

Technion-

Israel Institute of Technology Department of Eelctrical Engineering

July 199

Signal and Image Processing lab

Low Bit-Rate Speech Coding Using Joint **Segmentation and Vector Quantization**

Ronen Mayrench Supervisor: Prof. David Malah Supported by: **TADIRAN**

Motivation

- PCM bit rate is 64kb/s.
- Low bit-rate speech coding is essential for:
 - Cellular and satellite links.
 - Voice mail.
 - Secure communication.
- Lossy speech coding is accepted in many applications, using:
 - Speech redundancy.
 - Limitation of human perception.

Classification of Speech Coding Procedures

- Waveform reconstructed signal approximates original speech signal.
- **Parametric** -reconstructed signal sounds like speech (<u>does not</u> converge towards the original signal with decreasing quantization error).

Objective

 Design a low bit-rate (1200bps) speech coder, based on the Mixed Excitation Linear Prediction (MELP) coder which is the new 2400bps DoD standard.

Outline

• Introduction

- MELP analysis and synthesis
- Low bit-rate schemes
- Trellis Segmentation-Quantization (TSQ)
 - Variable length segment quantization
 - Trellis segmentation
 - LSF quantization distortion function
 - Codebook design
- Channel error control
- Low bit-rate scheme based on TSQ
- Simulation results

Mixed Excitation Linear Prediction-MELP

- Improvement of the traditional LPC speech coder. •
- The coder contains four additional features: •
 - Mixed pulse and noise excitation. Adaptive spectral enhancement.
 - Periodic or aperiodic pulses. Pulse dispersion filter. ____

Low Bit-Rate Approaches

- Alternate frame transmission- AF [schwartz & roucos, 1983]
- Matrix quantization- MQ [tsao & gray, 1985]
- Adaptive frame selection-TQ [george, 1996]
 - Objective- select M frames out of a block of N frames such that the total block distortion is minimized.

Low Bit-rate Approaches (Cont'd)

- Variable-length segment quantization [shiraki & honda, 1983]
 - Representing a block of N LSF vectors with M disjoint quantized segments
 - The algorithm determines simultaneously both the sequence of quantized segments and their lengths
- Optimal time-segmentation and resource allocation for signal modeling and compression [vetterli, 1997]

$$L(\lambda) = \min_{s \in S} \sum_{i=1}^{N_s} \min_{q \in C_s} \left\{ D(X_i, q) + \lambda R(X_i, q) \right\}$$

- Example for a segment set (N=4): $\circ \circ \circ$

Proposed Scheme Trellis Segmentation-Quantization (TSQ)

- Extension of the frame selection approach (TQ).
 - Modeling the input speech as a sequence of variable-length segments.
- The algorithm has a richer partition set.
 - The segmentation allow frames skipping.
- Interpolate frames in skipped segments.
- MQ and TQ are specific cases of TSQ.
- Fixed bit rate.

TSQ (cont'd)

- TSQ Objective: select a fixed number of M *segments* from a block of N (N>M) LSF vectors with minimum quantization error.
- Missing frames are linearly interpolated.
- Example for N=6 and M=2:

- The quantization process represents variable-length segments *X_{ij}* with a fixed-length codebook.
- The process of choosing segments is done using a trellis diagram.

TSQ: Variable Length Segment Quantization

- Let $C = \{Y_L\}_{k=1}^{K}$ denote the codebook where L is the *codeword* length and K is the *codebook* length
- The code vectors are linearly interpolated and re-sampled at p=j-i+1 equi-spaced points to receive a stacked row LSF vector.
- Example for L=3, p=4 and using the following ratio: $\beta = \frac{L-1}{p-1} = \frac{2}{3}$
- The transformation is specified only by the original segment length.

TSQ: Variable Length Segment Quantization (cont'd)

• The transformation can be performed by matrix multiplication: $\hat{Y}_p = Y_L H_p$, [Shiraki, 1988]

$$H_{p} = \begin{bmatrix} h_{11}[I] & h_{12}[I] & \cdots & h_{1p}[I] \\ h_{21}[I] & h_{22}[I] & \cdots & h_{2p}[I] \\ \vdots & \vdots & \ddots & \vdots \\ h_{L1}[I] & h_{L2}[I] & \cdots & h_{Lp}[I] \end{bmatrix} \qquad \begin{array}{c} H_{p} : vL \times vp \\ Y_{L} : 1 \times vL \\ \hat{Y}_{p} : 1 \times vp \end{array}$$

$$h_{ij} = \begin{cases} 1 - \alpha_j, & i = \lfloor \beta_j \rfloor + 1 \\ \alpha_j, & i = \lfloor \beta_j \rfloor + 2 \\ 0, & else \end{cases} \qquad \qquad \beta_j = \frac{(j-1)(L+1)}{(p-1)}$$
$$j = 1, 2, \dots, p$$

TSQ: LSF Distortion Function

- The distortion function is important for codebook design.
- Log Spectral Distance (LSD) is highly correlated with human perception, but is complicated for practical design.

$$d_{LSD}(A, \hat{A}) = \sqrt{\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(10 \log_{10} \left| \frac{1}{A(\omega)} \right|^2 - 10 \log_{10} \left| \frac{1}{\hat{A}(\omega)} \right|^2 \right)^2} d\omega$$

• Usually, WMSE is used in practical designs. $d_{WMSE}(a, \hat{a}) = (a - \hat{a})W_a(a - \hat{a})^T$ **TSQ: LSF Distortion Function (cont'd)**

Atal & Paliwal's Weighting [1993]

• W is a diagonal matrix with elements proportional to the synthesis filter spectrum.

$$w_i = [P(f_i)]^r, \quad P(f) = \frac{1}{|A(e^{j2\pi f/F_s})|^2}$$

r = 0.15

Gardner's Weighting [1994]

• Approximate LSD using WMSE.

$$d(a,\hat{a}) \cong \frac{1}{2}(a-\hat{a})W(a-\hat{a})^{T}, \qquad W = \frac{\partial^{2}d_{LSD}(a,\overline{a})}{\partial\hat{a}_{k}\partial\hat{a}_{l}} \bigg|_{a=\hat{a}} = 4\beta R_{A}(k-l)$$
$$R_{A}(k) = \sum_{n=0}^{\infty} h(n)h(n+k), \qquad h(n) = F^{-1}\left\{\frac{1}{A(z)}\right\}$$
B=constant

TSQ: Segment Distortion

• Segment distortion is defined as accumulated wighted distortion between original and quantized LSF vectors.

$$d(X_{ij}, Y_L) = \sum_{k=1}^{p} d_1(X_k, \widetilde{Y}_k)$$
$$\widetilde{Y}_k = \left(Y_L H_p\right)_k$$
$$d_1(X_k, \widetilde{Y}_k) = (X_k - \widetilde{Y}_k) W_{X_k} (X_k - \widetilde{Y}_k)^T$$
$$d(X_{ij}, Y_L) = (X_{ij} - Y_L H_p) W_X (X_{ij} - Y_L H_p)^T$$

• W_X is a diagonal matrix with W_{X_k} on its main diagonal.

TSQ: Codebook Design

- Define the following maping: $Q: \mathfrak{R}^{\nu} \to C = \{Y_L(k)\}_{k=1}^{K}$
- The Codebook design problem is: Given segmented data, find the code vectors that minimize:

$$D = E\{d(X_{ij}, Y_L) \mid X_{ij} \in S\}$$

• Necessary conditions are *Nearest Neighbor* and *Centroid* conditions.

TSQ: Centroid Derivation

• For the k'th cluster, the centroid is obtained by minimizing D_k.

$$D_{k} = \sum_{X_{ij} \in R_{k}} d(X_{ij}, Y_{L}(k)) = \sum_{X_{ij} \in R_{k}} (X_{ij} - Y_{L}(k)H_{p})W_{X}(X_{ij} - Y_{L}(k)H_{p})^{T}$$

• By differentiating D_k with respect to $Y_L(k)$ and equating to zero, we obtain:

$$Y_L^T(k) = \left[\sum_{X_{ij} \in R_k} H_p W_X H_p^T\right]^{-1} \sum_{X_{ij} \in R_k} H_p W_X X_{ij}^T$$

TSQ: Trellis Segmentation

• The process of choosing M segments from a block of N frames is done using a trellis diagram.

- The transmitted segments should be selected to minimize the total path cost with 2 constraints:
 - Segments should be in ascending order.
 - Maximum segment length should be specified (no longer than N-M+1).

TSQ: Trellis Segmentation (cont'd)

• Example for M=2, N=4:

TSQ: Trellis Segmentation (cont'd)

• The path cost function is defined by:

$$D_{path}(k) = \frac{\sum_{l=k_0}^{k} g_l d(X_l, \hat{X}_l)}{\sum_{l=k_0}^{k} g_l}$$

 g_l - gain-dependent weight

- High gain segments are more likely to be choosen than low gain segments.
- The purpose of the trellis search is to minimize path cost, $D_{path}(k)$.
- The search for the best segmentationinterpolation path is done efficiently with DP using the Viterbi algorithm.

Codebook Design Algorithm For TSQ

• Iterative approach for TSQ codebook design:

TSQ - Simulation Results (cont'd)

TSQ - Simulation Results (cont'd)

TSQ: Simulation Results (cont'd)

• Log Spectral Distortion (LSD [dB]) - Atal's vs. Gardner's weighting (Split-VQ):

	Atal	Gardner	
20 bit	2.17	1.75	
22 bit	1.98	1.67	

• Log Spectral Distortion (LSD) - TSQ vs. TQ, MQ, AF with Gardner's wighting (Split-VQ):

Split VQ	AF	MQ	TQ (11	TSQ
(22bit)	(11 bit)	(11 bit)	bit)	(11 bit)
1.67	2.43	2.41	2.23	2.01

Channel Error Control

- Channel codes
- Channel Optimized VQ (COVQ) [Favardin, 1990]
- Codebook scaling [Ben-David & Malah, 1995]
- Index Assignment (IA)
 - Full search complexity is of the order of N!
 - Pseudo-Gray algorithm [Zeger & Gersho, 1990]
 - Codebook design with LBG splitting method
- Frame-erasure concealment

Index Assigment

- Channel distortion increases the average error: $D = E\{d(X, Y_j)\} \ge E\{d(X, Y_i)\}$
- Upper bound on D: $D \le E\{d(X, Y_i)\} + E\{d(Y_i, Y_j)\} = D_Q + D_c$
- Channel distortion for VQ (fixed word-length):

$$D_c = \sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij} d(Y_i, Y_j) q_i$$

$$q_i = \Pr(Y_i)$$

$$p_{ij} = \Pr(Y_j | Y_i)$$

• Channel distortion for VQ (variable word-length):

$$D_{c} = \sum_{l=1}^{L} \sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij} \mu_{l} d(Y_{i}^{(l)}, Y_{j}^{(l)}) q_{i}$$

 μ_l = Probability of segment length

(Assuming independence between segment lengths and codeword indices)

Index Assignment (cont'd)

- Index Switching Algorithm (assuming BSC):
 - Calculate distortion matrix for the codebook
 - Assign cost for each codeword
 - Sort all costs with decreasing order
 - Find an index switch that maximize the distortion reduction (searching from highest cost codeword to lowest cost codeword)
- Splitting algorithm:

Index Assignment: Simulation Results

Typical behavior of the channel distortion (D_c) in the Index Switching Algorithm.

Index Assigment: Simulation Results (cont'd)

It has been observed that the splitting method achieves almost all of the IA gain as compared to the Index Switching Algorithm.

1200bps Speech Coder

Total Rate:1178bps (unused bits can synchronize frames)

Coding Examples

- Original
- LPC10 (2400 bps)
- MELP (2400 bps)
- MELP-AF (1200 bps)
- MELP-TQ (1200 bps)
- MELP-TSQ (1200 bps)

Summary

- Trellis Segmentation-Quantization
 - TSQ is an extension of the AF, TQ and MQ schemes.
 - Better results (lower LSD) than AF, TQ and MQ.
 - Gardner's weighting function is better (lower LSD in VQ design) than Atal's weighting function.
- Index Assignment
 - Good results using the splitting scheme compared to the index switching algorithm and random IA.
 - The splitting scheme enables the use of Unequal Error Protection (UEP) to better protect sensitive bits.

Summary (cont'd)

• The TSQ algorithm enables halving the bit-rate of the MELP coder with only a slight degradation.

Suggestions For Further Research

- TSQ with a non-linear interpolation schemes.
- Using the LSD in the index switching algorithm (Needed to calculate the LSD from partial LSF vector representations).
- What kind of IA strategy is needed for transmission over channels other than BSC?
- Is it possible to gain by combining IA and channel codes (joint IA and channel codes)?
- Frame-erasure and parameter-error concealment.