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Outline
• Image Sequence coding  - Problem statement.

• Image Registration.

• Various camera models and the derived 

spatial transforms.

• Kalman Filtering as a spatial transform 

estimator.

• Proposed estimator for the perspective  -

planar transform.

• Application of the proposed estimator  to 

improve camera motion parameter estimation.



Image Sequence Coding

• The memory and  bandwidth requirements of Image 

Sequence representation led to various coding methods.

• The basic idea  - exploiting the information redundancy 

between adjacent frames   - only the innovations among 

frames are coded.

• The General Methods such as the standards H.261,H.263 

and Mpeg’s use Block Matching methods to create the 

difference frame.



Image Sequence Coding (cont’d)

• There are image sequences which  can be 

described by a single set of global motion 

parameters.

• For example, an image sequence taken by a 

moving camera.

• For such cases efficient coding is possible.

• The sequence is represented by a reference Image 

and the global motion parameters only.

• This work proposes a robust method for 

estimating the motion parameters of planar scenes. 



Image Registration, in the general case, 

means matching two images. The images 

can be taken from two different points of 

view, at different times with different 

sensors under different illumination 

conditions.  

Image Registration



Image Registration  - Applications

• Medical Applications - identifying abnormal 

differences between images taken at different times.

• Data Compression - Registration enables 

transmission only the differences between 

consecutive Images with a reduction of the 

transmitted bit-rate.

• Image understanding - Combining Different sensors 

can be very helpful for image understanding.

• Shape  and  depth reconstruction such as stereo.



• Given two images              and   

Find the best global spatial transform                         

so that

This Work’s Registration scope
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Spatial Transform Estimation 

Approaches 
I.  Optical Flow.
• Estimation of  Image Velocity field (for every pixel).

• These methods are usually based  upon the assumptions:

1.   Inter-frame  motion is small.

2.   Intensity function is smooth. 

• These assumptions lead to the   optical flow constraint equation

• Extra smoothness constraints are usually needed

• Block matching is a variation of optical flow estimation.



Spatial Transform Estimation 

Approaches (cont’d)

II. Feature Point Matching.

• Extraction and matching of distinct tokens in the two 

images.

• These tokens are usually points of large intensity variations.

• Feature points are more robust to varying image intensities.

• Only sparse motion field can be derived.

• No smoothness constraints are used.

• This method usually perform better than optical flow 

methods for global transformed images.



Feature Point Extraction
Example
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Comparison between Estimation Approaches 

• Performance comparison between block matching 

and global motion estimation method using feature 

points extraction.

• The graph presents the rmse between each frame and 

the registered previous frame. Image sequence
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Feature Points Extraction

Possible feature points extraction methods:
• Corners.

• Edges.

• Contours.

Method I

Horizontal gradient filter 

The edge  detector's output and the chosen best  points
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Feature Points Extraction(cont’d) 

[Shi & Tomasi  94]

I.   Calculate the directional image derivatives 

II.  For every pixel calculate  the eigen-values of the  

matrix

for a small neighborhood      around it 

III. Choose the pixel as a feature point if

A.

B. 
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Comparison of Feature Points Extraction 

Methods

• Method I - corner detection.

• Method II - eigen-value method
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Camera and Motion Models 

| | | |dz z

object
Image Plane

Optical Center

Focal length

dz

z

• The General Motion of a 3D object in an Orthographic Model 

results (on the image plane) in an affine transformation.

'
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• The depth changes in the scene are negligible    

relative  to the camera distance from the scene             
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I. Orthographic Camera Model



Affine Transformation  
Definition:

Particular cases:

shear
rotation

original:

expansion

translation
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Camera and Motion Models (Cont’d)

II. Perspective Pin-hole Camera Model

Optical Center
object

Image Plane

Focal length
• General motion of a 3D object according to this model results,  

on the image plane, in the perspective transformation:

• The farther the object from the camera, the   

smaller its size on the image plane. 
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Camera and Motion Models (Cont’d)

Perspective-Planar Transformation

• The perspective-planar transformation

• The general perspective transformation depends  

upon the pixel’s distance from  the camera plane.  
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X
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dX eY f
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Describes two specific motions:

- Camera confined to rotation only.

- General moving camera taking images of a single plane 

scene.  



Spatial Transforms - Examples

• Two images related  by an affine transformation 

Original image Affine transformed image

• Two images related  by perspective-planar transformation 

Original image Perspective-planar transformed image



Image Sequence Representation 

by a Reference Image and Motion Parameters

• Extraction of Motion Parameters between each  

frame and the reference frame:

Method I

calculate motion parameters between any     

two adjacent frames and combine these differential

motion corrections.  
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Image Sequence Representation 

by a Reference Image and Motion Parameters (cont’d)

Method II

1. Calculate motion transform        between  

frame         and  the predicted previous frame           

(created by warping the reference image

by     )

2. Combine this differential motion estimation   

with      so that                    .

3. Increment        and go to the first step.
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Performance Comparison of Global 

Transformation Estimators

I.   Incremental method

II. Warped-ref method
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Performance Comparison of 

Estimation Methods 

The comparison is performed by averaging the

motion compensated images (calculated by the two

methods)
Incremental method                                   Warped-ref method

Averaged motion compensated image by incremental transform estimation Averaged motion compensated image by current-ref transform estimation



Least Squares Methods for 

Parameters Estimation 
Assumptions:

• The measurements are contaminated with noise.

• Number of measurements exceeds the number  of 

unknown parameters.

Least Squares:

The accurate equation is  

The measurements are

if          is known exactly than the LS solution is
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Parameters Estimation (cont’d)

Total Least Squares:

The accurate equation is  

The measurements are

The  TLS solution is 

0 0
A x b

0 01 2
b b n A A n

(1: 1, )

( , )

ˆ N N

TLS

N N

V
x

V

1 1 2
[ ] ( ,.., ) , .. ( )T

N N
A b U diag V SVD decomposition



Estimation of Motion Model Parameters

Affine Transformation Model:

• Finding set of matched feature points in the two images

• The matched points                  are contaminated with noise

so a LS solution method is used:
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Linear Kalman Filter

• Estimate  the state vector        based upon the measurements 

using the following assumptions:

The state equation:  

The measurement equation:

where,                                                    

is a known input.

are all independent of each other.

denoted the best linear estimator for          based upon
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Linear Kalman Filter (cont’d)

• The estimator is:

1| |k k k k kx F x  

1 1|k k k kz C x  

1| 1 1| 1 1 1 1|( )k k k k k k k k kx x K z C x          1| 1 1 1 1|( )k k k k k kP I K C P      

1| |

T

k k k k k k kP F P F Q  

1

1 1| 1 1 1| 1 1( )T T

k k k K K k k K KK P C C P C R 

       

prediction

innovation

estimation

Innovation gain 

Error covariance matrix of prediction   

Error covariance matrix of estimation   



Kalman Filter smoothing of  Affine 

Transform Parameters  Estimation 
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Performance of the Kalman Filter 

Smoothing Method 
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Kalman Filter Smoothing of  Feature Points

•State equation:

•State vector:

•Measurement  equation:

The affine transform estimated in the previous frame 

is used to improve the matching of feature points.

    

1
  e
k k k

k
k k kk k

X a b X cx
w

Y d Y f

    

1

1 0'

' 0   1
k

k k

X X

Y Y




    
     

    

k

X

Y

 
 
 

The matched tracking points are used to estimate the 

affine transformation using Least Squares.



Performance of the Kalman Filter     

Smoothing Method 

This graph displays the average distance between the estimated 

tracking points and their theoretical location for the synthetic rotated 

‘Salesman’ sequence.
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Estimation of the Perspective-Planar 

Transformation Parameters

• Finding matched feature points in the two images

• Algebraic manipulations results in:

• These equation set suffers from numerical instabilities
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Second Order Motion Model
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• An  approximation for the perspective-planar  

transformation is the second order motion model:

• Empirical  results proved that the second order     

approximated model estimation is more robust   

than the exact perspective-planar model estimation

• The approximated model is accurate for image   

pairs  which are related by sufficient small motion. 



Second Order Motion Model - Simulation Results
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Estimation of Planar Scene Motion   

Parameters (cont’d)

Proposed Method

a. Estimation of second-order model between 

current frame & the previously predicted 

frame (warping of the reference image by       

).

b. Transforming  several point coordinates  (X,Y) 

by         and than by     

c. Estimation of  new          using LS based upon (X,Y)  & (X’,Y’) 

• Adjacent frames are related by sufficient small motion.
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Îm

N
Im

N

2 _nd order
T

2 _
( ', ') ( ( , ))perspnd order
X Y T T X Y

perspT

perspT

perspT

perspT



Estimation of Planar Scene Motion   

Parameters (cont’d)

The Warped-ref Method

a. Estimation of perspective-planar transform between current frame

& the previously predicted frame (warping of the reference image

by     )

b. Combining      & the new transform by ordinary transform cascading 

to get new                        .

T
T

perspT T T

The proposed method performs better than the Warped-ref method as 

shown in the following slides.
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Results of Proposed Algorithm
‘Salesman’ image warped by a fixed perspective transform (15 frames)

first image seventh image

Averaging  Motion compensated Images by Combined Perspective and Second Order  Registration
Averaging  Motion compensated Images by Perspective Registration

Averaging the fifteen  motion compensated images

Original frame Fifteenth frame

Proposed method Warped-ref method



Results of Proposed Algorithm (cont’d)

Performance comparison between global transform estimators:

I. Proposed method

II. Warped-ref method

The graph presents the 

rmse between each 

frame and the 

registered reference 

frame.
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Estimation of Camera Motion Parameters

The Camera motion model includes a 3-D rotation

matrix and a 3-D translation vector:

SVD decomposition of perspective-planar transform:
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Estimation of Camera Motion Parameters (cont’d)

Example of estimation of the rotation angle of 

a synthetic image sequence. The theoretical angle

is 1.5 deg per frame.

The rotation matrix can be described by rotation with angle      

around center of rotation


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Conclusions

• Certain Image-Sequences can be described by 

a reference image and global motion 

parameters.

• For planar scenes the proposed method 

performs better than conventional methods. 

• Accurate estimation of the global motion 

parameters is useful for camera motion 

estimation.



Future Work

• Implementation of a coding system using this 

work results. 

• Motion segmentation so that multiple plane  

scenes can be efficiently encoded. 

• Using side information to improve coding 

capabilities.


