Technion - Israel Institute of Technology Dept. of Elec. Eng.

Signal and Image Processing Lab winter 1994/5

Voice Conversion using a Glottal Excited Speech Model

Gilad Cohen*

*M. Sc. Thesis supervised by Prof. David Malah

Voice Conversion:

A technique to change or modify speaker individuality, i.e., convert the speech of one speaker so that it sounds like that of another.

Application:

- Entertainment (Cartoon character voices)
- Providing speaker individuality to Synthesis-by-rule speech.
- Improve intelligibility of abnormal speech.
- Improving speech recognition systems trained on a "standard speaker".

What distinguishes a speaker?

- Factors related to physiology:
 - Acoustical characteristics of the glottal excitation.
 - Dimensions of the vocal tract.
- Factors related to the dynamics of speech:
 - Speaking rate.
 - Regional accent.
 - inflection (An alteration of pitch or tone).

Methods:

• Synthesis by concatenating small speech segments.

Methods (Cont'd):

• Using Speech Models.

Training

Target Speech

Methods (Cont'd):

• Using Speech Models.

Previous work: Using LPC VoCoder (noise/impulse train excitation). Very limited speech quality.

Current Model: Glottal Excited LPC Model Significantly improves speech quality at low cost.

- Unvoiced sections (fixed length frames) s(n) = e(n) * v(n)
- Voiced sections (pitch synchronous frame length)
 s(n) = g(n)*v(n)*r(n)

- s -speech signal
- g- glottal pulse.
- v vocal tract impulse response.
- **r** lip radiation $(1 \mu z^{-1})$.
- e white noise.

- <u>Glottal Air Flow Model</u> $g(t) = \begin{cases} 0 ; 0 \le t < t_c \\ \sin^2\left(\frac{\pi}{2}\frac{t-t_c}{t_o-t_c}\right) ; t_c \le t < t_o \\ \cos\left(\frac{\pi}{2}\frac{t-t_o}{T-t_o}\right) ; t_o \le t < T \end{cases}$
- 3 timing parameters: $\{T, t_0/T, t_c/T\}$
- <u>Vocal Tract Model</u>

$$V(z) = \frac{G}{1 - \sum_{i=1}^{p} a_i z^{-i}}$$

G - gain, $\{a_i\}$ - LPC parameters (p=10).

Analysis Stage - Voiced Sections

Assume constant filters, update glottal source: $Q_{i} = 1,2,3$ Assume constant filters, update glottal source:

Analysis Stage - Voiced Sections

 G_i/A_i

i = 1.2.3

?

?

ISE

Assume constant filters, update glottal source:

Find a path trough the lattice that gives best synthesis.

DTW problem with non-local cost.

Analysis Stage - Voiced Sections

• For each 3-Pitch length window:

Up to now... MMMMMMMMMMM Original MMMMMMMMMM Reconstructed Glottal Excitation LPC Spectrum