

Technion - EE Department
Signal and Image Processing Lab.

Rate, Distortion, and Complexity Tradeoffs in Fractal Image Coding

Reuven Franco

Supervisor: Prof. David Malah

Talk Layout

- Mathematical background.
- Fractals, what are they?
- Fractal image coding overview.
- Image partitioning and splitting criteria.
- Reducing encoder complexity.
- Fractal image coding combined with Matching pursuit and VQ.
- Entropy coding of the "Fractal code".
- Summary and conclusions.

Contractive Transformation

Let M be a metric space with metric d.

T is said to be a Contractive transformation,

$$T:(M,d)\rightarrow (M,d)$$
, iff

$$\begin{array}{c|c} x & y \\ \bullet & \bullet \end{array} \qquad \begin{array}{c|c} T(x) & T(y) \\ \bullet & \bullet \end{array}$$

$$\exists s \ 0 \le s < 1 \ , \ \forall x, y \in M \ d(T(x), T(y)) \le sd(x, y)$$

Fixed Point

Let (M,d) be a complete metric space and $T:(M,d) \rightarrow (M,d)$ be a contractive transformation.

Then there exists a unique point, (Fixed

point) such that:

$$T(x_f) \to x_f$$

$$T(x_f)$$

$$\forall x_o \in M, \quad T^n(x_o) \xrightarrow[n \to \infty]{} x_f$$

Collage Theorem

Let (M,d) be a complete metric space and $T:(M,d) \rightarrow (M,d)$ be a contractive transformation with a fixed point \mathcal{X}_f .

$$d(x, x_f) \le \frac{1}{1-s} d(T(x), x)$$

The inverse problem

Find T such that
$$T(x) \approx x_f$$

The First Fractal Image Coding Algorithm [Jacquin 1989]

Based on collage theorem : Find transformation such that its fixed point X_f is "close" to an image $X_f = \bigcap_{i=1}^{n} M_i$

For each range block, find best domain block, using an Affine transformation, such that minimize the Collage error

The First Fractal Image Coding Algorithm (cont'd)

[Jacquin 1989]

$$\hat{R}_i = a_i \cdot I_i \left(\varphi \left(D_{j_i} \right) \right) + b_i \cdot 1_{BxB} \qquad \min \left\| R_i - \hat{R}_i \right\|_2^2$$

Where:

$$\phi(D_{j_i})$$

 $a_i \longrightarrow \square$ - (mⁱ is contractive if $|a_i| < 1$)

Lupe "Lactal Code" to pe transmitted : $W = \bigcup_i w_i = \bigcup_i \{a_i, j_i, b_i, I_i\}$

The First Fractal Image Coding Algorithm (cont'd)

[Jacquin 1989]

Iterative Decoding

Apply W iteratively to any initial image until successive iterations differs slightly

DC - Orthogonalization [Øien 1991]

Instead of naind:
$$R_i \approx a_i \cdot \phi(D_{j_i}) + b_i \cdot 1_{BxB}$$

Use:
$$R_i \approx s_i \cdot \varphi \left(D_{j_i} - \overline{D}_{j_i} \right) + \overline{R}_i \cdot 1_{BxB}$$

Where:
$$\overline{R}_i$$
 - mean of range block \overline{D}_{j_i} - mean of domain block

The fractal code:
$$W = \bigcup_{i} w_{i} = \bigcup_{i} \{s_{i}, j_{i}, \overline{R}_{i}\}$$

Hierarchical Fast Decoding Combined with DC Orthogonalization [Baharav et al. 1993]

Hierarchical Fast Decoding Combined with DC Orthogonalization [Baharav et al. 1993] (cont'd)

Hierarchical Fast Decoding Combined with DC Orthogonalization [Baharav et al. 1993] (cont'd)

Image Partition and Split criteria

Using range blocks at various shapes and sizes improves coding efficiency.

- Use top-down or bottom-up? Merge small blocks to larger ones or split large blocks into small ones?
- Which partitioning structure to use? Quadtree, Triangles, HV...
- Which splitting criterion to use? Entropy, Variance ...

Hierarchical Fast Decoding Using Quadtree Partitioning

[Sutskover 1998]

Hierarchical Fast Decoding Using Quadtree Partitioning (cont'd) [Sutskover 1998]

Comparison of Decoding Algorithms

Iterative Decoding

1st iteration

2nd iteration

3rd iteration

 Infinite number of iterations are needed to converge to a fixed point

Comparison of Decoding Algorithms (cont'd)

Hierarchical Decoding

• $\log_2(\max \text{block size}) + 1$ pyramid levels - finite, known, number of operations

- Each pyramid level contains less elements
 - reduction in computations
- True fixed point is achieved
- There are no contractivity considerations

Threshold - based splitting criterion

Each range block is divided into four sub-range blocks if its collage error is less than a predefined threshold.

Rate-Distortion - based splitting criterion

Gain G_{RDi} , for range block \widetilde{R}_i , is defined as :

The Gain denotes the Collage error decrease per bit if a block is split

$$G_{RDi} = \frac{-\left(\left(\sum_{m=1}^{4} \left\|E_{i_m}\right\|_{2}^{2}\right) - \left\|E_{i}\right\|_{2}^{2}\right)}{\left(\sum_{m=1}^{4} \left|w_{i_m}\right|\right) - \left|w_{i}\right| + \left|Q_{i}\right|}$$

Where:

$$w_{i} = \{\overline{R}_{i}, j_{i}, s_{i}\}$$
$$|w_{i}| = |\overline{R}_{i}| + |s_{i}| + |j_{i}|$$

- Bits needed to describe wi

$$\|E_i\|_2^2 = \|\widetilde{R}_i - s_i\widetilde{D}_{j_i}\|_2^2$$
 - Collage error

Comparison of Splitting Criteria

Threshold - based splitting criterion :

- √ Local decision Independent decision for each range block.
- √ No direct control of the bit rate.

- √ The whole tree structure is taken into consideration for each splitting decision.
- $\sqrt{}$ Direct control of the bit rate or the collage error.
- $\sqrt{}$ One splitting level is practically enough.
- √ Computational complexity is almost four times than threshold based splitting criterion.

Collage-Error Computational-Complexity Splitting Criterion

For range block \tilde{R}_i Gain G_{CCi} , is defined as:

$$Gcc_i = \frac{\text{Collage error}}{\text{Added complexity}}$$

Priority is given to high Gain, e.g., a block with high Collage error but with a small number of computations for reducing it.

The algorithm: Keep splitting according to a descending Gain list until a designated complexity is achieved.

Adaptive Fractal Image Coding under Complexity and Rate Constraints

Using two top-down passes

First pass, find Quadtree structure using G_{CC} under Complexity constraint

Second pass, find sub-tree using G_{RD} under Rate constraint

Adaptive Fractal Image Coding under Complexity and Rate Constraints

Using two top-down passes

First pass, find Quadtree structure using G_{CC} under Complexity constraint

Second pass, find sub-tree using G_{RD} under Rate constraint

Adaptive Fractal Image Coding under Complexity and Rate Constraints

Using two top-down passes

First pass, find Quadtree structure using G_{CC} under Complexity constraint

Second pass, find sub-tree using G_{RD} under Rate constraint

Results - "Lena" Image PSNR vs. Rate

Results - "Lena" Image PSNR vs. Rate

Comparison of Splitting Criteria

compression ratio ≈ 1:8

Threshold-based criterion

Rate-Distortion - based criterion

PSNR ≈ 35.9 [dB]

PSNR ≅ 36.9 [dB]

Comparison of Splitting Criteria (cont'd)

compression ratio ≈ 1:8

Threshold-based criterion

Rate-Distortion - based criterion

PSNR ≈ 35.9 [dB]

PSNR ≈ 36.9 [dB]

Comparison of Splitting Criteria (cont'd)

compression ratio ≈ 1.8

Threshold- based criterion Rate-Distortion - based criterion

Comparison of Splitting Criteria (cont'd)

compression ratio ≈ 1.8

Threshold- based criterion Rate-Distortion - based criterion

PSNR ≈ 35.9 [dB]

PSNR ≈ 36.9 [dB]

Quadtree Partitioning Without Search

Motivation: Reducing complexity by searching less blocks Coding algorithm:

a. Determine a Quadtree structue without search.

Given the Quadtree structure:

b. Search for the best transformations.

Uses a descending order Gain list where Gain is defined using only block variances

Size · Variance 1. Variance-Rate splitting criterion

2.
$$\Delta Var$$
-Rate splitting $G_{Vi} = \frac{Size \cdot Variance Decrease}{Rate}$

Rate

Results - Summary

"Peppers" Image - 0.3bpp Range Blocks used 32,16,8,4 and 2

Split Criterion	Collage Error [dB]	Reconstruction Error [dB]	Complexity [%]
Rate-Distortion	30.74	30.25	100
Collage error-Computational complexity	30.62	30.15	25
Variance-Rate	29.73	29.21	18.8
Threshold	29.14	28.02	24
Rate-Distortion & Segmentation	28.48	27.81	5
Δ Var-Rate	28.31	26. 83	19

Rate-Distortion

Variance-Rate

Threshold

Collage error-Complexity

Threshold
28.02dB
0.3bpp

Rate-Distortion 30.25dB 0.3bpp

Variance-Rate

29.21dB 0.3bpp

Collage error-Complexity 30.15dB 0.3bpp

Comparison to related works

"Fast Search"

Range Blocks ≈ # Domain Blocks ≈ N

"Full Search" - check all domain blocks for each range block.

"Full Search" is of complexity O(N2)

Decimated search

Classification according to variance order

$$V_{1} \ge V_{2} \ge V_{3} \ge V_{4}$$

$$V_{4} \ge V_{3} \ge V_{2} \ge V_{1}$$

Classification according to zero crossing

"Fast Search" (cont'd)

"Lena" Image - 0.3bpp Range blocks 16,8 & 4

Decimated search

Classification according to variance order

Classification according to zero crossing

PSNR Reduction	Complexity "effort" [%]	
-1.66 dB	4.6 %	
-1 dB	4.5 %	
-0.94 dB	16 %	

Range Block Matching with Multi Domain Blocks

Problem definition: Find the Kth order linear combination of domain blocks that minimize the MSE

$$\arg\min_{\vec{S}, DOMAINS} \left\| \widetilde{R} - s_1 \widetilde{D}_1 - s_2 \widetilde{D}_2 - ... - s_K \widetilde{D}_K \right\|_2^2$$

where:
$$\vec{S} = (s_1 s_2 s_3 \dots s_K)^t \quad s_j \in \Re$$

Solution: Given a set of K domain blocks, calculate:

$$\begin{pmatrix} s_{1} \\ s_{2} \\ \vdots \\ s_{K} \end{pmatrix} = \begin{pmatrix} \left\| \widetilde{D}_{1} \right\|^{2} & \left\langle \widetilde{D}_{1}, \widetilde{D}_{2} \right\rangle & \cdots & \left\langle \widetilde{D}_{1}, \widetilde{D}_{K} \right\rangle \\ \left\langle \widetilde{D}_{1}, \widetilde{D}_{2} \right\rangle & \left\| \widetilde{D}_{2} \right\|^{2} & \vdots \\ \vdots & \vdots & \vdots \\ \left\langle \widetilde{D}_{1}, \widetilde{D}_{K} \right\rangle & \cdots & \left\langle \widetilde{D}_{K-1} \right\|^{2} & \left\langle \widetilde{D}_{K-1}, \widetilde{D}_{K} \right\rangle \\ \left\langle \widetilde{R}, \widetilde{D}_{2} \right\rangle & \vdots \\ \vdots & \vdots & \vdots \\ \left\langle \widetilde{R}, \widetilde{D}_{2} \right\rangle & \vdots \\ \left\langle \widetilde{R}, \widetilde{D}_{K} \right\rangle & \cdots & \left\langle \widetilde{D}_{K-1}, \widetilde{D}_{K} \right\rangle & \left\| \widetilde{D}_{K} \right\|^{2} \end{pmatrix}$$

For a small K, solution is of $O(N^3)$ Complexity or $O(N^2)$ if using $O(N^2)$ memory units (not practical).

Sub-Space Orthogonaliztion [Øien 1991]

Define K-1 order orthonormal basis : $\{b_1, b_2, ..., b_{K-1}\}$

Find:
$$\arg\min_{\vec{S},j} \|R - s_1 b_1 - s_2 b_2 - ... - s_{K-1} b_{K-1} - s_K D_j\|_2^2$$

Range and Domain blocks can be orthogonalized, in advance, to the space spanned by $\{b_1, b_2, \dots b_{K-1}\}$.

Solution:

$$\begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \vdots \\
0 & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & 0 \\
0 & \cdots & 0 & \|\widetilde{D}_{j}\|^{2}
\end{pmatrix}
\begin{pmatrix}
s_{1} \\
s_{2} \\
\vdots \\
s_{K-1} \\
s_{K}
\end{pmatrix} = \begin{pmatrix}
\langle \widetilde{R}, b_{1} \rangle \\
\langle \widetilde{R}, b_{2} \rangle \\
\vdots \\
\langle \widetilde{R}, b_{k-1} \rangle \\
\langle \widetilde{R}, \widetilde{D}_{j} \rangle
\end{pmatrix}$$

$$s_K = \frac{\left\langle \widetilde{R}, \widetilde{D}_j \right\rangle}{\left\| \widetilde{D}_j \right\|^2}, \quad s_m = \left\langle \widetilde{R}, b_m \right\rangle, \quad 1 \leq m \leq K - 1$$

Matching Pursuit [Mallat 1993]

Decomposing a signal into linear expansion using waveforms selected from a redundant dictionary of functions.

- 1. Denote the source signal as a residual signal.
- 2. Find in a dictionary (of size M) the function with the highest correlation factor with the residual signal.
- 3. Find the new residual signal using projection on the selected function.

Problem definition: Find best 2nd order linear combination of domain blocks to minimize collage error.

Optimal solution: Given a pair of domain blocks, calculate:

$$\begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \frac{\begin{pmatrix} \left\| \widetilde{D}_2 \right\|_2^2 & -\left\langle \widetilde{D}_1, \widetilde{D}_2 \right\rangle \right) \left(\left\langle \widetilde{R}, \widetilde{D}_1 \right\rangle \right)}{\left\| \widetilde{D}_1 \right\|_2^2 \left\| \widetilde{D}_2 \right\|_2^2 - \left\langle \widetilde{D}_1, \widetilde{D}_2 \right\rangle^2}$$

Optimal solution is of O(N³) Complexity or O(N²) if using O(N²) memory units (not practical).

Complexity is two times "Full Search" - O(N²)
Only O(N) memory units are required.

Start splitting according to the ordered Gain list

If a matching pursuit labeled (MP) block is at the top of the list place GsmP in the proper location

Top of list

If a matching pursuit labeled (MP) block is at the top of the list place GSMP in the proper location

A labeled MP block is split only if GSMP reaches the top of the list!

Top of list

"Lena" Image, Size of range blocks: 16,8 & 4

"Lena" Image, Size of range blocks: 16,8 & 4

Comparison of Results for Matching Pursuit

0.3 bpp PSNR=31.67dB MP1

0.3 bpp PSNR=31.76dB MP2

0.3 bpp PSNR=31.48dB MP3

Hybrid Fractal - VQ Coding

Use external code-book to enlarge the domain pool

- "Self" Code-Book
- Signal Dependent

- Defined Code-Book
- Signal independent

Domain Pool

VQ

Hybrid Fractal - VQ Coding (cont'd)

Examined with the help of:

Yaniv Gur & Alex Trigov

Hybrid Fractal - VQ Coding (cont'd)

Entropy Coding

Entropy coding of "Fractal code": $W = \bigcup \{\overline{R}_i, s_i, j_i\}$

Typical Bit allocation: Range mean - 7 bits

Scale factor - 5 bits

Domain index ≈ 12 bits

Entropy coding of scale and index values achieves only 5% reduction in the number of bits used (≈0.85 bit).

The mean values of neighboring range blocks are highly correlated (3 bits reduction is achievable using "LOCO")

Entropy Coding - Results

Size of range blocks: 16,8,4 & 2

Entropy Coding - Results (cont'd)

Size of range blocks: 16,8,4 & 2

Summary and Conclusions

- Rate-Distortion reduction of reconstruction error
- Collage error-Computational complexity reduction of computational complexity
- Adaptive coding combining Rate-Distortion and Collage-Complexity - enables direct control of rate and complexity
- Splitting without search
- "Fast search" methods

Summary and Conclusions (cont'd)

- Matching pursuit combined with Rate-Distortion splitting criterion - reduction of reconstruction error and complexity
- VQ combined with Rate-Distortion splitting criterion -Better results than matching pursuit at the same bit rate and complexity.
- Entropy coding =12% bit rate reduction

THE END