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Objective
Explore the possibility of speech coding at  600 bps 
with fair quality, based on common LPC parametric 
vocoder (300 bps for the spectral envelope)
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Low bit-rate (LBR) speech coding

Common LBR speech coders (LP based) require at least 1000 
bps for spectral envelope representation.
Usually 10 LSF coefficients are coded in each frame
Excitation parameters depend on desired quality and 
excitation production model
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Inter-frame redundancy removal 
Common rate reduction schemes exploit inter-frame 
redundancies and reach 500-600 bps for the 
envelope representation (speaker independent). 
Basically two approaches were explored:

Joint frame representation
Combine a number of parameter vectors to jointly 
represent them, using large codebooks.

Frame skipping
Skip frames. Skipped data is interpolated at the 
decoder.



Inter-frame redundancy removal-2
Joint frame representation:

Matrix quantization- MQ [Tsao & Gray, 1985]

Joint quantization of fixed-length blocks of spectral 
parameter vectors.
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Segment quantization –SegQ [Honda & Shiraki, 1992]

Segmentation and joint quantization of variable-length 
blocks of spectral parameter vectors
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Inter-frame redundancy removal-3

Frame skipping:
Optimal frame skipping [George, 1996]

Select M frames out of a block of N frames

Optimal combine & skip technique [Mayrench & Malah, 
1999]

Select M representatives out of a block of  N frames, 
allowing frame skipping.
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Inter-frame redundancy removal-4

Limitations 
Huge codebooks
Complicated codebook training 
Interpolation causes degradation



Temporal Decomposition (TD)
Technique for temporal redundancies removal from 
spectral parameter  vector sequence [Atal, 1982].
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Temporal Decomposition-2

Event functions, 
centered over event instants 
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is sparse, i.e. target calculation is 
efficient

Temporal Decomposition-3

Event instants & functions 
determination (Sparse    )

Target calculation/refinement
1( )T T T−=A ΦΦ ΦY

Differs
For each 

TD method

Same for 
most

TD methods

Two major stages : event functions determination and 
target calculation/refinement
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Reduced Temporal Decomposition (RTD)
Reduced TD [Athaudage, 1999, Kim & Oh, 1999 ] - only adjacent 
event functions may overlap:
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Reduced Temporal Decomposition-2

Target refinement stage includes LS 
minimization: 

Set Event instants, assume 
Optimal event determination in MMSE sense

Closed form analytic solution for event functions, given 
targets and event instants.
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p sets of tri-diagonal linear equations – efficient solution
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Constrained event function  solutions

Code only right-hand branch of each 
event function

Monotonicity of event function 
branches [Nguyen & Akagi, 1999] (☞)

Unconstrained solution

1’s complementary solution1’s comp., monotonic solution
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Impose 1’s complement constraint [Kim & Oh, 1999] (☞)



Optimized RTD (ORTD) [Athaudage, 1999]

Perform RTD for all possible placements of M events in a 
block of N frames

Use Viterbi algorithm (trellis search)
Impose required event rate

Best solution in MMSE sense
High complexity

Possible solution refinement 
iterations 

Find best event instants and 
event functions (full search) Target refinement
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Optimized RTD (ORTD)-2
Boundary conditions:

Block overlap: Last event of previous block = 
beginning of current block (zero event)

Slightly increases event rate
Improves overall quality

Dummy event at the block end (M+1 event)
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Optimized RTD (ORTD)-3

Trellis stages: events (M+2)
Nodes: possible event instants (~NM)
Branch cost: sum of best instant errors 
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Dynamically Weighted ORTD - motivation

MMSE criterion for spectral envelope parameters (i.e. LSF) 
may not correlate well with human perception.
Log Spectral Distance (LSD) is highly correlated with human 
perception, but is complicated for practical design.
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WMSE for LSF vectors
Atal & Paliwal’s Weighting [1993] 

W is a diagonal matrix with elements proportional to the synthesis filter 
spectrum.

Gardner’s Weighting [1994] 
Approximate LSD using WMSE (for low distortions)

Modified Gardner’s Weighting 
Modify Gardner’s weights by a fixed attenuation of their high frequency 
components

Ranking of weighting performance :
1.Modified Gardner weights
2. Paliwal-Atal weights
3.Gardner weights
4. No weights (→)

Reduce LSD



Dynamically Weighted ORTD (DW-ORTD)

Event determination
Simple modification of event function calculation (→)

Target Refinement
Revise target refinement stage by minimization of 
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Sub-optimal RTD algorithm (SORTeD)
ORTD: Full Search event-determination is 
not suited for real-time implementation.
SORTeD: Apply partial search of event 
instants with initialization

Search range

k-th event 
instant

(k+1)-th event 
instant

(k-1)-th event 
instant

Events Targets

Events

Initial event instants are uniformly spaced or based 
on any input vector stability criteria.

Init



Sub-optimal RTD algorithm (SORTeD)-2
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Unquantized DW-RTD performance 
(with Modified Gardner weights)
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Speech Coding with DW-SORTeD
Based on MELP-2400 standard

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LPC Analysis

Speech

Voicing & Aperiodic
Analysis

Pitch Analysis

Fourier Magnitude
Analysis

25 bit

 
4+1 bit

Quantization

8 bit

7 bit

8 bit

Gain Analysis

Frame length is 22.5 ms (44.44 frames/sec)
Total: 53 bits



Speech Coding with DW-RTD-2

Pitch,
Gain (half rate),
Voicing 

MELP-2400 
analysis

LSF 
buffering

Gain buffering

Voicing 
buffering

Modify 
excitation 
parameters

V/UV 

Voicing 
Decimation

Pitch & Gain TD 
& Quantization

LSF TD & 
Quantization

LSFs

Pitch buffering
Fourier 
Mag.,
Jitter



Speech Coding: Spectral Envelope
DW-SORTeD scheme with quantization

Targets: Split-VQ 
Event functions: multi-codebook VQ

The codebooks are trained on constrained DW-SORTeD.
Embedded quantization:

Use quantized target candidates and unquantized inputs for error
calculations.
Substitute analytic solution for event functions by codebook search    
Quantize refined targets 
Allow “early escape”
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Speech Coding: Spectral Envelope-2
Average LSD performance of DW-SORTeD
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Speech Coding: Excitation-1
Code pitch and gain with a DW-SORTeD (jointly or 
separately)

Pitch,
Gain,
Voicing 
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analysis

Gain buffering

Voicing 
buffering

Modification
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Speech Coding: Excitation-2
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Speech Coders: Bit Assignment examples
Codec 2 (160 ms buffer)
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Speech coding: performance-1

S – separate pitch & energy TD
Sp – spectral envelope coding, with reduced MELP mexcitation
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Hearing Examples

2.921550MELP Exc + SORTeD spectrum

2.34667MELP-666 (Harris, 4 frames MQ)

2.566357-framed delayed DW-SORTeD

2.5860211-frames delayed DW-SORTeD

2.861600MELP-1600 (reduced excitation)

3.222400MELP-2400

Original

SamplesPESQRateCoders



Summary
A 600 bps coding scheme, based on Temporal 
Decomposition (TD) concept was developed.

TD with dynamic weighting
Uses Mod. Gardner weights
Improves the LSF fit by 0.3 dB (LSD)

Suboptimal scheme for Optimized Reduced TD
Only slightly deteriorates the model fit
Meaningful reduction in complexity

Incorporated into MELP vocoder to obtain a 600 bps coder
LSF quantization at 280-300 bps 
Gain & pitch quantization at 250-300 bps.
Additional excitation parameters - 70 bps.
PESQ of 2.6



Suggestions for further research

Explore DW-SORTeD power for high quality/high-
rate coders
Improve excitation coding; explore other excitation 
models (e.g. sinusoidal model, etc.)
Extend the system by allowing variable rate coding
Develop low-delay schemes, based on SORTeD 
concept



Optimal instant event function scatter for RTD model 
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Instant event functions for RTD - optimal

•Optimal event functions :
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Instant event functions for RTD - constrained

•Constrained event functions  :
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DW-RTD Target Calculation

•Target refinement:
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WMSE for LSF vectors - formulae
Atal & Paliwal’s Weighting [1993]
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