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Outline Hyperspectral Imaging From Hyperspectral to Multispectral Problem Statement

o Designing Multispectral Filters (MF) for Anomaly o Given hyperspectral images, partition spectra into a number of o Determine a vector of K by = {b1,... bx}
Detection algorithms bands K breakpoints

o Filter design is based on processing Hyperspectral
Images
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o Real Data results are presented " spectral channel
o Which partition is best for detecting anomalies for a given K?
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RX — a benchamark
Anomaly Detection Algorithm ROC curves by applying RX Conclusion
o Background model pdf (%) o Number of hyperspectral channels 65 o A new criterion (MXMN) was proposed for
o Number of multispectral channels 10 Multispectral filter design

o Number of hyperspectral images 6 (300 x 400 x 65)

N Hy @ x~p(x) o MXMN allows capturing anomalies well
o Hypotheses: o :
VP Hy @+ x—a-~p(x) = In terms of hyperspectral partition granularity
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o GLRT - Reed Xiaoli (RX) L{x)= -logp(x) = 7 = In terms of Rx performance (ROC curves)
Ho E 12 o In the presented example, the anomaly
o Gaussian GLRT p(x) = N(x|pT) & representation performance was good even after
5 training on data without anomalies
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Lx)=(x—p)' T Yx—p) = g o MXMN was evaluated on real data images
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