Hyperspectral Channel Reduction For Local Anomaly Detection

Oleg Kuybeda, David Malah, Meir Barzohar

Outline
- Designing Multispectral Filters (MF) For Anomaly Detection algorithms
 - Filter design is based on processing hyperspectral Images
 - MF are obtained by replacing subsets of adjacent spectral bands by their means
 - Partition is optimal in terms of minimizing the Maximum of Mahalanobis Norms (MXMN)
 - Improved ROC compared to ℓ_2-based alternatives using RX
 - Real Data results are presented

From Hyperspectral to Multispectral
- Given hyperspectral images, partition spectra into a number of bands K

Problem Statement
- Determine a vector of K breakpoints $b_k = [b_1, \ldots, b_K]$
- Corresponding to $K - 1$ contiguous intervals $I_k = [b_k, b_{k+1}]$
- Producing a set of constants at $\mu_k = \frac{1}{|I_k|} \sum_{x \in I_k} x$
 - Each pixel x
- Such that a cost function $J(b_k, X)$ is minimized

Fast Hyperspectral Feature Reduction (FFR) [1]
- Error vector at interval k
 $e_k = (x_{k,j} - \mu_j) j \in I_k$
- Squared error at pixel j
 $\sum_{k=1}^K \sum_{j=1}^N |e_{k,j}|^2$
- Sum of squared error cost
 $J(b_k, X) = \sum_{j=1}^N \sum_{k=1}^K |e_{k,j}|^2$

The proposed Maximum of Mahalanobis Norms (MXMN)
- Error vector at interval k
 $e_k = (x_{k,j} - \mu_j) j \in I_k$
- Error covariance matrix in an interval k
 $\sum_{j=1}^N |e_{k,j}|^2$
- Mahalanobis norm of error j
 $\sqrt{\sum_{k=1}^K |e_{k,j}|^2}$
- Anomaly sensitive cost in an interval k
 $J(b_k, X) = \sum_{k=1}^K \sum_{j=1}^N |e_{k,j}|^2$
- Maximum of costs in all intervals
 $\max_{0 \leq k \leq K-1} J(b_k, X)$

Partition breakpoints: MXMN vs. FFR
- MXMN trained on image without anomalies
- FFR trained on image without anomalies
- Partition Examples: MXMN vs. FFR

RX – a benchmark Anomaly Detection Algorithm
- Background model pdf
 $p(x)$
- Hypotheses:
 $H_0 : x \sim p(x)$
 $H_1 : x \sim \eta$
- GLRT - Reed Xiaoli (RX)
 $I(x) = -\log p(x)$
 $\eta \sim \eta$
- Gaussian GLRT
 $p(x) = \mathcal{N}(\mu, \Sigma)$
 $I(x) = (x - \mu)\Sigma^{-1}(x - \mu) \sim \eta$

Example: HS channel image with anomalies

ROC curves by applying RX
- Number of hyperspectral channels 65
- Number of multispectral channels 16
- Number of hyperspectral images 6 (300 x 400 x 65)

Conclusion
- A new criterion (MXMN) was proposed for Multispectral filter design
- MXMN allows capturing anomalies well
 - In terms of hyperspectral partition granularity
 - In terms of RX performance (ROC curves)
- In the presented example, the anomaly representation performance was good even after training on data without anomalies
- MXMN was evaluated on real data images