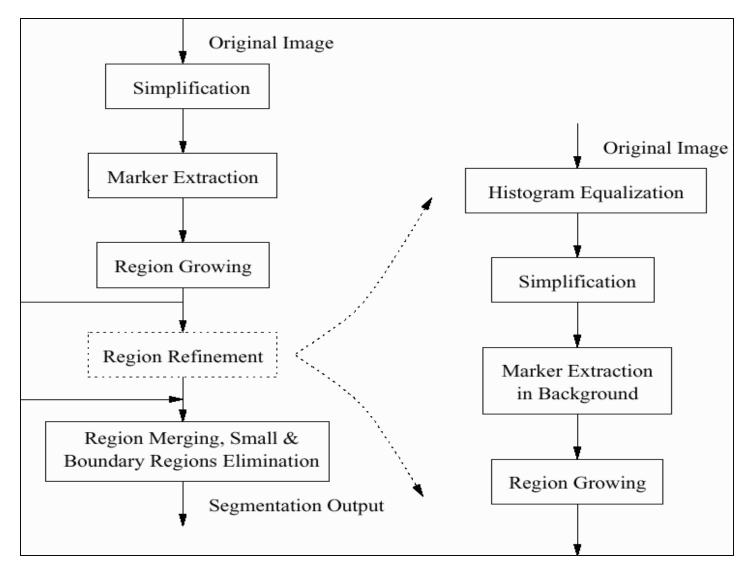
Improved Segmentation and Extrapolation for Block-Based Shape-Adaptive Image Coding

> Ying Zhao and David Malah Department of Electrical Engineering Technion-Israel Institute of Technology Haifa 32000, Israel

Purpose & Motivation

- Block-based image coding systems (JPEG) produce poor quality images at low bit-rate (<0.5 bpp)
- HVS is sensitive to distortion along object boundary, less sensitive to distortion within the content
- Possible approach proposed: segmentation-based image coding, including
 - Image segmentation system
 - Texture coding system
 - Contour coding system

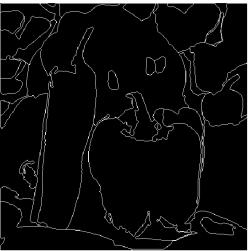
Morphological-Based Image Segmentation Algorithms


Existing

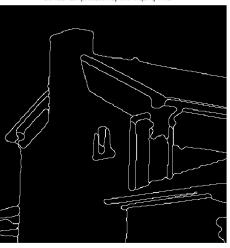
- Hierarchical Morphological Synthesis-by-Analysis
- Morphological Simplification, Region Splitting & Merging

Proposed

• Edge Detection, Local-Activity Classification

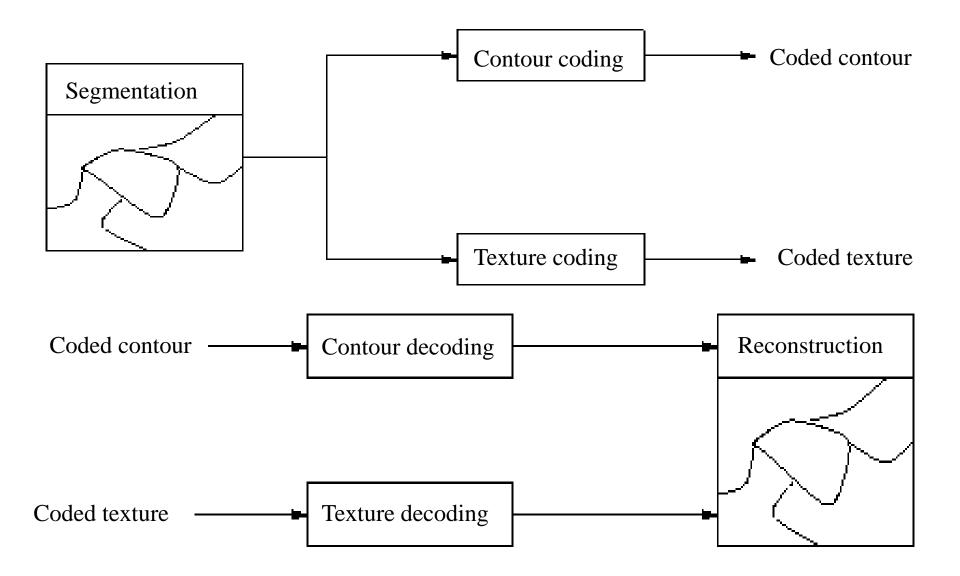

Edge Detection, Local-Activity-Classification Segmentation Algorithm

Edge Detection, Local-Activity-Classification Segmentation Results



Edge Detection, Local-Activity-Classification Segmentation Results (cont'd)

Final Segmentation



Advantages of Proposed Segmentation Algorithm

- Segmentation output better matched to coding task
- Moderate computation load
- Possible approach to generic segmentation algorithm

Shape-Adaptive Image Coding System

Block-Based Shape-Adaptive Coding Techniques

- Shape-Adaptive DCT (SADCT)
- Block Extrapolation Methods
 - Low-pass extrapolation (LPE) padding technique
 - Optimal data extrapolation (min. norm sense)

min. $\|l\|_1$ (Basis Pursuit)

Optimal Block Extrapolation (min. norm)

• From 2D to 1D

$$C^{T}AC = S \iff \Phi \underline{a} = \underline{s} = \begin{bmatrix} \underline{\beta}_{m \times 1} \\ \underline{\theta}_{(N-m) \times 1} \end{bmatrix}; \ \Phi = C^{T} \otimes C$$

Optimal Approach

$$\min \|\underline{a}\|_{p} \quad \text{subject to} \quad \Phi'_{m \times N} \, \underline{a} = \underline{\beta}$$

• $\min \|\underline{a}\|_1$ subject to $\Phi'\underline{a} = \underline{\beta}$ (Basis Pursuit)

l_1 Optimal Block Extrapolation

$$\underline{a} = \underline{u} - \underline{v} \quad \underline{u}, \ \underline{v} \ge 0$$

min $\mathbf{1}^{T} \begin{bmatrix} \underline{u} \\ \underline{v} \end{bmatrix}$ subject to $\Phi' - \Phi' \begin{bmatrix} \underline{u} \\ \underline{v} \end{bmatrix} = \underline{\beta}$

- Can be solved by Linear Programming
- Only *m* nonzero entries exist in <u>a</u>, the same number as of known original data
- Positions of nonzero entries are unpredictable

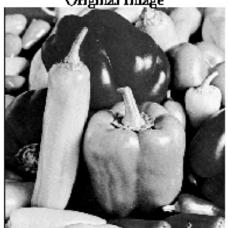
Block-Based Shape-Adaptive Coding Results

Original Image

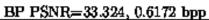

JPEG PSNR=36.134, 0.4154 bpp

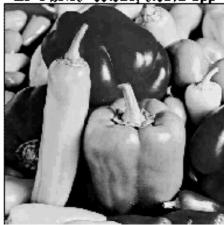
BP PSNR=35.973, 0.3692 bpp

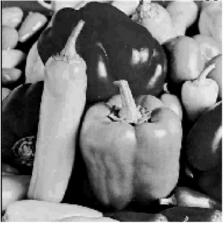
JPEG PSNR=33.793, 0.2917 bpp



BP PSNR=33.794, 0.2660 bpp


Block-Based Shape-Adaptive Coding Results


Original Image



JPEG PSNR=33.447, 0.7320 bpp

JPEG PSNR=31.879, 0.4488 bpp

BP PSNR=31.682, 0.3835 bpp

Block-Based Shape-Adaptive Coding Results

Method	Texture	Contours	Total	PSNR
	Bpp	bpp	Bpp	
JPEG	/	/	0.4154	36.134
	/	/	0.2917	33.793
Min. ℓ_1	0.3692	0.0240	0.3932	35.973
	0.2660	0.0240	0.2900	33.794
LPE Padding	0.4609	0.0240	0.4849	36.171
	0.3222	0.0240	0.3462	33.962
SADCT	0.4923	0.0240	0.5163	35.630
	0.3435	0.0240	0.3675	33.831

Table 1: Comparison of coding Results of the image "House" by block-based techniques.

Method	Texture	Contours	Total	PSNR
	Bpp	Երբ	Bpp	
JPEG	/	/	0.7320	33.448
	/	/	0.4488	31.879
Min. ℓ_1	0.6172	0.0574	0.6746	33.324
	0.3835	0.0574	0.4409	31.682
LPE Padding	0.7282	0.0574	0.7856	33.093
	0.4463	0.0574	0.5037	31.725
SADCT	0.7336	0.0574	0.7910	33.117
	0.4415	0.0574	0.4989	31.309

Table 2: Comparison of coding Results of the image "Peppers" by block-based techniques.

Conclusions & Future Studies

Segmentation

- + Proposed algorithm is better matched to the coding task
- + Proposed algorithm could be the basis for a generic segmentation algorithm, provided that region refinement is further studied

Shape-Adaptive Coding

Region-based approach has practical (numerical)
problems concerning the order of basis functions
that can be generated

Conclusions & Future Studies (cont'd)

Block-based Shape-Adaptive Coding

- + Block-based approach reduces bit-rate (compared to JPEG) for images with steep edges between segments
- + Compatible with available block-based coding systems
- Does not fully exploit the potential provided by segmentation

BP Extrapolation

- + Provides better results than LPE padding & SADCT
- High complexity

Optimal Block Extrapolation (min. norm)

• From 2D to 1D

 $C^{T}AC = S \iff \Phi \underline{a} = \underline{s} = \begin{bmatrix} \underline{\beta}_{m \times 1} \\ \underline{\theta}_{(N-m) \times 1} \end{bmatrix}; \ \Phi = C^{T} \otimes C$

• Optimal Approach $\min \|\underline{a}\|_{p}$ subject to $\Phi'_{m \times N} \underline{a} = \underline{\beta}$

• $\min \|\underline{a}\|_2$ subject to $\Phi'\underline{a} = \underline{\beta}$ (Method of Frames)

• $\min \|\underline{a}\|_1$ subject to $\Phi'\underline{a} = \beta$ (Basis Pursuit)