MODEL-BASED TRANSRATING OF H.264 INTRA CODED FRAMES
Naama Hait and David Malah
Department of Electrical Engineering, Technion - Israel Institute of Technology

Transrating of coded video
- **Transrating**: bit rate reduction of pre-encoded video.
- **Method**: transform coefficients quantization.
- **Applications**: television broadcast, internet streaming

Transrating architectures
- **Trivial solution**: re-encoding
 - **High computational complexity due to full encoding**
- **Lowest complexity**: open-loop
 - **Drift error**
- **Reuse of input coding modes**
 - **Compromise of quality vs. computational complexity**
- **Intra-frame transrating architectures**
 - **Partial Decoder**: Partial Encoder
 - **Encode up to the residual transform coefficients**
 - **Non-linear operations cause a drift error that cannot be fully compensated**
 - **Full Decoder**: Guided Encoder
 - **No drift error**
 - **Guided encoding, based on the input intra prediction modes with optional modes modification.**

Model-based uniform requantization
- **Uniform requantization**
 - A sufficiently high bit budget is typical (intra-frames).
 - Spatial prediction → block dependencies
- **Model-based**
 - Transform coefficients requantization → evaluation of rates at many step sizes → high complexity.
 - Reduce the complexity by model-based evaluation.
 - Use a robust rate model in the ρ domain (fraction of zeroed coefficients). (He and Mitra, 2002)

Statistical ρ(Q2) estimator

1. **Modeling stages (closed-loop scheme just for modeling)**
 1. Extract the distribution of Y from the input:
 \[p_1(y) = \sum_{m=0}^{M} p_m \delta(y - mQ) \]
 2. Model the distribution of the correction signal C
 - Characterization: segment into homogenous data parts
 - Γ probability distribution
 - Estimation of Γ distribution parameter
 - Use 1+2. to model the distribution of W:
 \[\Pr(W \leq w) = \sum_{m=0}^{M} p_m \int_{-\infty}^{w} p_{C|Y}(c|y = mQ) dc \]
 3. Estimate \(\hat{\rho}(Q_2) = \Pr(W \leq Th(Q_2)) \)

Correction signal modeling (I)

Characterization of C

- **Segment the correction signal into groups according to the following criteria**
 1. Spatial prediction modes (e.g. DC, vertical, horizontal, various diagonal)
 2. Affected / unaffected transform coefficients:
 - DC prediction
 - Vertical prediction
 - Horizontal prediction
 - Other spatial prediction

Benefits
- Increased precision
- Complexity reduction – use open-loop estimator for unaffected coefficients

Correction signal modeling (II)

Γ probability distribution

- **Definition**:
 \[p_c(c) = \frac{1}{2\sqrt{\pi B |c|}} \exp(-\beta |c|) \]
 where smaller β → wider distribution
- **ML estimator**:
 \[\hat{\beta} = 0.5 N \sum_{i=1}^{N} |c_i| \]

Results
- **ρ-Q2 estimator performance**
 - The proposed Γ distribution estimator has an average relative error of less than 1.7%.

Correction signal modeling (III)

Estimation of Γ distribution parameter

Parameters depend on input

Conclusion
- **Novel statistical-based ρ-Q2 model** for transrating of H.264 intra-coded frames.
 - The model provides average rate deviation of 3%, as compared to 10.8% average deviation, obtained using an open-loop estimator.