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Outline

• Introduction to implicit polynomials (IPs)

• Applications of IPs

• Fitting IPs to object boundaries

• Fitting simulation results

• Boundary reconstruction

• Reconstruction simulation results

• Curve segmentation

• Contour coding simulation results



Introduction to Implicit Polynomials
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• dth order 2D Implicit polynomials
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• 4th order IP
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• The polynomial is determined by its

coefficient vector



Introduction to Implicit Polynomials (cont’d)
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• An IP can be written as the product of the

coefficient vector and a monomial vector
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• The set of points that solve the IP are

referred to as its “Zero-Set”

• The Zero-Set of an IP can describe an

object boundary in an image



Applications of Implicit Polynomials

• Object recognition
– Algebric invariants to affine transformations exist

• D. Keren - 1994: Using Symbolic computation to Find 

Algebraic Invariants.

• J. Subrahmonia, D. Cooper, and D. Keren - 1996: Bayesian 

Recognition of 2D and 3D Objects.

• M. Barzohar, D. Keren, and D. Cooper  - 1994: Recognizing 

Intersecting Roads in Aerial Images.

• Contour coding
– The description power of IPs can be used for contour 

coding, in region coding applications.

– Complex shapes may be described by the zero-set of a 

polynomial, defined only by its coefficients.



Requirements for Fitting IPs to 

Object Boundaries

• Minimizing the distance between the zero-set and 

the data points  tight fit

• Minimizing the sensitivity of the coefficients to 

noisy data  robustness

• For contour coding: Minimizing the sensitivity to 

coefficient quantization  Stability



Previous Work on Polynomial Fitting

• Taubin (1991) - Fitting IPs using non-linear 

iterative optimization for distance minimization.

• Z. Lei, M.M Blane and D.B. Cooper (1997) -

Linear IP fitting algorithm with improved 

performance and stability (3L algorithm).

• D. Keren and C. Gotsman (1999) - IP fitting using 

special groups of star shaped polynomials.



Previous Work - Taubin (1991)

• The polynomial should be zero at the data.

• For small errors:
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• Taubin suggested an iterative optimization:
 

Nnwn ,...,11 1. Initialize
Gradient



Previous Work - Taubin (cont’d)

• The minimization step is performed by:
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• Minimized when       is the eigenvector with 

the smallest eigenvalue of       .



Previous Work - Z. Lei et al. (1997)

• Construction of two additional data sets, based 

on the original data set (at a distance ‘d’)

Distance d

II - New external set
I - Original set III - New internal set

• The value of the polynomial is required to 

be zero on the original set,       on the 

external set and       on the internal set.







Previous Work - Z. Lei et al. (cont’d)

• Minimize:   
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Error W.R.T

original set

Error W.R.T

external set

Error W.R.T

internal set

• Solved using Least Squares.

Fast non-iterative calculation !



Proposed Fitting Algorithm - MinMax

• Outline

– Analyze the sensitivity of IPs to coefficient 

errors (quantization noise).

– Derive a fitting algorithm that minimizes the 

sensitivity.

• Characteristics of resulting polynomials

– Robustness to quantization

– Improved fitting.

– “3L” fitting can be viewed as a special case of 

this algorithm.



• A Change in the coefficients causes the 

zero-set to shift.

• A change in the position of the zero-set is 

measured in perpendicular direction.

Zero-set sensitivity

Original Position

of zero set point

Shifted Position of

zero-set point

Direction of

the tangent

du



• The change in the position of the zero-set is:

Sensitivity function
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Sensitivity

function

Coefficients

change

Change in

zero-set

• The sensitivity function is defined by:
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• The sensitivity function can broken into:

Sensitivity function (cont’d)

Sensitivity of zero-set position to

small changes in the value

of the polynomial

Sensitivity of the value of the

polynomial to small changes

in the coefficient vector
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• Sensitivity of the zero-set position to the 

value of the polynomial

Sensitivity function (cont’d)
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Original position
of zero set point

Shifted position of
zero set point



• Sensitivity of the value of the polynomial to 

the coefficients

Sensitivity function (cont’d)

Monomial vector
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• The sensitivity function evaluates to:

Sensitivity function (summary)
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Monomial vector

GradientVector, with a component for

each polynomial coefficient



• The fitting error, resulting from small 

coefficient errors is:

Zero-set error properties

Error of coefficient ‘k’

Error, in the perpendicular direction,

at the position of a zero set point

   
 

 yxP

yxp

yxSyx
a

r

k

ak
T

a

u

au

k

,

,

,, 1











Sensitivity to changes

in coefficient ‘k’



Zero-set error bounds
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• If all the error components have the same 

variance - than:2
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MAX
• When the maximal coefficient error is 

bounded by         , the error is bounded by:



• Uniform quantization causes bounded 

coefficient errors.

• When no boundary point has priority over 

another, error bounds for all boundary 

points should have the same values:

A Robust fitting algorithm
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• The actual value of the error bound (const) 

is later normalized and therefore set to ‘1’.



• To fit to the data:

– The value of the polynomial should be zero at 

the boundary points.

– The gradients of the polynomial should point in 

a direction locally perpendicular to the data.

A Robust fitting algorithm (cont’d)
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Boundary point

Direction of

the tangent
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• For each data point - 3 equations are 

generated:

IP Fitting Implementation
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• ‘N’ data points generate 3N equations.

• These equations are put into matrix form, 

and a least squares solution is used.



IP Fitting Implementation (cont’d)

TeeE 

Minimize the MSE

)( bMae 
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derivatives

Y axis 
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IP Fitting Implementation (cont’d)

Details:

  1
 TT

OPT MMMba

Optimal coefficient vector Least Squares solution



Simulation results
Sensitivity to quantization
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Simulation results
14th order polynomial fitting

with 3L and Min-Max algorithms

(b1)
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Data Reconstruction

• To achieve a complete coding system, data 

needs to be reconstructed.

• Reconstruction is done by:

– Scanning the polynomial zero-set, starting at a 

known point on it.

– From each point, a numerical calculation of the 

next zero-set point is made.



Data Reconstruction (cont’d)
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Boundary Reconstruction Problem

• Unconstrained fitting characteristics

– Optimal coverage of given boundary points.

– Spurious zero-set points may exist.
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Previous Work Addressing

Spurious Zero-Set Points

• D. Keren and C. Gotsman [1999]

– Limits the possible space of polynomials to 

special groups of star shaped polynomials.

– Useful for approximation of star shaped objects.

Star shaped polynomials 

cannot have spurious 

zeros



• The zero-set of the polynomial is constrained to lie 

within a thin strip surrounding the boundary (set 

empirically).
 External Region where the

polynomial is constrained to

have positive values

Internal Region where the

polynomial is constrained to

have negative values

Strip where the polynomial’s

zero-set is allowed Boundary points

Proposed Solution to the 

Reconstruction Problem



Proposed Solution (cont’d)

• Constrained LS solution using lagrange multipliers:

Minimize                    where

Subject to:

0
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The constraint points are sampled in the external / internal

regions
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All matrixes and vectors are as presented

in the unconstrained solution



Simulation results
14th order polynomial fitting and reconstruction
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Boundary Segmentation

Motivation
• Complex boundaries may require high order 

polynomials, requiring a large number of bits.

Side Info.

is dominant Many bits

for coefficients

Side information

Polynomial order

Base point for scan

Normalization



Boundary Segmentation

Optimal Segmentation

• Each curve can be optimally segmented in 

terms of required number of bits.

• There exist 2N possible segmentations.

• Exhaustive search is impractical.

• Segmentation can be performed on the basis 

of “special” points.

• We present a scheme for segmentation based 

on rate-distortion criteria.



Bottom to Top Segmentation
• Segmentation begins with 1st order, minimal 

size segments (2 points).

• Merges are performed:

– The segment pair with the least distortion is 

merged.

– Merges are performed when the resulting distortion 

is below a limit.

• When no more merges are possible, the order of 

the polynomial is raised for all segments.

• When a maximal order is reached or only one 

segment remains, the algorithm terminates.
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Segmentation Tree

Tree of possible

segmentations encountered

during merge operations

at different orders

of the polynomial

Bottom to Top Segmentation (cont’d)

• Rate is lowered during merges and raised 

during order increase.

• A scan is made for the best combination of 

segments, at the end of the merge process, for 

the optimal segmentation encountered.

Segmentation tree with

required number of bits

per node (in parentheses)

and optimal number of

bits for sub-tree
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Bottom to Top Segmentation - example
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Bottom to Top Segmentation - properties

 Based on actual rate and distortion-objective.

 Rate is always decreasing when merges are 

performed.

 Low complexity - only merge actions are 

considered.

 Results insensitive to initialization.

 Cost increases when the order is raised.

 Cannot perform splits.



Simulation results
Rate / Distortion Using IPs
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Simulation results
Restored images with different distortion
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Summary

• A complete scheme for boundary coding was 

presented:

– Segmentation of boundaries into efficiently coded 

curves.

– Fitting implicit polynomials to curves, with 

robustness to coefficient quantization, and 

constraints that allow reconstruction.

– Data reconstruction from polynomial coefficients 

and side information.



Summary (cont’d)

• Robustness to quantization noise also brings 

about robustness to data noise:

u

aSReduced

Sensitivity of zero set position

to coefficient changes

a

dataSReduced

Sensitivity of coefficients

to data point changes

Improved

fitting

• Fitting algorithm extended to 3D surfaces.



Future work

• This work investigated the usage of implicit 

polynomials for contour coding.

• Where object contours in image sequences are 

to be coded, 3D IPs may be used.

– Setting the time as the 3rd axis (‘z’ axis), 3D IPs

can be used to describe the changing contour of 

an object in several frames.

– Higher compression should be achieved.


