Fractal Representation of Images via the Discrete Wavelet Transform

Hagai Krupnik^{*}

Signal and Image Processing Lab Department of EE - Technion *Graduate Seminar - Supervised by Prof. D. Malah & Dr. E. Karnin (IBM)

Fractal image representation - a review
Image coding with *DWT* - a brief review
Fractal representation via the *DWT*A Blockless Fractal Coder
Image Super-resolution (if time permits)
Summary and proposals for further research

Fractal Image Coding

a Review

Contractive Transformations :

• <u>Definition</u> $T:(E,d) \to (E,d)$ is contractive iff $\forall x, y \in (E,d)$:

$d(Tx,Ty) \le s \cdot d(x,y) \quad 0 \le s < 1$

• There *exists* a *unique* Fixed-Point x^f : $T \{ x^{f} \} = x^{f}$ $\diamond x^f$ can be iteratively obtained by : $x^f = \lim_{n \to \infty} T^n \{ x_0 \} \quad \forall x_0$ \bullet Fractal representation for x : $T: x^f \{T\} \approx x$

Fractal Generation

Iterated Function systems (IFS)

Fractal Image Coding [Jacquin 1989]

• Let $X = \bigcup_{i} R_{i}; T = \bigcup_{i} T_{i}$ • Find a Contractive T such that $x^{f} \approx x$

• <u>Collage theorem</u>: $d(x, xf) < \frac{1}{1-s}d(x, Tx)$

Result : find T that minimizes d(x,Tx)

The Conventional Image Fractal Coder

Extract domain pool

 $-I_{p} = \text{Isometries}$ $- \varphi = \text{Scaling Function}$ $Dj = \varphi \{I_{p} \{\text{BLOCK}_{2 \text{ Bx } 2 \text{ B}}\}\}$

• For each R_i :

$$\mathbf{R} \cong a \mathbf{D} + \mathbf{F}$$
Range Domain Offset

RangeDomainOffsetblockblockblock

 $T_i = \{a_i, b_i, j_i\} \quad (b_i \cdot 1 = F)$ $= \arg \min \left\| R_i - (aD_j + F) \right\|_2^2$

Encoding - ...Cont'd

♦ T = ⋃T_i i.e. T{X} = ⋃R_i
♦ T is contractive if $a_i < 1$

Quad-Tree approach

• range blocks of

different sizes [Fisher 92]

Finding the Fixed Point (Decoding)

• Start with any image X_0 .

 \bullet Apply T iteratively until the result converges.

Example

T is found to represent "Lena"

Decoding - starting from "man"

Decoding - starting from "baboon"

Fixed Point Pyramid [Baharav et. al. 1993]

•
$$X_{1/2^{k}}^{f} = \varphi \{X_{1/2^{k-1}}^{f}\}$$
; $k = 1, 2, ..., \log_{2}(B)$
 $X_{1}^{f} = T_{1}\{X_{1}^{f}\}$ \longrightarrow $X_{1/2^{k}}^{f} = T_{1/2^{k}}\{X_{1/2^{k}}^{f}\}$
• $B'\{T_{1/2^{k}}\} = 1/2^{k} \cdot B$
 $\varphi \{R\} = a\varphi \{D\} + \varphi \{F\}$
 $R = aD + F$
 R
Range Domain

DC- Orthogonalization [Øien et. al. 1993]

A "conventional" T_i

 $R_i \approx a_i \cdot D_j + F_i \implies T_i = \{a_i, b_i, j\}$

offset

mean

 T_i with DC orthogonalization

 $R_i \approx a_i (D_j - \overline{D}_j) + \overline{R}_i \implies T_i = \{a_i, \overline{R}_i, j\}$

Finite # of iterations
Fast decoding (Combining Baharav & Øien) .../

 $T_i = \{a_i, \overline{R}_i, j\}$

Fast Decoding

$$X_{1/4}^f = \overline{R}$$

 $T_i = \{a_i, \overline{R}_i, j\}$

• Fast Decoding $X_{1/4}^f = \overline{R}$ $B' = B/2 \quad (T' = T_{1/2})$ $X_{1/2}^f$

$$T_i = \{a_i, \overline{R}_i, j\}$$

Fast Decoding $X_{1/4}^{f} = R$ $B' = B/2 \quad (T' = T_{1/2})$ $X_{1/2}^{f}$ $B' = B \quad (T' = T)$ X_{1}^{f}

Discrete Wavelet Transforms (DWT)

Discrete Time Octave-Band Subband Decomposition

Octave-Band Subband Decomposition

Orthonormal Transformation
 Linear Phase (QMF) Vs. Perfect reconstruction

A Pyramidal Description

Wavelet Subtrees

The Sub-tree coefficients represent "a region".
Every "*father*" has 2 "*sons*"(LP "*root*" has 1 "*son*").

Wavelet Transforms in 2D

• Using A *separable QMF*.

◆ The LP "*root*" has three "*sons*" in three directions.

• Every other "*father*" has 4 "*sons*".

Wavelet Transforms in 2D

• Using A *separable QMF*.

- ◆ The LP "*root*" has three "*sons*" in three directions.
- Every other "*father*" has 4 "*sons*".

Image coding with wavelets

Transformation (Filters, Wavelet Packets ...).
Quantization (scalar, vector) and Entropy coding.
Prediction of non-significant subtrees [*Shapiro..*].
Prediction of coefficients

[Pentland, Rinaldo & Calvagno...].

Fractal Transformations

in the

Haar-DWT Domain

The Haar-DWT

H_{lp} = 1/√2 [1 1] ; H_{hp} = 1/√2 [1 −1] A "l" deep sub-tree is the DWT of a 2^l - samples input segment. The 'Lows' Pyramid upper level coefficients are the segments' means (up to a constant).

The Haar-DWT of a Fixed Point

Image Plane	DWT Domain
Down-scaling a block with φ (= $H_{lp} \downarrow 2$)	Pruning its subtree leafs

The Haar -DWT of a Fixed Point

 a_i Domain Subtree = Range Subtree

U = Haar-DWT unitary matrix (size BxB)

'Lows' Pyramid

'Highs' Pyramid

Domain-Pool Search

 Finding the best Domain block and scaling factor 'a':

- Assume l_2 norm.
- Recall that the *DWT* is orthonormal.
- The search can be done among *subtrees* instead of among *blocks*.

Weighted Least Squares.

An Equivalent Coder - Summary

The Encoder

- Calculate the DWT of the image
- Construct *domain pool* of *Subtrees*
- For each *range Subtree* Find the best match (*index* and *scaling factor*)

The Decoder

- Calculate the higher bands of coefficients recursively from the lower band
- Calculate the *Inverse DWT*.

Image Plane	Haar-DWT Domain
Flips and Rotates	Reordering of coeffs
Quadtree block splitting	Subdividing a subtree

A blockless Fractal Coder

Changing the Wavelet Filters

DWT-IFS with **QMFs** other then Haar

Haar	Others
Subtrees represent non overlapping blocks	Subtrees represent overlapping blocks
The IFS uses DC block orthogonalization	The IFS uses signal LP orthogonalization

The Choice of Wavelet Filters

◆ Zero Phase ⇒ Keep the Subbands aligned ◆ Symmetric filters ⇒ Symmetric extensions for finite duration signals Short and compact but with decaying ends Perfect reconstruction is not necessary Orthonormality

Results - Quadtree Approach

--- Haar (equivalent to the conventional fractal coder)

--- 8 Taps Least Asymmetric --- 8 Taps Min. Phase --- 12 Taps Least Asymmetric --- 12 Taps Min. Phase --- Adelson et. al. 9 Taps QMF

Results - Quadtree Approach

--- Haar (equivalent to the conventional fractal coder)

- --- 8 Taps Least Asymmetric
- --- 12 Taps Least Asymmetric
- --- Adelson et. al. 9 Taps QMF

The Visual Effect of the Error

~ 0.08 Bit/Pel ; "Lena"

Adelson DWT IFS

Haar DWT IFS

The Visual Effect of the Error

~ 0.08 Bit/Pel; Part of "Lena"

Haar DWT IFS

Additional Improvements

Variable # of Domain Blocks

Low Energy Range-Subtrees

 Subtrees with low variance (smooth areas) can be zeroed.

This Causes disturbing blockiness with the Haar-DWT !!!

Linear Combination of Domain blocks

Use 2 Domain blocks :

$R \approx a_1(D_1 - \overline{D_1}) + a_2(D_2 - \overline{D_2}) + \overline{R}$

Apply *Matching Pursuits* to find a₁, D₁, a₂, D₂.
In the *DWT Domain* :

 $\bigwedge \approx a_1 \bigwedge_1 + a_2 \bigwedge_2$

Directional IFS

 If a *Range-Subtree* can't be estimated with 1 or 2 *Domain Subtrees*, subdivide it into 3 *Directional Subtrees* and estimate each.

An Improved Coding Algorithm

- Encode the lower band
- For every range subtree -R:
 - Variance < Threshold ? $T_i = \{ \text{Zero} \}$
 - Single Domain ? $T_i = \{$ Single, $a_i, j_i \}$
 - Double Domain ? $T_i = \{\text{Double}, a_i [1,2], j_i [1,2]\}$
 - Dir. Subtree ? $T_i = \{\text{Dir}, a_i [LH, HL, HH], j_i [LH, HL, HH]\}$
 - If All above fail, subdivide the subtree (Quadtree)

Results - Adaptive # of domains

Image : "Lena" Size : 512x512

Fixed Subtree size (B=8) Uniform Quantization : 7bit - LP; 6bit - HP; 6bit-Scaling Arithmetic coded

Example of coding "Lena"

Bit/Pel=0.31 PSNR=32.11dB

- None - single - Double - Directional

Image "Super resolution"

Decoding with a different Block size
Subband extrapolation beyond the original
Adding high bands without changing the original bands content
The DWT-IFS embedded Function

and

Proposals for Further Research

- An equivalent IFS coder in the Haar-DWT domain
 - The IFS Predicts higher subbands coefficients from the lower ones
- A blockless fractal coder
 - Improving the coding results
- Variable # of domain blocks for the estimation
- An algorithm for "super resolution"

Proposals for Further Research

- "Fine Tuning" of the proposed coder
- Clustering the DWT-subtrees of the Domain-pool
- Combine with Wavelet coders
- Self-similar structured Wavelet Packets
- "Fractal Interpolation" Theory and application

