- •
- •
- •
- •
- •
- •
- •
- •
- •

Segmentation-Based Shape-Adaptive Image Coding

Zhao Ying Supervised by Professor D. Malah Department of Electrical Engineering Technion-Israel Institute of Technology 27 April, 1999

Purpose & Motivation

- Block-based image coding systems (JPEG) produce poor quality images at low bit-rate (<0.5 bpp)
- HVS is sensitive to distortion along object boundary, less sensitive to distortion within the content
- Possible approach proposed: segmentation-based image coding, including

 \bullet

- Image segmentation system
- Texture coding system
- Contour coding system

Outline

 \bullet

- Gray-Scale Morphology A Brief Overview
- Segmentation Algorithms
- Shape-Adaptive Image Coding
 - Region-Based
 - Block-Based
- Conclusion & Future Studies

Gray Scale Morphological Dilation & Erosion

• Dilation

$$\delta_n(f)(x) = Max\{f(x-y), y \in M_n\}$$

• Erosion

 $\mathcal{E}_n(f)(x) = Min\{f(x+y), y \in M_n\}$

chap21.eps

 M_n - Structuring element of size *n* 7 × 7 square used in the example (*n* = 3) Image of size 100 × 100

Reconstruction by Dilation (Erosion)

- Geodesic Dilation Size 1 $\delta^{1}(f,r) = Min\{\delta_{1}(f),r\}$
- Geodesic Erosion Size 1

 $\varepsilon^{1}(f,r) = -\delta^{1}(-f,-r)$

• Reconstruction by Dilation

 $\gamma^{(rec)}(f,r) = \delta^{\infty}(f,r) = (\cdots \delta^{1}(\cdots \delta^{1}(f,r), \mathfrak{I}, r))$ ap 22.ep s

Reconstruction by Erosion

 $\phi^{(rec)}(f,r) = \varepsilon^{\infty}(f,r) = (\cdots \varepsilon^1(\cdots \varepsilon^1(f,r)\cdots,r))$

Morphological Filters & Operators

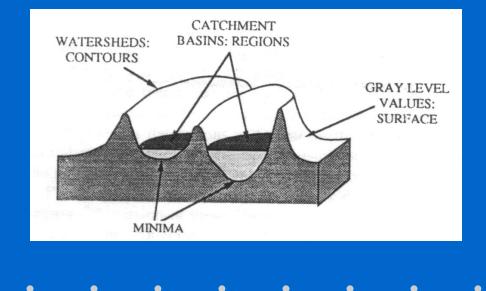
- Morphological Opening
- Morphological Closing
- Opening by Reconstruction of Erosion
- Closing by Reconstruction of Dilation
- h_maxima
- h_minima

 $h_{max}(f) = \gamma^{(rec)}(f - h, f)$

 $\gamma_n(f) = \delta_n(\varepsilon_n(f))$

 $\phi_n(f) = \varepsilon_n(\delta_n(f))$

 $h_{min}(f) = \phi^{(rec)}(f+h, f)$



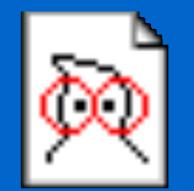
 $\gamma^{(rec)}(\varepsilon_n(f),f)$

 $\phi^{(rec)}(\delta_n(f),f)$

Morphological Watershed

Image Simplification by Morphological Filters (Operators)

Image of size 512×512 25×25 square structuring element



chap23.eps

Morphological-Based Image Segmentation Algorithms

Existing

- Hierarchical Morphological Synthesis-by-Analysis
- Morphological Simplification, Region Splitting & Merging

Proposed

• Edge Detection, Local-Activity Classification

Hierarchical Morphological Synthesis-by-Analysis Segmentation Algorithm [P.Salembier, 1995]

chap31.eps

Hierarchical Morphological Synthesis-by-Analysis Segmentation Results

chap35.eps

- Proper size of the filters is unknown
- Watershed produces false contours
- High complexity, high computation load

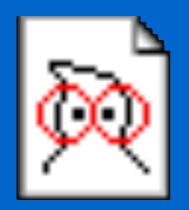
•

Morphological Simplification, Region Splitting & Merging Segmentation Algorithm [D. Wang, 1997]

chap32.eps

Morphological Simplification, Region Splitting & Merging Segmentation Results

- Oversegmented output
- Complicated contour is produced



chap36.eps

Edge Detection, Local-Activity-Classification Segmentation Algorithm

chap33.eps

Local-Activity Classification [J. Pandel, 1991]

Apply operators $P(k)$, $k = 1, \dots, 4$,	P(1)						P(2)					
to image to calculate local-activity:	0	0	0	0 0)	0	0)]		0	0	
$\int \frac{5}{2} \sum_{i=1}^{5} f(x_i - 2x_i) = 2 + i \sum_{i=1}^{5} f(x_i)$	0	1	0 -	-1 C)	0	1	()	0	0	
$A_{x,y}(k) = \sum_{i=1}^{5} \sum_{j=1}^{5} f(x-3+i, y-3+j) p_{(i,j)}(k)$	0	1	0 -	-1 C)	1	0) ()	0	-1	
				-1 C		0	0) () -	-1	0	
$A_{x,y} = \max_{k=1,\dots,4} \left(\left A_{x,y}(k) \right \right)$	0	0	0	0 0)	0	0) —	-1	0	0	
	P(3)					P(4)						
class 1: $0 \le A_{x,y} < 32$: flat areas	0	0		0								
class 2: $32 \le A_{x,y} < 64$: low structured regions	0	1	1	1	0	()	0	0	1	0	
class 3: $64 \le A_{x,y} < 128$: high structured regions				0					0			
	0	-1	-1	-1	0	()	-1	0	0	0	
class 4: $128 \le A_{x,y}$: edges	0	0	0	0	0	()	0	-1	0	0	

 \bullet

Edge Detection, Local-Activity-Classification Segmentation Steps

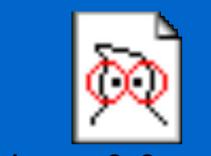
chap37.eps

Contour Simplification by Majority Filter [C. Gu, 1994]

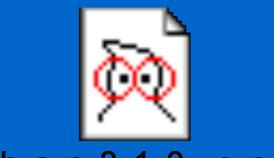
- Majority operator M(P(x)) assigns the majority label within the neighborhood to current pixel
- Apply majority operator iteratively, until no change is caused $\sigma_B = M^{\infty}(P(x))$
- Size of the filter is optional

chap38.eps

Edge Detection, Local-Activity-Classification Segmentation Results



chap39.eps



; h a p 3 1 0 .e p s

Advantages of Proposed Segmentation Algorithm

• Segmentation output better matched to coding task

- Moderate computation load
- Possible approach to generic segmentation algorithm

Shape-Adaptive Image Coding System

chap41.eps

Region-Based Image Coding Techniques

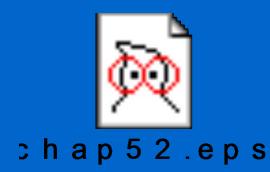
- Least Squares Approximation
- Shape-Adaptive Orthogonal Basis Function Generation
 - Gram-Schmidt orthogonalization scheme
 - Householder polynomials [M. Weisfeld, 1959]
 - Weakly separable basis functions [W. Philips, 1996]

Drawbacks of Orthogonal Basis Functions Approximation

- Expensive computation
- Improper generation caused by initial dependent functions
- Unpredictable coefficients positions in frequency domain

• Limited degree can be generated

Results of Basis Function Approximation



Block-Based Shape-Adaptive Approach

Block Classification

- Inner blocks
- Boundary blocks
- Outside blocks

chap45.eps

Block-Based Shape-Adaptive Coding Techniques

- Shape-Adaptive DCT (SADCT)
- Block Extrapolation Methods
 - Low-pass extrapolation (LPE) padding technique

- Optimal data extrapolation (min. norm sense)
 - min. $||l||_{2}$ (Method of Frames)
 - min. $\|l\|_1$ (Basis Pursuit)

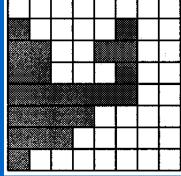
Shape-Adaptive DCT

- Shift and align data column wise (Y'), calculate 1D-DCT adaptive to column size (U)
- Shift and align DCT coefficients row wise (X'), calculate 1D-DCT adaptive to row size (V)
- Conduct reverse procedure SA-IDCT for reconstruction

chap42.eps

Shape-Adaptive DCT (cont'd)

- Comparatively low computation load
- Less energy compaction than with 2D-DCT
- Inefficient coding of blocks having noncontiguous data



Low-Pass Extrapolation Padding

<u>Algorithm Description</u>

- Calculate mean of block-pixels within the segment
- Assign the mean to block-pixels outside the segment
- Filter each outside block-pixel by the operator $\tilde{f}(i, j) = [f(i, j-1) + f(i-1, j) + f(i, j+1) + f(i+1, j)]/4$
- Apply filtering step iteratively, until no data change

- **Properties**
 - Low computation requirements
 - Insufficient reduction of bit-rate

Optimal Block Extrapolation (min. norm)

• From 2D to 1D $C^{T}AC = S \iff \Phi \underline{a} = \underline{s} = \begin{bmatrix} \underline{\beta}_{m \times 1} \\ \underline{\theta}_{(N-m) \times 1} \end{bmatrix}; \Phi = C^{T} \otimes C$ • Optimal Approach $\min \|\underline{a}\|_{p}$ subject to $\Phi'_{m \times N} \underline{a} = \underline{\beta}$ $\circ \min \|\underline{a}\|_{2}$ subject to $\Phi' \underline{a} = \underline{\beta}$ (Method of Frames) $\circ \min \|\underline{a}\|_{1}$ subject to $\Phi' \underline{a} = \beta$ (Basis Pursuit)

l_1 Optimal Block Extrapolation

$$\underline{a} = \underline{u} - \underline{v} \quad \underline{u}, \ \underline{v} \ge 0$$

min $\mathbf{1}^{T} \begin{bmatrix} \underline{u} \\ \underline{v} \end{bmatrix}$ subject to $\begin{bmatrix} \Phi' & -\Phi' \end{bmatrix} \begin{bmatrix} \underline{u} \\ \underline{v} \end{bmatrix} = \underline{\beta}$

- Can be solved by Linear Programming
- Only *m* nonzero entries exist in <u>a</u>, the same number as of known original data

• Positions of nonzero entries are unpredictable

Block Data Extrapolation

chap43.ps

Block Data Transform

Use
$$p_i = \frac{c_i^2}{\sum_k c_k^2}$$
, $E = -\sum_i p_i \log p_i$, $i = 0, \dots, N-1$
to calculate entropy E :
MOF: $E = 2.6489$
SADCT: $E = 0.5630$
LPE: $E = 0.2181$
BP: $E = 0.5129$

J

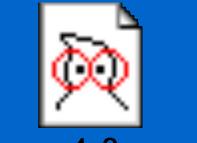
۲

- P

Block-Based Shape-Adaptive Coding Results

۲

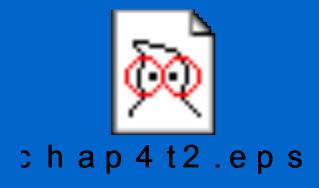
chap47.eps



chap48.eps

Block-Based Shape-Adaptive Coding Results (cont'd)

•



Conclusions & Future Studies

<u>Segmentation</u>

- * Proposed algorithm is better matched to the coding task
- Proposed algorithm could be the basis for a generic segmentation algorithm, provided that region refinement is further studied

<u>Shape-Adaptive Coding</u>

Region-based approach has practical (numerical)
 problems concerning the order of basis functions
 can be generated

Conclusions & Future Studies (cont'd)

<u>Shape-Adaptive Coding</u>

- * Block-based approach reduces bit-rate (compared to JPEG) for images with steep edges between segments
- * Compatible with available block-based coding system
- Does not fully exploit the potential provided by segmentation

BP Extrapolation

* Provides better results than LPE padding & SADCT

- High complexity

Least Squares Approximation

$$g(x, y) = a_1\phi_1(x, y) + a_2\phi_2(x, y) + \dots + a_N\phi_N(x, y)$$

$$d(f, g) = \sum_{(x, y) \in D_M} (g(x, y) - f(x, y))^2$$

$$\sum_{n=1}^N a_n \sum_{(x, y) \in D_M} \phi_n(x, y)\phi_q(x, y) = \sum_{(x, y) \in D_M} f(x, y)\phi_q(x, y), \text{ for } q = 1, \dots, N$$

Orthogonal Basis Functions with respect to Segment Shape

 \bullet

 \bullet

۲

 $\sum_{(x,y)\in D_M} \phi_n(x,y)\phi_q(x,y) = 0, \text{ for } n \neq q$

Least Squares Approximation (cont'd)

$$a_{q} = \frac{\sum_{(x,y)\in D_{M}} f(x,y)\phi_{q}(x,y)}{\sum_{(x,y)\in D_{M}} \phi_{q}(x,y)\phi_{q}(x,y)}, \text{ for } q = 1, \cdots, N$$

- Orthogonal functions are guaranteed by linear independence of initial functions
- Coefficients' calculation is numerically stable and simple
- No need to recalculate previous coefficients when new coefficients are need

Block-Based Shape-Adaptive Coding Conclusions

- BP extrapolation reduces bit-rate for images with big smooth regions, and steep edge exists within the segments
- The compression advantage of BP extrapolation coding over LPE padding and SADCT is obvious
- Block-based approach is compatible with available coding systems
- BP extrapolation coding needs non-standard VLC tables
- The complexity of BP extrapolation is high
- The potential for compression provided by segmentation is not fully exploited

JPEG Baseline Coding System

 \bullet

•