

In collaboration with: Geosim

Goal

• Registration (alignment) between a **global**, large-scale **point cloud**, and a single **local** scan.

Motivation

- Combining airborne and terrestrial LiDAR scans for large-scale **urban modeling**.
- Localization in an urban environment even without GPS.

Challenges

- Airborne vs. terrestrial data characteristics:
- Very different point density distributions (airborne \rightarrow more points on **horizontal** surfaces, **terrestrial** \rightarrow more points on **vertical** surfaces).
- Missing data, different types of occlusion.
- Urban environments contain many flat surfaces and **repetitive features**.
- We found existing 3D feature-based methods (e.g., Spin-Images, Fast Point Feature Histograms - FPFH) to be **unreliable under** these conditions.

Local-to-Global Point Cloud Registration using a **Dictionary of Viewpoint Descriptors**

Omek Consortium

David Avidar, David Malah, and Meir Barzohar Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology

Registration algorithm – Overview • Main concepts: Convert global cloud to a dictionary of viewpoint descriptors. Find registration via dictionary search. Viewpoint Ground Global Offline Dictionary Detection Creation Viewpoint Candidate Local Viewpoints Descriptor Selection Creation Online Local-to-RMSE Coarse Registration Global ← Registration Verification Refineme Transformation

Viewpoint dictionary creation

- **Detect ground** (e.g., by region growing).
- Define a viewpoint grid over the global cloud (e.g., grid distance = 3m).
- Compute a **panoramic range-image** for each viewpoint.

Panoramic range-images as viewpoint descriptors

• Use the view of the global scene from each viewpoint as a **descriptor** and match with **local** range-image.

Candidate viewpoint selection via phasecorrelation

- Select a subset of grid viewpoints (e.g., 10) with largest **phase-correlation** peaks.
- Peak location \rightarrow coarse orientation estimate.

Verification and registration refinement

- Select N_{final} (e.g., 3) coarse registrations with **Iowest RMSE** (Root-Mean-Square Error between the local and global clouds).
- **Refine** selected registrations using **ICP** (Iterative Closest Point).
- Select final registration with lowest RMSE.

Results

- The registration algorithm was tested on a large-scale and challenging dataset:
- 108 terrestrial LiDAR scans (Z+F Imager 5010).
- Airborne LiDAR scan (global cloud) area: $\sim 1 km^2$ (Leica) ALS80).

	Localization error [m]		Relative Rotation Error [deg]		Registration runtime per cloud [sec]*	
	Mean	STD	Mean	STD	Mean	STD
Using GPS (30m search radius)	0.43	0.27	0.76	0.37	2.0	0.4
No GPS (search entire grid)	0.44	0.27	0.78	0.39	15.4	0.7

* Run on PC (i7-5820K CPU @ 3.30 GHz), MATLAB implementation

- Comparison to FPFH tested on a subset of **24 local clouds**:
- Using FPFH, only 6 out of 24 clouds had localization error lower than 3m (the other 18 registrations failed).
- Using the proposed method, the maximal localization error was 0.79m (the max. error over all 108 clouds was 1.85m).

Conclusion

- 3D feature-based methods were found to be unreliable for local-to-global terrestrial-toairborne registration.
- **Registration performance** of the proposed viewpoint-dictionary-based method is significantly better.