

Signal and Image Processing Lab

Very Low Bit Rate Coding using Temporal Decomposition

Slava Shechtman Supervisor: Prof. David Malah

May,23, 2004

Objective

Explore the possibility of speech coding at 600 bps with fair quality, based on common LPC parametric vocoder (300 bps for the spectral envelope)

Outline

□ Introduction

- Conventional bit-rate reduction schemes
- Temporal Decomposition (TD) paradigm
- □ Dynamically Weighted Reduced TD (DW-RTD)
 - Optimized Reduced TD (ORTD)
 - ORTD with Dynamically Weighted MMSE
 - Computationally efficient sub-optimal algorithm (SORTeD)
- SORTeD-based speech coding
 - Spectral envelope coding
 - Excitation coding
- Performance evaluation

Low bit-rate (LBR) speech coding

- Common LBR speech coders (LP based) require at least 1000 bps for spectral envelope representation.
- □ Usually 10 LSF coefficients are coded in each frame
- Excitation parameters depend on desired quality and excitation production model

Inter-frame redundancy removal

- Common rate reduction schemes exploit inter-frame redundancies and reach 500-600 bps for the envelope representation (speaker independent).
- □ Basically two approaches were explored:
 - Joint frame representation
 - Combine a number of parameter vectors to jointly represent them, using large codebooks.

Frame skipping

Skip frames. Skipped data is interpolated at the decoder.

Inter-frame redundancy removal-2

- □ Joint frame representation:
 - Matrix quantization- MQ [Tsao & Gray, 1985]
 - □ Joint quantization of **fixed-length** blocks of spectral parameter vectors.

- Segment quantization SegQ [Honda & Shiraki, 1992]
 - Segmentation and joint quantization of variable-length blocks of spectral parameter vectors

Inter-frame redundancy removal-3

□ Frame skipping:

- Optimal frame skipping [George, 1996]
 - □ Select M frames out of a block of N frames

- Optimal combine & skip technique [Mayrench & Malah, 1999]
 - □ Select M representatives out of a block of N frames, allowing frame skipping.

Inter-frame redundancy removal-4

□Limitations

- Huge codebooks
- Complicated codebook training
- Interpolation causes degradation

Temporal Decomposition (TD)

□ Technique for temporal redundancies removal from spectral parameter vector sequence [Atal, 1982].

Temporal Decomposition-2

Parameter vectors

Target vectors

Event functions, centered over event instants

Temporal Decomposition-3

Two major stages : *event functions* determination and *target* calculation/refinement

• $\Phi \Phi^T$ is sparse, i.e. target calculation is efficient

Reduced Temporal Decomposition (RTD)

□ *Reduced TD* [Athaudage, 1999, Kim & Oh, 1999] - only adjacent event functions may overlap:

Reduced Temporal Decomposition-2

- \square Set Event instants, assume $\mathbf{a}_m = \mathbf{y}(n_m)$.
- Optimal event determination in MMSE sense
 - Closed form analytic solution for event functions, given targets and event instants.

$$\begin{pmatrix} \boldsymbol{\phi}_{k}(n) \\ \boldsymbol{\phi}_{k+1}(n) \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{k}^{T} \mathbf{a}_{k} & \mathbf{a}_{k}^{T} \mathbf{a}_{k+1} \\ \mathbf{a}_{k}^{T} \mathbf{a}_{k+1} & \mathbf{a}_{k+1}^{T} \mathbf{a}_{k+1} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{a}_{k}^{T} \mathbf{y}(n) \\ \mathbf{a}_{k+1}^{T} \mathbf{y}(n) \end{pmatrix},$$
$$n_{k-1} \leq n < n_{k}$$

 $\Box \quad \text{Target refinement stage includes LS} \\ \text{minimization:} \quad (\mathbf{\Phi}\mathbf{\Phi}^T)\mathbf{A}^T = \mathbf{\Phi}\mathbf{Y}^T$

p sets of <u>tri-diagonal</u> linear equations – <u>efficient solution</u>

Constrained event function solutions

- □ Impose 1's complement constraint [Kim & Oh, 1999] (☞)
 - $\hat{\mathbf{y}}(n) = \mathbf{a}_k \phi_k(n) + \mathbf{a}_{k+1}(1 \phi_k(n)), \ \phi_k(n) \ge 0$
 - Code only right-hand branch of each event function
- Monotonicity of event function
 branches [Nguyen & Akagi, 1999] (IPP)

1's complementary solution

Optimized RTD (ORTD) [Athaudage, 1999]

- □ Perform RTD for all possible placements of M events in a block of N frames
 - Use Viterbi algorithm (trellis search)
 - Impose required event rate
 - Best solution in MMSE sense
 - High complexity
- Possible solution refinement iterations

Optimized RTD (ORTD)-2

- □ Boundary conditions:
 - Block overlap: Last event of previous block = beginning of current block (zero event)
 - □ Slightly increases event rate
 - Improves overall quality
 - Dummy event at the block end (*M*+1 event)

Optimized RTD (ORTD)-3

- □ Trellis stages:
- □ Nodes:
- **Branch cost:**

events (M+2)possible event instants ($\sim NM$) sum of best instant errors

Dynamically Weighted ORTD - motivation

- MMSE criterion for spectral envelope parameters (i.e. LSF) may not correlate well with human perception.
- □ Log Spectral Distance (LSD) is highly correlated with human perception, but is complicated for practical design.

$$d_{LSD}(A, \hat{A}) = \sqrt{\frac{1}{2\pi} \int_{-\theta_1}^{\theta_2} \left(10 \log_{10} \left| \frac{1}{A(\omega)} \right|^2 - 10 \log_{10} \left| \frac{1}{\hat{A}(\omega)} \right|^2 \right)^2} d\omega$$

□ Usually, WMSE is used in practical designs, where the weights depend on the input vector.

$$d_{WMSE}(\mathbf{a}, \hat{\mathbf{a}}) = (\mathbf{a} - \hat{\mathbf{a}})W_{\mathbf{a}}(\mathbf{a} - \hat{\mathbf{a}})^{T}$$

WMSE for LSF vectors

□ Atal & Paliwal's Weighting [1993]

• W is a diagonal matrix with elements proportional to the synthesis filter spectrum.

□ Gardner's Weighting [1994]

Approximate LSD using WMSE (for low distortions)

□ Modified Gardner's Weighting

Modify Gardner's weights by a fixed attenuation of their high frequency components

□ Ranking of weighting performance :

- 1.Modified Gardner weights
- 2. Paliwal-Atal weights
- 3.Gardner weights
- 4. No weights

Reduce LSD

Dynamically Weighted ORTD (DW-ORTD)

- Event determination
 - Simple modification of event function calculation (\rightarrow)
- Target Refinement
 - Revise target refinement stage by minimization of

$$E_{block}^{(i)} = \sum_{k=0}^{M} \sum_{n=n_k}^{n_{k+1}-1} w_i(n) (y_i(n) - a_{i,k}\phi_k(n) - a_{i,k+1}\phi_{k+1}(n))^2, \quad \text{Events}$$

$$1 \le i \le p$$
Events Targets

- Solve *p* sets of tri-diagonal, symmetric linear equations (→)
- Similar complexity as in MMSE criterion

Sub-optimal RTD algorithm (SORTeD)

- ORTD: Full Search event-determination is not suited for real-time implementation.
- □ SORTeD: Apply <u>partial search</u> of event instants with initialization

□ Initial event instants are uniformly spaced or based on any input vector stability criteria.

Sub-optimal RTD algorithm (SORTeD)-2 Number of operations Full Partial

Different RTD models of LSF parameters

Speech Coding with DW-SORTeD

□ Based on MELP-2400 standard

Frame length is 22.5 ms (44.44 frames/sec)

Speech Coding with DW-RTD-2

Speech Coding: Spectral Envelope

Init

Events

Events

Targets

- DW-SORTeD scheme with quantization
 - **Targets**: Split-VQ

- **Event functions**: multi-codebook VQ
 - □ The codebooks are trained on <u>constrained</u> DW-SORTeD.
- Embedded quantization:
 - □ Use quantized target candidates and unquantized inputs for error calculations.
 - □ Substitute analytic solution for event functions by codebook search
 - □ Quantize refined targets
 - □ Allow "early escape"

M/N	Target Codebook-1	Target Codebook-2	Event functions	Event length	Rate [Bps]
3/11	11	9	4	3	327
	10	8	4	3	303
2/7	11	9	4	3	343
	10	8	3	3	305

Speech Coding: Spectral Envelope-2

Average LSD performance of DW-SORTeD

Speech Coding: Excitation-1

Code pitch and gain with a DW-SORTeD (jointly or separately)

Speech Coding: Excitation-2

Speech Coders: Bit Assignment examples

 \Box Codec 1 (250 ms buffer)

 \Box Codec 2 (160 ms buffer)

Param.	Bits/Block (11 frames)	Bit- Rate [bps]	
LSF (3 events)	(10+8+2+3)*3= 69	278.8	
Gain & Pitch (4 events)	(5+5+4)*4+7= 63	254.6	
UV/V	11	44.4	
Voicing	6	24.2	
Total	149	602	

Param.	Bits/Block (7 frames)	Bit Rate [bps]
LSF(2 events)	(10+8+2+3)*2= 46	292
Gain & Pitch (3 events)	(5+5+3)*3+4= 43	273
UV/V	7	44.4
Voicing	4	25.4
Total	100	634.8

Speech coding: performance-1

S – separate pitch & energy TD
Sp – spectral envelope coding, with reduced MELP mexcitation

Hearing Examples

Coders	Rate	PESQ	Samples	
Original				
MELP-2400	2400	3.22		
MELP Exc + SORTeD spectrum	1550	2.92		
MELP-1600 (reduced excitation)	1600	2.86		
11-frames delayed DW-SORTeD	602	2.58		
7-framed delayed DW-SORTeD	635	2.56		
MELP-666 (Harris, 4 frames MQ)	667	2.34		

Summary

- A 600 bps coding scheme, based on Temporal Decomposition (TD) concept was developed.
 - TD with dynamic weighting
 - □ Uses Mod. Gardner weights
 - $\Box \qquad \text{Improves the LSF fit by 0.3 dB (LSD)}$
 - Suboptimal scheme for Optimized Reduced TD
 - Only slightly deteriorates the model fit
 - Meaningful reduction in complexity
 - Incorporated into MELP vocoder to obtain a 600 bps coder
 - □ LSF quantization at 280-300 bps
 - □ Gain & pitch quantization at 250-300 bps.
 - □ Additional excitation parameters 70 bps.
 - $\square PESQ of 2.6$

Suggestions for further research

- Explore DW-SORTeD power for high quality/highrate coders
- □ Improve excitation coding; explore other excitation models (e.g. sinusoidal model, etc.)
- □ Extend the system by allowing variable rate coding
- Develop low-delay schemes, based on SORTeD concept

Optimal instant event function scatter for RTD model

 (\leftarrow)

Instant event functions for RTD - optimal

•Optimal event functions :

$$\begin{pmatrix} \boldsymbol{\phi}_{k}(n) \\ \boldsymbol{\phi}_{k+1}(n) \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{k}^{T} \mathbf{W}(n) \mathbf{a}_{k} & \mathbf{a}_{k}^{T} \mathbf{W}(n) \mathbf{a}_{k+1} \\ \mathbf{a}_{k}^{T} \mathbf{W}(n) \mathbf{a}_{k+1} & \mathbf{a}_{k+1}^{T} \mathbf{W}(n) \mathbf{a}_{k+1} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{a}_{k}^{T} \mathbf{W}(n) \mathbf{y}(n) \\ \mathbf{a}_{k+1}^{T} \mathbf{W}(n) \mathbf{y}(n) \end{pmatrix},$$
$$n_{k-1} \leq n < n_{k}$$

(←)

•Constrained event functions :

$$\tilde{\phi}_{k}(n) = \begin{pmatrix} 1 - \tilde{\phi}_{k-1}(n), & n_{k-1} \le n < n_{k} \\ 1, & n = n_{k} \\ \min(1, \max(0, \overline{\phi}_{k}(n))) & n_{k} \le n < n_{k+1} \\ 0, & else \end{pmatrix},$$

$$\overline{\phi}_{k}(n) = \frac{\left(\mathbf{y}(n) - \mathbf{a}_{k+1}\right)^{T} \left(\mathbf{a}_{k} - \mathbf{a}_{k+1}\right)}{\left(\mathbf{a}_{k} - \mathbf{a}_{k+1}\right)^{T} \left(\mathbf{a}_{k} - \mathbf{a}_{k+1}\right)}$$

DW-RTD Target Calculation

•Target refinement:

$$\begin{pmatrix} d_1 & x_1 & 0 & 0 \\ x_1 & \ddots & \ddots & 0 \\ 0 & \ddots & d_{M-1} & x_{M-1} \\ 0 & 0 & x_{M-1} & d_M \end{pmatrix} \begin{pmatrix} a_{i,1} \\ \vdots \\ a_{i,M-1} \\ a_{i,M} \end{pmatrix} = \begin{pmatrix} b_1 - x_0 a_{i,0} \\ \vdots \\ b_{M-1} \\ b_M \end{pmatrix},$$

$$d_k = \sum_n \phi_k^2(n) w_i(n), \ x_k = \sum_n \phi_k(n) \phi_{k+1}(n) w_i(n), \ b_k = \sum_n \phi_k(n) y_i(n) w_i(n)$$

(←

WMSE for LSF vectors - formulae

□ Atal & Paliwal's Weighting [1993]

$$w_i = [P(f_i)]^r, \quad P(f) = \frac{1}{|A(e^{j2\pi f/F_s})|^2}$$

 $r = 0.15$

□ Gardner's Weighting [1994]

$$d(a,\hat{a}) \cong \frac{1}{2} (a-\hat{a}) W(a-\hat{a})^{T}, \qquad W = \frac{\partial^{2} d_{LSD}(a,\overline{a})}{\partial \hat{a}_{k} \partial \hat{a}_{l}} \bigg|_{a=\hat{a}} = 4 \beta R_{A}(k-l)$$
$$R_{A}(k) = \sum_{n=0}^{\infty} h(n)h(n+k), \qquad h(n) = F^{-1} \left\{ \frac{1}{A(z)} \right\} \quad \beta = \text{constant}$$

Modified Gardner's Weighting

$$\tilde{w}_i(n) = (c_i)^2 w_i(n),$$

 $\mathbf{c} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0.9 & 0.8 & 0.7 & 0.1 & 0.01 \end{bmatrix},$