hat{g}_{est} = -\overline{n}_{j_1} \times \overline{n}_{j_2}$
 - Count inliers: # normals n_i where:

 $|\langle (\mathbf{n}_i, \hat{\mathbf{g}}_{est}) - 90^o | < 2\beta$ (e.g., $\beta = 0.5^o$)

• Finally, select \hat{g}_{est} with the most inliers

Registration Results

• We tested our method on a challenging dataset with a $\sim 1 km^2$ global cloud (ALS) and 94 local clouds (TLS)

Registration Refinement Method	Localization Error [m]			Relative Rotation Error [deg]			Runtime* [sec]		
	Mean	STD	Max	Mean	STD	Max	Mean	STD	Max
3D ICP	0.40	0.20	1.13	0.67	0.30	1.73	1.62	0.35	2.71
Edge-Map Phase- Correlation (EMPC)	0.57	0.45	3.21	0.98	0.76	5.65	0.46	0.02	0.54
Edge-Based 2D ICP	0.40	0.21	1.09	0.60	0.38	1.61	0.44	0.08	0.83

*Run on PC with i7-5820 CPU @ 3.30GHz using MATLAB

Gravity Estimation Results

Find local-to-global registration via dictionary search (using phase-correlation between range-images)

GeoSim

0.5 **9**est -0 4 -0.5 **Edge-Based 2D ICP**

- ICP (Iterative Closest Point) is a widely used method for registration of 3D point clouds (Besl and McKay, 1992)
- It is an **iterative method** that alternates between:
 - Finding nearest neighbor pairs of points between two point clouds
 - Minimizing the distances between these pairs of points
- We use ICP in 2D between the global and local edge-maps by converting them to 2D point clouds
- The proposed method (using 2D ICP) achieves a reduction in runtime by a factor of 3.7 in comparison to 3D ICP, while maintaining **similar** registration accuracy.
- The proposed gravity direction estimation method achieves a mean error of 0.23° - an order of magnitude lower than before gravity direction correction is applied)

