

Technion - Israel Institute of Technology Department of Electrical Engineering Signal and Image Processing Laboratory

Self-dual Morphological Methods Using Tree Representation

Alla Vichik

Supervisors: Dr. Renato Keshet and Prof. David Malah

Self-Duality

- Operator ψ is self-dual, if $\psi(f) = -\psi(-f)$.
- Same treatment of dark and light objects.
- Important to many applications, including filtering.
- Linear operators are always self-dual.
- Morphological operators are usually not.

(b) - Erosion by cross SE

(d) - Open-close

(C) - Close-open

Goals

- Developing a new general framework for producing useful morphological operators
- Examining the framework by a specific usage example
- Studying the "trenches" phenomena

Tree Representation

Flat zone of an image

A connected region with constant gray-level.

Tree Representation

- A tree and
- A mapping function maps all flat zones to tree vertices.

Binary partition trees (P. Salembier and L. Garrido, 2000)

- Are obtained from the partition of the flat zones.
- The leaves of the tree are flat zones of the image.
- The remaining nodes are obtained by merging.
- The root node is the entire image support.

Original partition

Tree of Shapes

(P. Monasse and F. Guichard, 2000)

- Represents an image as hierarchy of shapes.
- Build according to the inclusion order.
- Each father vertex area includes also all sons area.

0

1

3

Self-dual.

$$T_{n}(f) = \left\{ x \in E | f(x) \ge n \right\}$$

FillHole (ConComp(T_{n}(f)))
FillHole (ConComp(T_{n}^{C}(f)))

Morphology in Lattices (J. Serra, 1988)

- A partially ordered set (poset) P is a set associated with a binary operator ≤.
- A poset L is called a *lattice*, if every subset K, has an infimum ΛK and a supremum VK in L.

Morphological operators in lattices¹⁴

An erosion ε : B – Structuring Element (SE)

$$\mathcal{E}_{B}(X) = \left(\bigwedge_{i \in B} X_{i}\right)$$

- A dilation δ : $\delta_B(X) = \left(\bigvee_{i \in B} X_i\right)$
- Opening γ(X)=δε(X),
 Closing φ(X)=εδ(X).

Binary morphological operators

An erosion ε :

B – Structuring Element (SE)

$$\varepsilon_B(X) = \left(\bigcap_{i \in B} X_i\right)$$

A dilation δ :

$$\delta_B(X) = \left(\bigcup_{i \in B} X_i\right)$$

Opening γ(X)=δε(X),
Closing φ(X)=εδ(X).

Х—

Opening by reconstruction

B - Structuring Element (SE)

- A poset S is an *inf-semilattice* if every subset K, has an infimum ΛK in S.
- A poset S is an sup-semilattice if every subset K, has a supremum VK in S.

19 Alternating Sequences (R. Keshet, 2004)

- Alternating Sequence (AS)
- **Topographic distance**
- **Boundary-Topographic-Variation** (BTV) Transform X Inverse BTV Transform
- $\{10, -5, 6\}$ |10|+|-5|+|6|=21

AS Semilattice (R. Keshet, 2004) Relation Infimum Supremum 1 $\{7, -2, 5\} \sqsubseteq \{7, -2, 6, -1\}$ $\{7, -2, 5\} \lbrace 7, -2, 6, -1\}$ 2 $\{-1, 7, -9\} \nvDash \{-5, 4, -7, 1\}$ $\{-1\}$

 Let V₁ and V₂ be two alternating sequences with lengths L₁ and L₂, respectively.

$$V_1 \sqsubseteq V_2 \iff \begin{cases} (V_1)_i = (V_2)_i, & \forall i < L_1, \\ |(V_1)_{L_1}| \le |(V_2)_{L_1}|. \end{cases}$$

The infimum is the common prefix, followed by the weakest of the next elements.

21

Based on order of binary sequences.Uses the datum of the tree of shapes.

Morphological filtering in BTVT domain²³

- Efficient implementation of BTV transform, using intermediate tree representation of an image:
 - Working on N regions instead of pixels
 - Memory usage of O(N), instead of O(N²) for non-tree representation

Trenches problem

Original Image

Image Eroded by cross SE

When image is eroded, "trenches" may open on skeleton pixels

- The BTVT is not necessarily unique at those pixels.
- Those pixels have neighbors with very dissimilar alternating sequences.

Trenches problem - Solutions

Solution	Advantages	Disadvantages
Use adaptive SE - exclude very dissimilar neighbors	Prevents trenches	 Limits the resulting filter performance In some applications it is necessary to save this adaptive SE for every pixel
Use adaptive SE and Store multiple BTVT options	 Prevents trenches Better filter performance 	 Memory and computation time consuming In some applications it is necessary to save this adaptive SE for every pixel

Original Image

Eroded Image using adaptive SE

Eroded Image

Opened Image using adaptive SE

Original Image

Eroded Image using adaptive SE

Noisy Source Image

Opened Image using adaptive SE

Tree-based morphology

Input Image T Tree-domain morphological operators T Tree representation

- General framework for tree-based morphological image processing:
 - Unifies existing methods
 - Provides a solid foundation for generation of morphological operators from various tree representations.
- If the tree representation is self-dual, the resulting set of operators will also be self-dual (like Tree of Shapes).
- The heart of the proposed approach is a tree semilattice.

Tree representation

- Tree : t = (V, E) $M: \mathbb{R}^2 \to V$
- Mapping function :
- Tree representation :T = (t, M)

The tree representation order ³³

• For all $T_1 = (t_1, M_1)$ and $T_2 = (t_2, M_2)$ $T_1 \leq T_2 \iff t_1 \subseteq t_2$ and $M_1 \preceq_{t_2} M_2$

The tree representation infimum³⁴

- The tree representation infimum is given by T=(t, M)
 - *t* is the infimum of the trees t_1 and t_2 ,
 - *M* is the infimum of the mapping functions M_1 and M_2 .

Extrema-Watershed Tree

- Example of new method, obtained from the general framework
 - Stresses the strength of the general framework, as a tool for generating new, useful sets of operators.
 - Based on new self-dual tree-representation, called Extrema-Watershed Tree (EWT).
 - The new operators inherit properties of the EWT.
 - The tree is built by merging the flat zones.
 - Smallest extrema (dark or bright) regions are merged in every step.

Building Extrema-Watershed Tree⁴⁰

EWT-based morphology

EWT erosion and opening were obtained from the general framework.

Original Image

EWT-based Erosion by SE 2x2

EWT-based Erosion by SE 11x11

Properties of EWT

Self-dual

- Implicit hierarchical segmentation due to:
 - Tree is created in watershed-like process
 - Small area extrema are leaves
 - Bigger flat zones are close to root
 - Vertices connected in the tree usually have similar gray levels

Implicit segmentation

- SE Based on the trench phenomenon В Inherited by the "Watershed tree" Subtree 1 Subtree 2 nfimum Ε
- The trench
 - is created on the border of two very "different" zones
 - "difference" is defined by the distance to the common father
 - opens a gap with gray level of the common father
- The sub-trees (common father sons) are image segments

Original image

Original image

Sub-trees labels

Applications

Self-dual morphological filtering.

- Non-connected de-noising filtering.
- Opening by reconstruction.
- Potential for segmentation.

Original Image

Noisy Source Image

Opening of Noisy Image , based on EWT

Traditional erosion by cross SE

Traditional opening by cross SE

Traditional dilation by cross SE

Traditional closing by cross SE

Traditional opening-closing

Traditional median

Traditional closing-opening

Noisy Image Opening, based on EWT

Opening by reconstruction

- Equivalent to tree pruning.
- A pruning criteria is whether a vertex in question does not exists in an opened image.

Noisy Source Image

Opened by reconstruction Image (EWT)

Original Image

Opened by reconstruction Image (EWT)

Conclusions

General framework:

- Unifies existing methods
- Producing useful morphological operators.
- This framework was shown to be useful by:
 - Presenting the example of tree representation EWT,
 - Giving some applications examples.
- Study of trenches:
 - Number of possible solutions in BTVT domain,
 - Potential of using trenches of EWT for segmentation

Further research topics

- Finding necessary conditions for tree representation
 - To assure existence of images semilattice, induced by trees semilattice.
- More applications based on general framework.
 - Developing more useful tree representations
 - Further exploration of segmentation capability using trenches
- Real time implementation of the proposed algorithms.