

Point Cloud Registration Using A Viewpoint Dictionary

David Avidar, David Malah, and Meir Barzohar

Andrew and Erna Viterbi Faculty of Electrical Engineering

Technion, Haifa, Israel

Goal

 Registration between a global large-scale point cloud and a local point cloud

Local cloud

(stereo reconstruction)
sporadic coverage, limited
field-of-view

(terrestrial LiDAR)
dense coverage, multiple
viewpoints

Motivation

Applications:

 Accurate localization in large-scale environments (with better reliability than consumer-grade GPS)

Motivation

Applications:

- Accurate localization in large-scale environments (with better reliability than consumer-grade GPS)
- Multi-platform 3D environment modeling registration between:
 - airborne and terrestrial LiDAR clouds
 - Structure from Motion (SfM) and LiDAR clouds
 - etc.

Airborne LiDAR

Motivation

Applications:

- Accurate localization in large-scale environments (with better reliability than consumer-grade GPS)
- Multi-platform 3D environment modeling registration between:
 - airborne and terrestrial LiDAR clouds
 - Structure from Motion (SfM) and LiDAR clouds
 - etc.

Terrestrial LiDAR

Outline

- Introduction
- Keypoint-based point cloud registration
- Point cloud registration using a viewpoint dictionary
- Conclusion

- Main steps:
 - 1. Keypoint detection
 - Surface variation (Pauly et al., 2002)
 - 3D SIFT (Rusu et al., 2011)

3D SIFT keypoint detection (PCL, Rusu et al., 2011)

Image: Theiler et al., 2014

Main steps:

- 1. Keypoint detection
 - Surface variation (Pauly et al., 2002)
 - 3D SIFT (Rusu et al., 2011)

2. 3D Descriptor computation

- Spin-Images (Johnson, 1997)
- Fast Point Feature Histogram FPFH (Rusu et al., 2009)

Spin-Images (Johnson, 1997)

Main steps:

- 1. Keypoint detection
 - Surface variation (Pauly et al., 2002)
 - 3D SIFT (Rusu et al., 2011)
- 2. 3D Descriptor computation
 - Spin-Images (Johnson, 1997)
 - Fast Point Feature Histogram FPFH (Rusu et al., 2009)
- 3. Finding keypoint correspondences

Johnson, 1997

Rusu et al., 2009

Main steps:

- 1. Keypoint detection
 - Surface variation (Pauly et al., 2002)
 - 3D SIFT (Rusu et al., 2011)
- 2. 3D Descriptor computation
 - Spin-Images (Johnson, 1997)
 - Fast Point Feature Histogram FPFH (Rusu et al., 2009)
- 3. Finding keypoint correspondences
- 4. Coarse registration (e.g., using some variation of RANdom SAmple Consensus RANSAC)

Rusu et al., 2009

Main steps:

- 1. Keypoint detection
 - Surface variation (Pauly et al., 2002)
 - 3D SIFT (Rusu et al., 2011)
- 2. 3D Descriptor computation
 - Spin-Images (Johnson, 1997)
 - Fast Point Feature Histogram FPFH (Rusu et al., 2009)
- 3. Finding keypoint correspondences
- Coarse registration (e.g., using some variation of RANdom SAmple Consensus - RANSAC)
- 5. Registration refinement some variation of ICP Iterative Closest Point (Besl and McKay, 1992)

Source: pointclouds.org

Limitations of using keypoints

 Keypoint-based methods do not perform well when point clouds are significantly different

	Stereo (data)	LiDAR/SfM (model)
Scene coverage	sporadic	full
Noise level	high	low
Density	low	high

Stereo (local cloud)

LiDAR (global cloud)

Limitations of using keypoints

 Keypoint-based methods do not perform well when point clouds are significantly different

	Stereo (data)	LiDAR/SfM (model)
Scene coverage	sporadic	full
Noise level	high	low
Density	low	high

Main difficulties:

- Less repeatable keypoint detection
- Fewer reliable correspondences
- Unstable performance
 - Ground truth
 - Keypoint-based registration result

Outline

- Introduction
- Keypoint-based point cloud registration
- Point cloud registration using a viewpoint dictionary
- Conclusion

Proposed method: Point cloud registration using a viewpoint dictionary

- Main concepts:
 - − Large-scale global cloud

Dictionary of viewpointbased smaller clouds

Local to global cloud registration →

Dictionary search

- Advantages:
 - Robust to point cloud noise
 - Can handle sporadic local clouds (e.g., stereo)
- Challenges:
 - Keep the dictionary compact
 - Perform dictionary search efficiently

Point cloud registration using a viewpoint dictionary - overview

- Initial grid is regular in the x, y plane
- Viewpoints are set at a constant height above ground

- Initial grid is regular in the x, y plane
- Viewpoints are set at a constant height above ground
- Possible viewpoint restrictions:
 - Avoid viewpoints on rooftops
 - Filter out viewpoints in vegetation

1. Create a grid of synthetic viewpoints

- Initial grid is regular in the x, y plane
- Viewpoints are set at a constant height above ground
- Possible viewpoint restrictions:
 - Avoid viewpoints on rooftops
 - Filter out viewpoints in vegetation

Filtered viewpoint grid and normals

Filtered viewpoint grid and normals - side view

2. Create dictionary clouds for each viewpoint

2. Create dictionary clouds for each viewpoint

- Divide area around each viewpoint into overlapping "slices"
- Each "slice"
 (dictionary cloud) is aligned to a uniform pose such that:
 - Viewpoint at origin
 - Viewpoint normal $||\vec{z}|$
 - Viewing direction $||\vec{x}|$

3. Given a local cloud, select candidate dictionary clouds

- Local cloud is transformed to the uniform pose
- Candidate selection criterion:
 - Minimal Root-Mean-Square Error (RMSE) between local and dictionary clouds

RMSE = 1.97[m]

3. Given a local cloud, select candidate dictionary clouds

- Local cloud is transformed to the uniform pose
- Candidate selection criterion:
 - Minimal Root-Mean-Square Error (RMSE) between local and dictionary clouds

RMSE = 4.24[m]

3. Given a local cloud, select candidate dictionary clouds

- Local cloud is transformed to the uniform pose
- Candidate selection criterion:
 - Minimal Root-Mean-Square Error (RMSE) between local and dictionary clouds
- A GPS reading, if available, can be used to restrict search area

4. Use ICP on candidates to refine registration

- Use of ICP allows subviewpoint-grid localization accuracy
- Before ICP:
 - RMSE = 1.97[m]
 - Loc.error = 3.91[m]

4. Use ICP on candidates to refine registration

- Use of ICP allows subviewpoint-grid localization accuracy
- Before ICP:
 - RMSE = 1.97[m]
 - Loc.error = 3.91[m]
- After ICP:
 - RMSE = 1.22[m]
 - Loc.error = 1.71[m]

4. Use ICP on candidates to refine registration

- Use of ICP allows subviewpoint-grid localization accuracy
- Candidate with lowest RMSE after ICP

Final transformation (local to global)

Results – <u>stereo</u> local clouds

Keypoints Vs. viewpoint dictionary

- 7 stereo local clouds:
 - Noisy
 - Sparse
 - Sporadic scene coverage

Results – stereo local clouds

Keypoint-based registration

- Keypoint-based registration pipeline:
 - Keypoint detection: Surface variation (Pauly et al., 2002)
 - 3D descriptors: Spin-Images (Johnson, 1997)
 - Coarse registration: RANSAC
 - Registration refinement: ICP
- # local clouds where localization error < 3m: 0/7
 - Lowest loc. error was 25m
 - Difficulty to establish correct correspondences

Results – stereo local clouds

Viewpoint dictionary based registration

Local cloud #	Localization error [m]	Yaw Error [deg]	Pitch Error [deg]	Roll Error [deg]
1	2.96	-6.35	-3.40	-6.00
2	74.94	135.83	-3.93	-2.75
3	2.41	4.18	-2.87	-2.85
4	0.48	0.94	1.90	-1.31
5	0.51	2.23	1.59	-3.29
6	1.16	3.13	0.45	-2.02
7	12.10	51.65	-0.19	3.87

- # local clouds where localization error < 3m: 5/7
- Using keypoints: 0/7 (lowest loc. error was 25m)

Outline

- Introduction
- Keypoint-based point cloud registration
- Point cloud registration using a viewpoint dictionary
- Conclusion

Conclusion

- Proposed novel point cloud registration framework:
 - Large-scale global cloud

Local to global cloud registration →

Dictionary search

- Demonstrated advantages over using keypoints
 - Can handle substantially different characteristics of the global and local clouds (LiDAR vs. stereo)
- Future work:
 - Dedicated viewpoint descriptors
 - Compact dictionary storage
 - Efficient dictionary search

Acknowledgments

- Collaboration:
 - CEVA
 - Elbit Systems Land and C4I
- Point cloud data:
 - Elbit Systems Land and C4I

Thank You!