Point Cloud Registration
Using A Viewpoint Dictionary

David Avidar, David Malah, and Meir Barzohar
Andrew and Erna Viterbi Faculty of Electrical Engineering
Technion, Haifa, Israel

ICSEE 2016 – Eilat, Israel
Nov. 17, 2016
Goal

- Registration between a **global large-scale** point cloud and a **local** point cloud

Local cloud (stereo reconstruction) sporadic coverage, limited field-of-view

(terrestrial LiDAR) dense coverage, multiple viewpoints
Motivation

• Applications:
 – Accurate localization in large-scale environments (with better reliability than consumer-grade GPS)
Motivation

• Applications:
 – Accurate localization in large-scale environments (with better reliability than consumer-grade GPS)
 – Multi-platform 3D environment modeling - registration between:
 ▪ airborne and terrestrial LiDAR clouds
 ▪ Structure from Motion (SfM) and LiDAR clouds
 ▪ etc.

Images: U.S. National Oceanic and Atmospheric Administration
Motivation

• Applications:
 – **Accurate** localization in large-scale environments (with better reliability than consumer-grade GPS)
 – **Multi-platform 3D environment modeling** - registration between:
 ▪ airborne and terrestrial LiDAR clouds
 ▪ Structure from Motion (SfM) and LiDAR clouds
 ▪ etc.
Outline

• Introduction

• Keypoint-based point cloud registration

• Point cloud registration using a viewpoint dictionary

• Conclusion
Keypoint-based point cloud registration

• Main steps:
 1. Keypoint detection
 ▪ Surface variation (Pauly et al., 2002)
 ▪ 3D SIFT (Rusu et al., 2011)

3D SIFT keypoint detection
(PCL, Rusu et al., 2011)

Image: Theiler et al., 2014
Keypoint-based point cloud registration

• Main steps:
 1. Keypoint detection
 ▪ Surface variation (Pauly et al., 2002)
 ▪ 3D SIFT (Rusu et al., 2011)
 2. 3D Descriptor computation
 ▪ Spin-Images (Johnson, 1997)
 ▪ Fast Point Feature Histogram - FPFH (Rusu et al., 2009)
Keypoint-based point cloud registration

• Main steps:
 1. Keypoint detection
 ▪ Surface variation (Pauly et al., 2002)
 ▪ 3D SIFT (Rusu et al., 2011)
 2. 3D Descriptor computation
 ▪ Spin-Images (Johnson, 1997)
 ▪ Fast Point Feature Histogram - FPFH (Rusu et al., 2009)
 3. Finding keypoint correspondences
Keypoint-based point cloud registration

• Main steps:
 1. Keypoint detection
 - Surface variation (Pauly et al., 2002)
 - 3D SIFT (Rusu et al., 2011)
 2. 3D Descriptor computation
 - Spin-Images (Johnson, 1997)
 - Fast Point Feature Histogram - FPFH (Rusu et al., 2009)
 3. Finding keypoint correspondences
 4. Coarse registration (e.g., using some variation of RANdom SAmple Consensus - RANSAC)
Keypoint-based point cloud registration

- Main steps:
 1. Keypoint detection
 - Surface variation (Pauly et al., 2002)
 - 3D SIFT (Rusu et al., 2011)
 2. 3D Descriptor computation
 - Spin-Images (Johnson, 1997)
 - Fast Point Feature Histogram - FPFH (Rusu et al., 2009)
 3. Finding keypoint correspondences
 4. Coarse registration (e.g., using some variation of RANdom SAmple Consensus - RANSAC)
 5. Registration refinement - some variation of ICP - Iterative Closest Point (Besl and McKay, 1992)
Limitations of using keypoints

• Keypoint-based methods do not perform well when point clouds are significantly different

<table>
<thead>
<tr>
<th></th>
<th>Stereo (data)</th>
<th>LiDAR/SfM (model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scene coverage</td>
<td>sporadic</td>
<td>full</td>
</tr>
<tr>
<td>Noise level</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Density</td>
<td>low</td>
<td>high</td>
</tr>
</tbody>
</table>

Stereo (local cloud) LiDAR (global cloud)
Limitations of using keypoints

• Keypoint-based methods do not perform well when point clouds are significantly different.

Main difficulties:
 – Less repeatable keypoint detection
 – Fewer reliable correspondences
 – Unstable performance
 ▪ Ground truth
 ▪ Keypoint-based registration result

<table>
<thead>
<tr>
<th></th>
<th>Stereo (data)</th>
<th>LiDAR/SfM (model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scene coverage</td>
<td>sporadic</td>
<td>full</td>
</tr>
<tr>
<td>Noise level</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Density</td>
<td>low</td>
<td>high</td>
</tr>
</tbody>
</table>

Keypoint-based registration result
Outline

- Introduction
- Keypoint-based point cloud registration
- Point cloud registration using a viewpoint dictionary
- Conclusion
Proposed method: Point cloud registration using a viewpoint dictionary

• Main concepts:
 – Large-scale global cloud ➔ Dictionary of viewpoint-based smaller clouds
 – Local to global cloud registration ➔ Dictionary search

• Advantages:
 – Robust to point cloud noise
 – Can handle sporadic local clouds (e.g., stereo)

• Challenges:
 – Keep the dictionary compact
 – Perform dictionary search efficiently
Point cloud registration using a viewpoint dictionary - overview

Global cloud

Pre-processing

Viewpoint grid creation

Dictionary creation

Final candidate selection

ICP

Initial candidate selection

6DoF transformation estimation

Offline/Online

Local cloud
Main steps:

1. Create a grid of synthetic viewpoints
Main steps:

1. Create a grid of synthetic viewpoints
Viewpoint dictionary based registration

Main steps:

1. Create a grid of synthetic viewpoints

- Initial grid is regular in the x, y plane
- Viewpoints are set at a constant height above ground
Viewpoint dictionary based registration

Main steps:

1. Create a grid of synthetic viewpoints

- Initial grid is regular in the x, y plane
- Viewpoints are set at a constant height above ground
- Possible viewpoint restrictions:
 - Avoid viewpoints on rooftops
 - Filter out viewpoints in vegetation
Main steps:

1. Create a grid of synthetic viewpoints

- Initial grid is regular in the x, y plane
- Viewpoints are set at a constant height above ground
- Possible viewpoint restrictions:
 - Avoid viewpoints on rooftops
 - Filter out viewpoints in vegetation

Viewpoint dictionary based registration
Main steps:

2. Create dictionary clouds for each viewpoint

- Divide area around each viewpoint into overlapping “slices”
Main steps:

2. Create dictionary clouds for each viewpoint

• Divide area around each viewpoint into overlapping “slices”
Viewpoint dictionary based registration

Main steps:

2. Create dictionary clouds for each viewpoint

- Divide area around each viewpoint into overlapping “slices”
Main steps:

2. Create dictionary clouds for each viewpoint

• Divide area around each viewpoint into overlapping “slices”
Divide area around each viewpoint into overlapping “slices”

Each “slice” (dictionary cloud) is aligned to a uniform pose such that:

- Viewpoint at origin
- Viewpoint normal $\parallel \hat{z}$
- Viewing direction $\parallel \hat{x}$
Main steps:

3. Given a local cloud, select candidate dictionary clouds

• Local cloud is transformed to the uniform pose

• Candidate selection criterion:
 – Minimal Root-Mean-Square Error (RMSE) between local and dictionary clouds

\[RMSE = 1.97[m] \]
Viewpoint dictionary based registration

Main steps:

3. Given a local cloud, select candidate dictionary clouds

• Local cloud is transformed to the uniform pose

• Candidate selection criterion:
 – Minimal Root-Mean-Square Error (RMSE) between local and dictionary clouds

\[\text{RMSE} = 4.24 [m] \]
Viewpoint dictionary based registration

Main steps:

3. Given a local cloud, select candidate dictionary clouds

- Local cloud is transformed to the **uniform pose**

- Candidate selection criterion:
 - Minimal Root-Mean-Square Error (RMSE) between local and dictionary clouds

- A **GPS reading**, if available, can be used to restrict **search area**
4. Use ICP on candidates to refine registration

- Use of ICP allows sub-viewpoint-grid localization accuracy

- **Before ICP:**
 - $RMSE = 1.97[m]$
 - $Loc.\ error = 3.91[m]$
4. Use ICP on candidates to refine registration

- Use of ICP allows sub-viewpoint-grid localization accuracy

- **Before ICP:**
 - $RMSE = 1.97[m]$
 - $Loc.\ error = 3.91[m]$

- **After ICP:**
 - $RMSE = 1.22[m]$
 - $Loc.\ error = 1.71[m]$
Main steps:

4. Use ICP on candidates to refine registration

- Use of ICP allows sub-viewpoint-grid localization accuracy
- Candidate with lowest RMSE after ICP

Final transformation (local to global)
Results – **stereo** local clouds

Keypoints Vs. viewpoint dictionary

- 7 stereo local clouds:
 - Noisy
 - Sparse
 - Sporadic scene coverage
Results — stereo local clouds

Keypoint-based registration

• Keypoint-based registration pipeline:
 – Keypoint detection: Surface variation (Pauly et al., 2002)
 – 3D descriptors: Spin-Images (Johnson, 1997)
 – Coarse registration: RANSAC
 – Registration refinement: ICP

• # local clouds where localization error < 3m: 0/7
 – Lowest loc. error was 25m
 – Difficulty to establish correct correspondences
Results – stereo local clouds

Viewpoint dictionary based registration

<table>
<thead>
<tr>
<th>Local cloud #</th>
<th>Localization error [m]</th>
<th>Yaw Error [deg]</th>
<th>Pitch Error [deg]</th>
<th>Roll Error [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.96</td>
<td>-6.35</td>
<td>-3.40</td>
<td>-6.00</td>
</tr>
<tr>
<td>2</td>
<td>74.94</td>
<td>135.83</td>
<td>-3.93</td>
<td>-2.75</td>
</tr>
<tr>
<td>3</td>
<td>2.41</td>
<td>4.18</td>
<td>-2.87</td>
<td>-2.85</td>
</tr>
<tr>
<td>4</td>
<td>0.48</td>
<td>0.94</td>
<td>1.90</td>
<td>-1.31</td>
</tr>
<tr>
<td>5</td>
<td>0.51</td>
<td>2.23</td>
<td>1.59</td>
<td>-3.29</td>
</tr>
<tr>
<td>6</td>
<td>1.16</td>
<td>3.13</td>
<td>0.45</td>
<td>-2.02</td>
</tr>
<tr>
<td>7</td>
<td>12.10</td>
<td>51.65</td>
<td>-0.19</td>
<td>3.87</td>
</tr>
</tbody>
</table>

• # local clouds where localization error < 3m: 5/7

• Using keypoints: 0/7 (lowest loc. error was 25m)
Outline

• Introduction
• Keypoint-based point cloud registration
• Point cloud registration using a viewpoint dictionary
• Conclusion
Conclusion

• Proposed novel point cloud registration framework:
 – Large-scale global cloud → Dictionary of viewpoint-based smaller clouds
 – Local to global cloud registration → Dictionary search

• Demonstrated advantages over using keypoints
 – Can handle substantially different characteristics of the global and local clouds (LiDAR vs. stereo)

• Future work:
 – Dedicated viewpoint descriptors
 ▪ Compact dictionary storage
 ▪ Efficient dictionary search
Acknowledgments

• Collaboration:
 – CEVA
 – Elbit Systems Land and C4I

• Point cloud data:
 – Elbit Systems Land and C4I

Thank You!