Technion – IIT Dept. of Electrical Engineering
Signal and Image Processing lab
Global Anomaly Detection in Hyperspectral Images
via Maximum Orthogonal Complement Analysis (MOCA)

Oleg Kuybeda, David Malah, Meir Barzohar

Background versus Anomalies

State of the art approaches:
Matched Subspace Detector (MSD)

- Define two hypotheses:
 \(H_0 : x_i \sim \mathcal{N}(b_i, \sigma^2 I) \)
 \(H_1 : x_i \sim \mathcal{N}(b_i + \mathcal{R}_i, \sigma^2 I) \)

- \(\mathcal{H} \) background subspace basis
- \(\mathcal{T} \) anomaly subspace basis

- Generalized Log-Likelihood Ratio Test (GLRT)
 \(L(x) = \frac{1}{2} \log \frac{p_{H_0}(x)}{p_{H_1}(x)} \)
 \(P_{H_0} \) is a projection onto \(\mathcal{H} \)
 \(P_{H_1} \) is \(\mathcal{T} \)

- \(\mathcal{T} \) is a simplified outline

Subspace estimation
\(\ell_2 \)-norm based subspace estimation

- \(\hat{S}_i = \arg \min_{\mathcal{C}} \| P_{H_0} x_i \|^2 \)
 s.t. \(\text{rank } \mathcal{C} = r_i \)

- \(S_i \) is equivalent to \(\hat{S}_i \)

- Very hard to optimize due to a large number of constraints and a non-convex constraint

Greedy MX-SVD

- Look for a basis of the form:
 \(\mathcal{V}_k \) represents anomaly vectors
 \(\mathcal{V}_k \) represents the background

Subspace estimation
\(\ell_\infty \)-norm based subspace estimation

- \(\hat{S}_i = \arg \min_{\mathcal{C}} \| P_{H_0} x_i \|_\infty \)
 s.t. \(\text{rank } \mathcal{C} = r_i \)

- \(S_i \) is equivalent to \(\hat{S}_i \)

- Very hard to optimize due to a large number of constraints and a non-convex constraint

MX-SVD vs. SVD

<table>
<thead>
<tr>
<th>Metric</th>
<th>MX-SVD</th>
<th>SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max residual norm distribution</td>
<td>(\approx)</td>
<td>(\approx)</td>
</tr>
</tbody>
</table>

An example of anomaly misrepresentation as a result of \(\ell_2 \)-norm minimization

- Maximum residual error (dashed and dot-dashed) vs. norm of an anomaly vector (solid)
- \(N = 10^9, p = 100, r = r_0 + r_a = 6 + 1 \)

- Decrement of rank \(s-1 \) the total rank

- Signal and Image Processing lab

- Anomaly Extraction and Discrimination Algorithm (AXDA)
 A simplified outline

- ROC curves

- Real Data Results
 - \(r \) the estimated signal rank
 - \(h \) the estimated number of false alarms
 - \(r_a \) the estimated background rank
 - \(h_a \) the estimated false alarm rate
 - A anomaly response – The threshold parameter in the system
 - \(\sigma \) the standard deviation of the anomaly

- Oleg Kuybeda, David Malah, Meir Barzohar

- Technion – IIT Dept. of Electrical Engineering
 Signal and Image Processing lab
 Global Anomaly Detection in Hyperspectral Images
 via Maximum Orthogonal Complement Analysis (MOCA)