

MODULAR GLOBAL VARIANCE ENHANCEMENT FOR VOICE CONVERSION SYSTEMS

Hadas Benisty, David Malah, and Koby Crammer

EE Department, Technion – Israel Institute of Technology, Haifa, Israel

Goal

- ☐ Many voice conversion methods produce muffled synthesized outputs due to over-smoothing of the converted spectra
- ☐ GV enhancement used for muffling reduction and commonly applied as an integrated part of the conversion system
- ☐ We propose a new <u>modular</u> method for GV enhancement, applied as a <u>post-processing block</u>

Voice Conversion

☐ Transform a sentence said by a source speaker, to sound as if a target speaker had said it, based on pre-recorded training set

Voice Conversion Using GMM

- ☐ Linear Conversion based on a Gaussian Mixture Model (GMM) [Stylianou, 1998], [Kain & Macon, 1998]
- ☐ A common approach for spectral conversion
- ☐ Minimizes the mean Log Spectral distortion (LSD) between converted feature vectors and target vectors
- ☐ Characterized by smoothed spectral envelopes causing a muffling effect:

Spectral-Envelope Evolution in Time

Source Speaker

Converted signal [Stylianou, 1998]

Target Speaker

LS-GMM followed by GV enhancement (our work)

GV Enhancement

- ☐ GV enhancement methods have been proposed to overcome the muffling effect:
- ML estimation [Toda et. al., 2007]
- Constrained GMM (CGMM) [Benisty and Malah, 2011]
- ☐ These enhancement methods are integrated into the training process of the conversion

Proposed Modular GV Enhancement

- ☐ GV Enhancement Using an LSD Constraint
- Designed independently of any specific conversion scheme and applied as a postprocessing block

 The extent of GV enhancement is controlled by the allowed spectral distance the enhanced and the originally converted output, as specified by the user

GV Enhancement Using an LSD Constraint

☐ Input

- \circ A sequence of converted feature vectors $\tilde{\mathbf{Y}}_{1:T} \triangleq (\tilde{\mathbf{y}}_1, \tilde{\mathbf{y}}_2, ..., \tilde{\mathbf{y}}_T)^T$
- ☐ Output
- o A sequence of **enhanced** feature vectors $\tilde{\mathbf{Z}}_{1:T} \triangleq (\tilde{\mathbf{z}}_1, \tilde{\mathbf{z}}_2, ..., \tilde{\mathbf{z}}_T)^T$
- ☐ The enhanced sequence is the solution of:

$$\tilde{\mathbf{Z}}_{1:T} = \underset{\mathbf{Z}_{1:T}}{\operatorname{arg max NGV}} \left\{ \mathbf{Z}_{1:T} \right\}$$
s.t
$$\overline{\mathbf{LSD}} \left(\mathbf{Z}_{1:T}, \tilde{\mathbf{Y}}_{1:T} \right) \leq \theta_{LSD}$$

o NGV $\{Z_{1:T}\}$ - the normalized GV of the sequence $Z_{1:T}$, evaluated by:

$$\operatorname{NGV}\left\{\mathbf{Z}_{1:T}\right\} \triangleq \frac{1}{P} \sum_{p=1}^{P} \frac{\operatorname{Var}\left\{\tilde{\mathbf{Z}}_{1:T}\left(p\right)\right\}}{\operatorname{Var}\left\{\mathbf{Z}_{1:T}\left(p\right)\right\}}$$

- \circ $\overline{LSD}ig(\mathbf{Z}_{1:T}, \tilde{\mathbf{Y}}_{1:T}ig)$ mean Log spectral Distortion between the converted and enhanced sequences
- \circ θ_{LSD} pre-set threshold value for the mean LSD in dB
- ☐ The solution is obtained with explicit terms for mean LSD and NGV

$$\overline{\text{LSD}}(\tilde{\mathbf{Z}}_{1:T}, \tilde{\mathbf{Y}}_{1:T}) \approx \frac{\kappa}{T} \|\tilde{\mathbf{Z}}_{1:T} - \tilde{\mathbf{Y}}_{1:T}\|_{2,1} \qquad \kappa \triangleq 10\sqrt{2} / \ln 10$$

$$\text{NGV}\{\tilde{\mathbf{Y}}_{1:T}\} = \frac{1}{P} \|\Delta_T \cdot \tilde{\mathbf{Y}}_{1:T} \cdot \mathbf{C}^{-\frac{1}{2}}\|_2^2 \qquad \Delta_T \triangleq \frac{1}{\sqrt{T}} \left(\mathbf{I}_{T \times T} - \frac{1}{T} \operatorname{ones}(T, T)\right)$$

 $\mathbf{C} \triangleq diag\left(\operatorname{Var}\left\{\mathbf{Y}(1)\right\}, \ldots, \operatorname{Var}\left\{\mathbf{Y}(P)\right\}\right)$ $\operatorname{Var}\left\{\mathbf{Y}(p)\right\}$ - GV of spectral features related to the target speaker

Experimental Results

☐ Evaluated Methods

- o GMM-based Conversion (LS-GMM) [Stylianou, 1998]
- LS-GMM followed by our GV enhancement
- o CGMM [Benisty and Malah, 2011]

☐ Objectively

- For a given mean LSD, CGMM leads to higher GV than our method
- ☐ Subjectively
 - Our method was selected by the majority of listeners as better than CGMM, both in terms of quality and similarity to the target

Objective Evaluations

Conversion Method	Mean LSD [dB]	Mean Norm. GV
LS-GMM	6.2	0.1
Enhanced $\theta_{LSD} = 1dB$	6.4	0.2
Enhanced $\theta_{LSD} = 2dB$	6.7	0.3
Enhanced $\theta_{LSD} = 4dB$	7.3	0.4
CGMM	7.3	0.9

Subjective Evaluations

