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Lecture Outline :

Fractal image representation - a review

 Image coding with  DWT - a brief review

Fractal representation via the DWT

A Blockless Fractal Coder

 Image Super-resolution (if time permits)

Summary and proposals for further research
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Fractal Image Coding

a Review



Definition is contractive
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... Cont’d

There exists a unique Fixed-Point x f  :

T { x f } = x f

x f can be iteratively obtained by :

Fractal representation for x :

x T x ý xf
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Iterated Function systems (IFS)
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Fractal Generation



Fractal Generation ... Cont’d



Fractal Generation ... Cont’d



Fractal Generation ... Cont’d



Fractal Generation ... Cont’d



Fractal Image Coding [Jacquin 1989]

Let 

Find a Contractive 

T such that 

 Collage theorem :

 Result : find T that minimizes d(x,Tx) 
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The Conventional Image Fractal Coder

Extract domain pool

– Ip= Isometries

– = Scaling Function

For each Ri  : 
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Encoding  - ...Cont’d 

 i.e. 

T is contractive if  ai<1

Quad-Tree approach 

 range blocks of

different sizes [ Fisher 92 ]
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Finding the Fixed Point (Decoding)

Start with any image X0 .

Apply T iteratively until the result converges .
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Example

T is found to represent “Lena”



Decoding - starting  from “man”



Decoding - starting  from “baboon”



Fixed Point Pyramid [Baharav et. al. 1993]
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DC- Orthogonalization [Øien et. al. 1993 ]

Finite # of iterations

Fast decoding ( Combining Baharav & Øien )     .../ 
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A “conventional” Ti

Ti  with DC orthogonalization 



...Cont’d 
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Discrete Wavelet Transforms

( DWT )

Discrete Time

Octave-Band Subband Decomposition



Octave-Band Subband Decomposition

Orthonormal Transformation

Linear Phase (QMF) Vs. Perfect reconstruction
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A Pyramidal Description
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Wavelet Subtrees

The Sub-tree coefficients represent “a region”.

Every “father” has 2 “sons”(LP “root” has 1 “son”) .
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Wavelet Transforms in 2D

 Using A separable QMF.

 The LP “root”  has three “sons” in three directions.

 Every other “father” has 4 “sons”.
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HL HH



Wavelet Transforms in 2D

 Using A separable QMF.

 The LP “root”  has three “sons” in three directions.

 Every other “father” has 4 “sons”.
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Image coding with wavelets

Transformation (Filters, Wavelet Packets ...).

Quantization (scalar, vector) and Entropy coding.

Prediction of  non-significant subtrees [ Shapiro.. ].

Prediction of coefficients                                          

[ Pentland, Rinaldo & Calvagno... ].



Fractal Transformations

in   the 

Haar-DWT Domain 



The Haar-DWT

A “l” deep  sub-tree is the DWT of a              

2l - samples input segment. 

The ‘Lows’ Pyramid upper level coefficients 

are the  segments’  means (up to a constant).
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Image Plane

Down-scaling a block 

with   Hlp2)

The Haar-DWT of a Fixed Point

DWT Domain

Pruning its subtree leafs





The Haar -DWT of a Fixed Point
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... Cont’d

U =  Haar-DWT unitary matrix ( size BxB )
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Domain-Pool Search

Finding the best Domain block 

and scaling factor ‘a’ :

– Assume l2 norm. 

– Recall that the DWT is orthonormal.

– The search can be done among subtrees instead 

of among  blocks .

 Weighted Least Squares.
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The 2D Case 
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An Equivalent Coder - Summary

The Encoder

– Calculate the DWT of the image

– Construct domain pool of Subtrees

– For each range Subtree Find the best 

match (index and  scaling  factor)

The Decoder

– Calculate the higher bands of coefficients recursively 

from the lower band

– Calculate the Inverse DWT.
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... Cont’d

Image Plane

Flips and Rotates

Quadtree block splitting

Haar-DWT Domain

Reordering of coeffs

Subdividing a subtree



A blockless Fractal Coder

Changing the Wavelet Filters



DWT-IFS with QMFs other then Haar

Haar

Subtrees represent non 

overlapping  blocks

The IFS uses DC block 

orthogonalization

Others

Subtrees represent 

overlapping  blocks

The IFS uses signal LP 

orthogonalization



The Choice of Wavelet Filters

Zero Phase Keep the Subbands aligned

Symmetric filters Symmetric extensions 

for finite duration signals

Short and compact but with decaying ends

Perfect reconstruction is not necessary

Orthonormality



Results - Quadtree Approach

--- Haar (equivalent to the conventional fractal coder)

--- 8 Taps  Least Asymmetric        --- 8  Taps Min. Phase

--- 12 Taps  Least Asymmetric --- 12 Taps Min. Phase

--- Adelson et. al. 9 Taps QMF 
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Results - Quadtree Approach
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The Visual Effect of the Error 

Haar DWT IFS Adelson DWT IFS

~ 0.08  Bit/Pel  ; “Lena”



The Visual Effect of the Error 

Haar DWT IFS Adelson DWT IFS

~ 0.08 Bit/Pel;  Part of   “Lena”



Additional Improvements 

Variable # of Domain Blocks



Low Energy Range-Subtrees

Subtrees with low variance (smooth areas) 

can be zeroed . 

This Causes disturbing blockiness with the 

Haar-DWT !!!
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Linear Combination of Domain blocks

Use 2 Domain blocks :

Apply Matching Pursuits to find a1, D1, a2, D2.

 In the DWT Domain :
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Directional IFS

 If a Range-Subtree can’t be estimated with 

1 or 2 Domain Subtrees, subdivide it into 3 

Directional Subtrees and estimate each .
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An Improved Coding Algorithm

Encode the lower band

For every range subtree  - R :

– Variance < Threshold ? Ti={Zero} 

– Single Domain    ? Ti={Single, ai,  ji} 

– Double Domain   ? Ti={Double, ai [1,2],  ji[1,2]}

– Dir.  Subtree ? Ti={Dir, ai [LH,HL,HH],  ji[LH,HL,HH]}

– If All above fail, subdivide the subtree (Quadtree)



Results - Adaptive # of domains

Fixed Subtree size (B=8) 

Uniform Quantization : 7bit - LP; 6bit - HP;  6bit-Scaling

Arithmetic coded
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(single domain )

Image : “Lena”  

Size : 512x512



Example of coding “Lena” 

Bit/Pel=0.31        PSNR=32.11dB

- None - single - Double - Directional



Image “Super resolution”

Decoding with a different Block size

Subband extrapolation beyond the original

 Adding high bands without changing the 

original bands content

The DWT-IFS embedded Function 



Summary

and 

Proposals for Further Research



Summary

An equivalent IFS coder in the Haar-DWT domain

– The IFS Predicts higher subbands coefficients from the 

lower ones

A blockless fractal coder

– Improving the coding results

Variable # of domain blocks for the estimation

An algorithm for “super resolution”



Proposals for Further Research

“Fine Tuning” of the proposed coder

Clustering the DWT-subtrees of the Domain-pool

Combine with Wavelet coders

Self-similar structured Wavelet Packets

“Fractal Interpolation” - Theory and application



Questions ?


