Model-based Rate Allocation in Distributed Video Coding Systems

Yevgeny Priziment and David Malah

Department of Electrical Engineering
Technion IIT, Haifa 32000, Israel

IEEE 25-th Convention of Electrical and Electronics Engineers in Israel, 2008
Distributed Video Coding - Motivation

Standard Video Coders - MPEG, H.26x
- Based on hybrid of Motion Estimation and Transform Coding
- Complex encoder - due to ME
- Downlink oriented

New Video Applications - Wireless/Cellular Video, Surveillance
- Low cost
- Limited power → Low complexity encoder
- Limited computational resources
- Limited bandwidth → coding efficiency
- Uplink oriented
Slepian Wolf (SW) Coding - Lossless Case

- Switch open: $R_{X|Y}^{SW} = R_{X|Y} = H(X|Y)$, no rate loss

Wyner Ziv (WZ) Coding - Lossy Case

- RD function: $R_{X|Y}^{WZ}(D) \geq R_{X|Y}(D)$
- Equality holds if: $Y = X + N$, X and N independent Gaussian sources, MSE distortion
- Practical WZ coding: Quantization followed by SW coding
Slepian Wolf (SW) Coding - Lossless Case

- Switch open: \(R_{X|Y}^{SW} = R_{X|Y} = H(X|Y) \), no rate loss

Wyner Ziv (WZ) Coding - Lossy Case

- RD function: \(R_{X|Y}^{WZ}(D) \geq R_{X|Y}(D) \)
- Equality holds if: \(Y = X + N \), \(X \) and \(N \) independent Gaussian sources, MSE distortion
- Practical WZ coding: Quantization followed by SW coding
Need for Feedback Suppression

Feedback Channel
- Incurs delay → Unsuitable for real-time applications
- Not available in some apps. (e.g. storage)

Related Work [Morbee 06, 08], [Brites 07]
- Studied performance of a system with feedback offline or evaluated $H(X|Y)$ at bitplane level.
- Rate estimation is based on the quantized data

Feedback Suppression
- Proposed approach: Encoder–side rate control based on a rate distortion model
Rate Distortion Model

WZ Coding - Laplacian Sources [V. Sheinin 06]

- \(X = Y + N \), \(Y \sim \text{Laplace}(\mu_y, \sigma_y^2) \) and \(N \sim \text{Laplace}(\mu_n, \sigma_n^2) \) i.i.d., \(N \) independent of \(Y \)
- Infinite Uniform Scalar Quantizer - \(\text{IUSQ}(\Delta, \varepsilon) \)
- RD characterization assuming perfect SW coding \(H(X|Y) \)
- The RD model is given in integral form expressions

Approximation RD Model

- \(R(\Delta) = \exp[a_r \exp(-(\Delta/b_r)\gamma_r) + m_r\Delta + n_r] \)
- \(D(\Delta) = \exp[a_d \exp(-(\Delta/b_d)\gamma_d) + n_d] \)
- \(\{a_r, b_r, \gamma_r, m_r, n_r\} \) and \(\{a_d, b_d, \gamma_d, n_d\} \) are evaluated offline for a set of \(\sigma_y^2, \sigma_n^2 \) and \(\varepsilon \)
Approximation RD Model vs. Numerical Model

![Graph showing rate vs. distortion for different models](image)

- Ap. Md. $\sigma_y^2 = 2290 \sigma_n^2 = 230$
- Nm. Md. $\sigma_y^2 = 2290 \sigma_n^2 = 230$
- Ap. Md. $\sigma_y^2 = 4610 \sigma_n^2 = 720$
- Nm. Md. $\sigma_y^2 = 4610 \sigma_n^2 = 720$
- Ap. Md. $\sigma_y^2 = 6290 \sigma_n^2 = 570$
- Nm. Md. $\sigma_y^2 = 6290 \sigma_n^2 = 570$

Y. Priziment, D. Malah (Technion IIT) Model-based Rate Allocation in DVC Systems IEEEI 2008 8 / 12
Once obtaining Δ that satisfies the RD constraints:

- What is the *number of IUSQ bin labels?* (Nested Quantization)
- What should be the *rate of each bitplane?*
- Both questions can be answered by evaluating the RD function

![Graph showing the relationship between Innovation SNR and Rate](attachment://graph.png)
Applications of RD Model in DVC

DVC Encoder–Side Rate Control

- Feedback suppression - evaluate RD for the whole frame
- Use frame difference to estimate 'noise' statistics (applicable only to low motion sequences)

![Graph showing PSNR vs Rate for different conditions]

Mother and Daughter

- Without Feedback
- With Feedback
- H.264 - Intra

Y. Priziment, D. Malah (Technion IIT) Model-based Rate Allocation in DVC Systems IEEEI 2008
Rate Allocation

- Split WZ frames into disjoint slices, evaluate RD for each slice
- Applicable to systems **with and without** feedback

\[
\min_{(q_0, \ldots, q_{S-1})} \sum_{s=0}^{S-1} D_s, \quad \text{s.t.} \sum_{s=0}^{S-1} R_s(D_s) \leq R_{\text{max}}
\]

\[
q_i \in \{\Delta_0, \ldots, \Delta_{m-1}\}
\]

Coastguard (with feedback)

![Graph showing PSNR vs Rate for Fixed Q. and Rate Allocation methods. The graph plots PSNR in dB on the y-axis and Rate in bpp on the x-axis, with a clear line indicating the performance of Fixed Q. and another showing Rate Allocation.]
Summary

- Approximation to the WZ rate distortion model for Laplacian sources
- Feedback suppression using model based encoder rate control
- Quality enhancement by applying rate allocation to disjoint slices in systems with and without feedback

Outlook
- Generalizing the feedback suppression framework for sequences with medium-high motion activity
- Testing the proposed system on more sequences