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3BACKGROUND

Data-embedding Vs. Watermarking

Data-embedding system requirements

– Transparency, Robustness, Rate

Applications

– Additional payload, embedding data in an analog signal, …

Existing methods for data embedding

– Spread Spectrum watermarking schemes with correlation based detection 

suffer significantly from host signal interference

– Informed Embedding: Considering the host signal as side-information to the 

encoder

• Quantization index modulation (QIM), Dither modulation (DM) – Chen & 
Wornell, 1998

• Scalar Costa scheme (SCS) – Eggers & Girod, 2000 



4DATA EMBEDDING IN SPEECH AND AUDIO SIGNALS

GOALS

1. Combining informed embedding principles with a 

perceptual model for speech and audio signal

2. Developing methods for parameter estimation, and to test 

the methods under degradations caused by a telephone 

channel

3. Demonstrating a possible use of embedded-data in 

speech, for speech bandwidth extension



5DATA-EMBEDDING MODEL
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6DATA-EMBEDDING SCHEMES

Ideal Costa Scheme

Costa, 1983: "Writing on Dirty Paper", proved that for IID Gaussian host

signal and IID Gaussian noise host signal interference can be completely

avoided
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Scalar Costa Scheme

Eggers & Girod suggested a suboptimal practical embedding rule, that

uses dithered uniform scalar quantizers

- Encode messagem in d = d1; d2; : : : ; dn, where d 2 f0; 1; : : : ;D¡1g
- Embed d = d1; d2; : : : ; dn in x = x1; x2; : : : ; xn
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7SCS ENCODER

Example: f® = 1; D = 2g
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8SCS DECODER
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The signal yn is de¯ned by

yn = Q¢
frng ¡ rn

and therefore jynj · ¢=2

Hard decoding rule (assuming binary

SCS)

d̂n =

½
0 jynj < ¢=4
1 jynj ¸ ¢=4

Soft decoding, such as Viterbi algorithm

for convolution code, can also be used



11DATA-EMBEDDING PARAMETERS

The mean squared error distortion caused by data-embedding
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12SCS THEORETICAL PERFORMENCE

(SWR=20dB)
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SCS PRACTICAL PERFORMENCE

Results of using error correction coding. Code is chosen according to the 
application

– Convolution codes, Block codes, Turbo codes

Demonstrations (white Gaussian host signal, white Gaussian channel noise)

Convolution code, k=4,6,8 Turbo code, L=100,1000,10000



15AUDITORY MASKING MODEL

Many advantages can be obtained by using the hearing system 
characteristics. These are used in speech and audio processing:

– Compression, Data-embedding, Enhancement

E

E    Tone E rendered inaudible by the presence of tone C
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DATA-EMBEDDING USING PERCEPTUAL MASKING

jX(!)j2 host signal power spectrum estimate

T (!) masking threshold

Tmin;m minimum of the masking threshold in m'th band
jV (!)j2 noise power spectrum estimate
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17SUBBAND PARAMETER DETERMINATION

The subband average embedding-distortion can be expressed by

¾2
w;m

=
®2
m
¢2
m

12
=
10Tmin;m=10

3

Scale factor determination

Given a model or estimation of the subband noise variance ¾2
v;m

, the scale

factor ®m is given by

®m =

s
¾2
w;m

¾2
w;m

+ 2:71¾2
v;m

Quantization-step determination

The subband quantization-step value is given by

¢m =
2

®m
10Tmin;m=20

To improve the robustness and computational complexity, ¢m is quantized,

in the log domain, to one of f¢0;¢1; : : : ;¢J¡1g



19DATA-EMBEDDING DOMAIN

Discrete Cosine Transform

The masking threshold function should be transformed to the DCT domain

Discrete Fourier Transform

The DFT is a complex valued transform

Discrete Hartley Transform
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¶

; k = 0; 1; : : : ;N ¡ 1

where cas(x) , cos(x) + sin(x)



20ENCODER STRUCTURE

Block diagram
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21DEMONSTRATION (1/2)

Data-embedding in speech

– Embedding only in frames detected by a voice activity detector

– 2 subbands per frame of 256 samples (32ms), 32 bits per subband

Transparency

– Evaluated by PESQ, MOS scale [0-4.5]

Averaged results (TIMIT 520 sentences, 22 minutes of speech) 

– MOS=3.9 WNR=18.3dB

Female Speaker

Original narrowband speech Speech with embedded-data

MOS=4 WNR=20.1dB (STD=4.4dB)   #Frames=80

Male Speaker

Original narrowband speech Speech with embedded-data

MOS=3.7 WNR=19dB (STD=4.2dB)     #Frames=80



22DEMONSTRATION (2/2)

350Hz 3350Hz



23DECODER STUCTURE

The decoder comprises of:

Adaptive equalizer which reduces the channel spectral distortion

Joint subband embedded-data presence detection and quantization-step 
determination

Embedded-data decoding



24CHANNEL MODEL

The AWGN source is replaced with a simulation model of telephone channel

– Amplitude and phase distortion, u-law or A-law quantization noise, Circuit (white 

Gaussian) noise
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25CHANNEL EQUALIZATION

Common adaptive equalization algorithms

– Time domain: NLMS, RLS

– Frequency domain

There is need for a training sequence for the above algorithms. In case of a 
telephone conversation, listening to the training sequence can be annoying

– Solution: Select a chosen audio/speech signal as a training sequence

Blind equalization algorithms

– Pros: A training sequence is not needed

– Cons: Not practical in our scenario, where data is embedded in a much stronger 

host signal.



26QUANTIZATION-STEP DETERMINATION (1/2)

0 

Y

The estimated quantization-step will be one of f¢0;¢1; : : : ;¢J¡1g

For each subband the decoder decides on the tested quantization-step

values, and de¯nes G as their indexes

For each quantization-step index of G, the decoder calculates the subband

demodulated DHT coe±cients

Y g
m;k

= Q¢g
fRm;kg ¡Rm;k; g 2 G

where m is the subband index and k is the coe±cient index

De¯ne two possible hypotheses

- H0: correct quantization-step, with PDF p(Y jH0)
- H1: incorrect quantization-step, with PDF p(Y jH1)
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The log-likelihood ratio (LLR), for each quantization-step index of G

Lg
m
= log

½
p(Yg

m
jH0)

p(Yg
m
jH1)

¾

; g 2 G

The quantization-step index that maximize the LLRs, Lg
m

g
¤
= argmax

g2G
Lg
m

The estimated quantization step in the m'th subband is the quantization-

step value that maximize the LLR

¢̂m = ¢
g
¤

The maximal LLR, denoted by Lg
¤

m
, is used in the subband embedded-data

presence detection rule
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½
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¤

m
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¤

m
· T

QUANTIZATION-STEP DETERMINATION (2/2)
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256 coe±cients/frame, 8 subbands/frame, 32 coe±cients/subband

Error correction code

- Golay code (23,12)

Parameter protection code

Improve robustness by using part of the subband coe±cients for embedding

a known sequence, denoted u

The hamming distance, du, between the hard decoded sequence, û, and

the original sequence, u, is calculated.

The LLR computed from Y values and the LLR from the parameter protec-

tion code can be combined together for the quantization-step determination.

Information 

(12 bits)

Error correction code 

(11 bits)

Parameter protection 

code (9 bits)

SUBBAND EMBEDDED-DATA STRUCTURE



31PERFORMANCE EVALUATION

Simulation setup

Telephone channel model

The proposed data-embedding system performance is evaluated by the 
following objectives:

Transparency MOS=3.9

Embedding-rate RATE=(8000/256)*24*0.8=600[bits/sec.]

Robustness BER(coded)    =

BER(uncoded) =

6~ 3 10

4~ 3 10
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speech spectrograms

SPEECH BANDWIDTH EXTENSION

Wideband speech 
bandwidth: 50-7000 Hz

Telephone speech 
bandwidth:  300-3400 Hz

8000Hz

4000Hz

time

8000Hz

4000Hz

freq.



33HIGH-FREQUENCY SYNTHESIS

Extract information about the high-frequency band from the narrowband 
speech

– Extracted information: High-frequency excitation

Use coding for the information that cannot be extracted

– Side information: High-frequency spectral envelope, High-frequency gain

All-pole filter
SpeechExcitation

g

1+

P
p
k=1

akz
¡k

e s

0 1000 2000 3000 4000 5000 6000 7000 8000
-80

-70

-60

-50

-40

-30

-20

-10

0

[d
B

]

[Hz]



34

0 500 1000
-0.2

-0.1

0

0.1

0.2

0.3

0.4

[n]

0 500 1000
-0.2

-0.1

0

0.1

0.2

0.3

0.4

[n]

0 500 1000
-0.2

-0.1

0

0.1

0.2

0.3

0.4

[n]

0 500 1000
-0.2

-0.1

0

0.1

0.2

0.3

0.4

[n]

0 5000
-40

-30

-20

-10

0

10

20

[Hz]

0 5000
-40

-30

-20

-10

0

10

20

[Hz]

0 5000
-40

-30

-20

-10

0

10

20

[Hz]

0 5000
-40

-30

-20

-10

0

10

20

[Hz]

HIGH-FREQUENCY EXCITATION GENERATION

A non-linear operation, the absolute value, expands the narrowband 
excitation bandwidth

The whitening filter flattens the high-frequency tilt of the reconstructed 
wideband excitation

Reconstructed
wideband
excitation

Interpolation
1:2

Highpass
filter

Absolute
value

+
NBe

WBê

Narrowband
excitation

Whitening
filter

original

wideband excitation
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reconstructed 
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HIGH-FREQUENCY SPECTRAL ENVELOPE

3000-8000Hz, p=12

0-8000Hz, p=16

By spectral linear prediction the spectrum P (!) is modeled by an all pole

spectrum P̂ (!)

P̂ (!) =
G2

j1 +
P
p
k=1

ake
¡jk!j2

By selective spectral linear prediction a speci¯ed frequency range

!0
· ! · !1 of the spectrum P (!) is mapped to the frequency range

0 · ! · ¼, and the modi¯ed spectrum is analyzed with spectral linear

prediction.



36PROPOSED SYSTEM

The side information is embedded within the speech signal 

– High frequency envelope

• The LSFs are coded using a 8-bit vector quantizer 

– High frequency gain

• The gain, in the log domain, is coded using a 4-bit non-uniform scalar 
quantizer

– A total of 12 bits per frame of 16msec

Wideband

speech

reconstruction

WBs WBŝ
Decimation

2:1

Data

embedding
Telephone

channel
Equalization

Embedded

data

extraction

NBs

High frequency

Spectral Envelope

and Gain encoding

Wideband

speech

Reconstructed

wideband

speech

Narrowband

speech
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8000Hz

4000Hz

DEMONSTRATION

Original wideband speech

Telephone speech

Reconstructed wideband 
speech

Additional example: Male 
speaker

Original wideband speech

Telephone speech

Reconstructed wideband 
speech

8000Hz

4000Hz



40SUMMARY

We showed how to combine informed embedding principles with a 
perceptual model for speech and audio signal.

We developed methods for parameter estimation, and tested the methods 
under degradations caused by a telephone channel.

We demonstrated a possible use of the embedded-data for speech 
bandwidth extension

Future research

– Increasing the rate of embedded-data

• Increasing the number of subbands

• D-ary SCS (D>2)

– Data-embedding in Audio

• Embedding-data in an Audio CD

– Telephone speech recognition systems


