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Why do we need to enhance speech?

 |Improvement in the quality and comprehension of
Speech.

» Preprocessing stage in coding and recognition
techniques.




Speech Examples

“An 1cy wind raked the beach” pronounced by a female

49 Clean speech f={f}'{

y={y}io ={fi+&}c &~N(0,0°) SNR=10dB



State of the Art of Speech Denoising (1)

Transform to
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Estimation
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State of the Art of Speech Denoising (2)

Non-casual Wiener filter
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Ephraim-Malah (E-M) Speech Denoising
Algorithm (1984/5)

1984 — Spectral Amplitude Estimator
» 1985 — Log-Spectral Amplitude Estimator

E{(IogAk—IogAk)z}amin G(&. 7 )= k exp{; jttd}

ék +1 Vi
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“Decision Directed” a prior1t SNR Estimation
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Joint Time-Frequency Representations (1)
Wavelet Packet Decomposition (WPD)

B=1{y, 1 (1) =22y, (2't—K):teZ neZ kez| (libraryof wavelet packets)
¢ —scaling parameter(resolutionlevel)  n—oscillation parameter
k —time — domain positionindex
(low— pass filtering, followed

Won(t) = \Ezk: PR =i, (1) by decimation(2:1))

(high — pass filtering, followed

Won(t) = \E% Ok (2t =K) =Gy, (1) by decimation(2:1))

Z|:h|_2kg._2n :O Zk:hk =2 Zk: 9 =0 (orthogonality, perfectreconstruc—
S The o o + G ot 1= tionand "admissibility”conditions)
| ,

Ok = (_1)k hy



Joint Time-Frequency Representations (2)

Wavelet Packet Decomposition (cont’d)

w,(t)=p(t) (characteristic(scaling) function)
w(t) =23 9,02t —K) =y (t) (mother wavelet)
k

{1, .= {[Zgn,zf(n +1):(4,n) € E} has to be a disjoint cover of [01)
B=1{1, . (t)=2"2y,(2't—k):(/,n) e E,k € Z|

E <{(-1,0),(-11),(-2,0),
(_211)1 (_212)’ (_2’3)}

O(rNlog, N)




Joint Time-Frequency Representations (3)

Local Trigonometric Decomposition (LTD)

K 4y — k - - - -
Wi (t)=b; (t)F; (t) (localtrigonometricbasis function)

— 0. . _t
NOE r(t % jr(a“l j (window function)
n n

il
je

0 1ft<-1
rit)=< "right cut — off function”
© {1, frs1 (19 )
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Joint Time-Frequency Representations (4)

Local Trigonometric Decomposition (cont’d)
F)=2R f(t)= z_cjhpjk (t)
J J

cl = < f(t), ¥} (t)> -~ <Tf (t)1, i (t)> (expansion coefficierts)

LEll
1, = ’ indicator function
| {O,tg ¥ ( )

O(LN log, N)




Joint Time-Frequency Representations (5)

Shift-Invariance

» Wavelet Packet Decomposition (WPD) is translation-variant

Entropyw: 2.99



Joint Time-Frequency Representations (6)

Shift-Invariance (cont’d)

« Shift-Invariant Wavelet Packet Decomposition (SIWPD) posses shift-invariance
property and characterizes by lower information cost (Cohen et. al.)

(£, n,m)

(i-1,2n,m) (-1,2n+1,m)

(L n,m)

(-1,21,1-m) (-1,2n+1,1-m)




Wavelet-Based Denoising Techniques (1)
The Donoho-Johnstone Algorithm (1994/5)

Inverse
Wavelet

Transform

Wavelet
Transform mpEeech

Selection
W:{Wé,n,k} T:{te,n,k} é:{é&n,k}
(x.1) = X, | X|>t
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Wavelet-Based Denoising Techniques (2)

The Donoho-Johnstone Algorithm (cont’d.)

r a Inverse
Wavelet ' Enhanced ~
Wavelet f

Transform | =FEeC

Tranzform

Selection

W:{Wé,n,k} Tz{tg,n,k} é:{é)f,n,k}

RiskShrink :t, .\ =A({)o

VisusShrink :t, . = 44 ()o=02({+J)In2

SureShrink : adaptive threshold selection
based on Stein unbiased estimate of risk



Wavelet-Based Denoising Techniques (3)

Coifman-Donoho Translation-Invariant Denoising
(1994/5)




Wavelet-Based Denoising Techniques (4)

Saito Adaptive Estimator (1994)

Wavelet . Hard N Wavelet
Packet ar¢ Packet

Enhanced -

.. Thresholding )
Decomposition - Reconstruction | *
Estimation of

r

Parameter K

W:{Wz,n,k} é:{‘9},n,k}

L(T, Ty, p)=L(p) + LT, | p)+ L(T | T, p)

K =arg 0<@Q_1{MDL(W’ k)}

MDL(w,k) = g K log, N +%Iog2 lw =78 (w) 5

n™) —hard thresholding operation, which keeps the k largest
(in absolute value) elements intact and sets all other elements to zero

0=1""(w)



Wavelet-Based Denoising Techniques (5)

Cohen-Raz-Malah Adaptive Estimator (1998)

2(£+J)_1 A A
W%T\) :{Wé,nr]]),k k=0 0 :{gém,)k

Kopt =H (W™, )2 > 302 INN |

1 o(£+3) 4 - 1
MDL (w(™ )=3+ i o min {(w{™,)2 352 I N |

0=n, (W,Saz InN )



Implementation and Quality Measures

All examinations were done for 3 following sentences, each pronounced by a
male and a female:

« A lathe is a big tool < An icy wind raked the beach ¢ Joe brought a young girl
4 4 4
Each sentence was sampled at 8 KHz sampling frequency and has 16384 samples
(J=14).

SNRzlologm(|| ”fHZ ][ B]

-t

\%
=1 B ”2
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SEGSNR =13 SNR, SNR :1Olog10(”f”f' 1|€|2 : +1j [dB]
1
\Y A\ " 2 2
1SD= 43D, Di{ﬁz(lmogmlFi(k>|—10Ioglo|Fi(k)|)} [dB]
I=1

k=1

F (k) = DFT{f.}(k), F(k)=DFT{f.}K)



WPD-Based Denoising of Speech (1)

 Daubechies nearly symmetric mother wavelet of 8’th order (DNS(8))

 Entropy-based best-basis selection (L=06)
» Soft-thresholding

Test sentence #2, pronounced by a female « Clean Speech «)  + Noisy Speech «}

Estimator | Input | Input | Input |Output| Output | Output
type | SNR | SEGSNR | LSD | SNR | SEGSNR | LSD
VisuShrink 6.68 | 9.47 ) 6.76 6.88
RiskShrink 6.68 | 9.47 4 8.13 6.47
SureShrink 6.68 | 9.47 ) 9.28 6.35
Saito 6.68 | 9.47 6.52 7.44
Cohen 6.68 | 9.47 ) 7.62 6.85
Wiener 6.68 | 9.47 ) 8.63 7.34

* Thresholding-based algorithms — oversmoothing and artifacts



WPD-Based Denoising of Speech (2)

Oversmoothing and Artifacts
In Thresholding-Based Denoising

Oveéhstriacthimgspespbeenhanicaddeg SyrBsskBiicink



WPD-Based Denoising of Speech (3)

Suppression of Artifacts

Increasing temporal support of basis functions:

 Choosing appropriate cost function
* Increasing temporal support of mother wavelet

Influence of Cost Function

* DNS(8)
» Best-basis selection algorithm (L=6)

 Wiener estimator
* There is no significant difference in

Cost Input | Output the quality of enhanced speech
function SNR | SNR
E 10 13 35 Full 10
ntropy ' Subband
Log-Energy 10 13.53
11 10 13.49 « Full subband WPD-based denoising

attains the highest SNR



WPD-Based Denoising of Speech (4)

Increasing Temporal Support of Mother Wavelet

« Meyer mother wavelet

1, |lw[<Z
my() = cos|Zv(E|w|-1)], 2wl
0, o>
v(x)—auxiliary function, x €[0,1]
v(x)=35x"* —84x° + 70x° — 20X’
» Generalized Meyer mother wavelet
1, | [<Z(1-T)
o]-~(@-1)
m(w) ={cos| Zv 2r C Z1-r) <o Z1+T)
T
0, o[> 2Z@L+r)

r—roll — off My (@) = m(@) |, _;
-3




WPD-Based Denoising of Speech (5)

Temporal Support and Frequency Localization

 Entropy-based best-basis selection algorithm (L=6)

e SureShrink and Wiener estimators

DNS(8) mother wavelet

Estimator | Input | Output
type SNR SNR
SureShrink 10 14.73
Wiener 10 13.35

¢

¢

Generalized Meyer mother wavelet

: Output
Estimator type| N,r
SNR
SureShrink 32,1/3 | 14.81
SureShrink 64, 1/5
Wiener 32,1/3 | 13.53
Wiener 64, 1/5

* Increasing temporal support suppress the artifacts

 Improving frequency localization improves the resulting SNR



WPD-Based Denoising of Speech (6)

SIWPD-Based Denoising

 Generalized Meyer mother wavelet (N =64, r =0.2)
* Full subband decomposition (L=6)
 Wiener estimator

Speaker | Decompo- | Input | Output Speaker | Decompo- | Input | Output
sitiontype | SNR | SNR sitiontype | SNR | SNR
Female WPD 10 13.63 Male WPD 10
Female SIWPD 10 Male SIWPD 10 12.78
Test signals of Donoho:
* DNS(8) mother wavelet
 Entropy-based best-basis selection (L=6)
e SureShrink estimator
Test | Decomposi- | Input | Output Test | Decomposi- | Input | Output
Signal tion type SNR SNR Signal tion type SNR SNR
Blocks WPD 17 18.23 Bumps WPD 17 21.34
Blocks SIWPD 17 18.24 Bumps SIWPD 17 21.39




WPD-Based Denoising of Speech (7)

SIWPD-Based Denoising (cont’d)
WPD-based VisuShrink SIWPD-based VisuShrink

(a) {b} D VisuShrink [Blocks

* Property of shift-invariance does not improve denoising performance



WPD-Based Denoising of Speech (8)

Framing

 Denoising without framing

* Full subband decomposition (L=6)

Speaker | Input | Output Speaker | Input | Output
SNR SNR SNR SNR
Female 10 13.63 | «} \ELE 10 12.79 | &)

* Full subband decomposition (L=5)

 Framing (Hanning window, 50% overlapping, 256 samples per frame)

Speaker | Input | Output Speaker | Input | Output
SNR SNR SNR SNR
Female 10 15.69 | «} \E: 10 14.95 |}

« Framing improves resulting SNR

« Smoothing of gains fluctuations is needed



WPD-Based Denoising of Speech (9)

Utilization of the “Decision Directed”
A Priori SNR Estimation

« Framing: optimal frame length — 256 samples

» Tracking a priori SNR for decomposition tree terminal nodes: the full
subband decomposition is the optimal choice (L=J)

. . & n (i)
G 2, () =2
(w,,(1):2,,(1))) Z (j)+1
10, ,(D)15

: (a prioriSNR)
12,0 (D)5

16, (i —1)II
12, (=D
I, (J) 11
12, (i) 11

éﬁ,n (1) =a+ (1_ 05)773 (7€,n (1)’1)

fﬁ,n(j) —

éﬁ,n(j) =

+ (1—05)773(7%,n(j),1), J =2,3,..M

Ven()) = (a posterioriSNR)



WPD-Based Denoising of Speech (10)

» Wiener estimator, combined with the “decision directed” a priori SNR

Proposed WPD-Based Speech

Denoising Algorithm

estimation («=0.9, Hanning window, 50% overlapping, 256 samples per

HENE))

* Full Subband decomposition (L=J=8)

 Generalized Meyer mother wavelet (N =64, r =0.1)

# | Speaker Decomposi- | Input Input Input | Output| Output | Output
tiontype | SNR | SEGSNR | LSD | SNR | SEGSNR | LSD
1| Female | WPD ) 6.06 | 11.51+ 9.58 8.52
1| Male WPD ) 596 | 1153 8.48 9,62
2 | Female WPD ) 6.68 9.47 ) 9.58 6.62
2| Male WPD  } 6.73 9 ) 9.54 6.31
3| Female | WPD ) 6.17 | 11.11 «} 9.01 9.12
3| Male WPD 592 | 1151 7.94 9.96




LTD-Based Denoising of Speech (1)

» Cosine Packet Decomposition (CPD) (DCT-1V) with
Wickerhauser symmetric bell (77 = 6)

 Entropy-based best-basis selection (L=6)

» Soft-thresholding

Test sentence #2, pronounced by a female « Clean Speech «)

[+ O B— B P+

* Noisy Speech «}

Estimator | Input Input Input |Output| Output | Output || WPD-based
type SNR | SEGSNR | LSD | SNR | SEGSNR | LSD denoising
Visushrink 6.68 | 9.47 6.91 681 |4
SureShrink 6.68 | 9.47 « 9.06 59  |d)
Wiener 6.68 | 9.47 « 8.05 6.93 |4}

 Thresholding-based algorithms — oversmoothing and artifacts
* Artifacts, that characterize LTD-based denoising, are less annoying




LTD-Based Denoising of Speech (2)

Influence of Cost Function

* There is no significant difference in the quality of enhanced speech

* Full “subsegment” CPD-based denoising attains the highest SNR

Temporal Support and Frequency Localization

J-L _
j, —@; >2n>0 = |2 UWHX‘J:14,L:6_128
« CPD with Wickerhauser symmetric bell (7 = 77,
e Full “subsegment” decomposition (L=6)
« \WWiener estimator
Input | Output Input | Output
Speaker

shEElen SNR | SNR P T SNR | SNR

RENELE 6 10 12.99 Male ) 10 12.73

RENELE 128 10 \ELE 128 10




LTD-Based Denoising of Speech (3)

Utilization of the “Decision Directed”
A Priori SNR Estimation

» Tracking a priori SNR for decomposition tree nodes on the same
decomposition level

 The full “subsegment” decomposition is the optimal choice (L=J)

gfnk
G(w, .., =
( /.n,k Enk) fgnk*‘l
|‘9€nk|
Srnk = > (aprioriSNR)
|2£nk

. | B
gz,n,k — ; e > T (1 0!)775 (7/£ n kll)

Yink == 5 (aposterioriSNR)

ééz,o,k =a+(1-a)n, (7€,O,k 1)



LTD-Based Denoising of Speech (4)

« Wiener estimator, combined with the “decision directed” a priori SNR

Proposed LTD-Based Speech
Denoising Algorithm

estimation (o=0.9)

e Full “subsegment” decomposition (L=6)

« Improved frequency localization and increased time support (7 = 77, = 2°-1)

# | Speaker De_composi- Input Input Input | Output| Output | Output
tiontype | SNR | SEGSNR | LSD | SNR | SEGSNR | LSD
1| Female | CPD ) 6.06 | 1151 «) 9.17 8.56
1| Male CPD ) 596 | 1153 «) 8.1 9,69
2| Female | CPD «) 6.68 | 9.47 «) 9.43 6.76
2| Male CPD 6.73 9 ) 9.06 6.39
3| Female cPD ) 6.17 11.11 ) 8.59 9.2
3| Male cCPD ) 592 | 1151 «) 7.68 9.99




WPD Applied to DCT-I Coefficients

Proposed Speech Denoising Algorithm

« Wiener estimator, combined with the “decision directed” a priori SNR

estimation («=0.9)

e Full “subsegment” decomposition (L=6)

* DNS mother wavelet (4°th order)

# | Speaker De_composi- Input Input Input | Output| Output | Output
tiontype | SNR | SEGSNR | LSD | SNR | SEGSNR | LSD
1| Female | WPD(DCT)} 6.06 11.51 ¢} 9.04 8.81
1| Male |wpPD(DCT)4 5.96 11.53 ¢} 8.07 9.73
2 | Female | WPD(DCT)«) 6.68 9.47 ) 9.35 6.95
2| Male |WPD(DCT)4) 6.73 9 o) 9 6.49
3| Female | WPD(DCT)) 6.17 | 11.11+ 8.42 9.35
3| Male | WPD(DCT)«) 592 | 1151 «) 753 | 10.09




“Ideal” Denoising (1)

» Decision directed approach smoothes gains fluctuations from frame to

frame, caused by fluctuations of noise squared spectral amplitude

* “Ideal” denoising —assuming prior knowledge of noise squared-spectral

amplitude exact value

 Results of “ideal” denoising:
- Denoising, based on WPD : the proposed algorithm with o.=0

- Denoising, based on CPD (or WPD applied to DCT coefficients):

* Hanning window, 512 samples per frame with 25% overlapping
* Decomposition with L=1

Estimator type, Input | Output
decomposition type | SNR SNR
Wiener, WPD 10
Wiener, DCT 10
Wiener, CPD 10

Estimator type, Input | Output
decomposition type | SNR SNR
Wiener, WPD(DCT) 10

Wiener, DFT,, 10 19.86
E-M, DFT,, 10 19.51




“Ideal” Denoising (2)

DFT-Based “Ideal” Denoising vs. Real-Valued
Transforms-Based “Ideal” Denoising

— WPD-based denoising
DFT-based denoising
-+ DFT-based denoising {with zero padding) — |

10
Input SNR [dB]




“Ideal” Denoising (3)

Advantages of Real-Valued Transform-Based
“Ideal” Denoising

» Better frequency resolution when compared to DFT-based denoising (zero
padding for DFT-based denoising improves resulting SNR)

 Exact phase reconstruction

Temporal Support and Frequency Localization

» Increasing L and decreasing r improves performance of the WPD-based
“1deal” denoising

» Increasing 7 improves performance of the LTD-based “ideal” denoising



A Comparative Performance Analysis (1)

» Results of practical denoising:

Estimator type, | Input | Output Estimator type, | Input | Output
decomposition type | SNR SNR decomposition type | SNR SNR
Wiener, WPD €} 10 ) 17.37 Wiener, DFT 10 @
Wiener, CPD 10 «) 16.69 E-M, DFT 10 ) 17.22
Wiener, WPD(DCT) | 10 ) 16.49

» DFT-based Wiener estimator attains the highest SNR and is characterized
by the lowest level of the residual background noise

« E-M algorithm is characterized by approximately white residual
background noise

« WPD-based denoising algorithm attains SNRs, close to resulting by E-M
algorithm SNR

» Denoising algorithms, based on LTD and WPD applied to DCT
coefficients, attain the lowest SNRs, comparing to other transforms;
speech quality is comparable to other algorithms



A Comparative Performance Analysis (2)

DFT-Based Denoising vs. Real-Valued
Transforms-Based Denoising

 Given only noisy observations and estimated noise squared-spectral
components, the phase of clean speech can not be any more exactly
reconstructed using real-valued transform

 The variance of noise squared-spectral components, obtained by real-
valued transform, is twice the variance of noise squared-spectral
components, obtained by DFT (except the DC coefficient)



Summary

 Thresholding-based denoising techniques using WPD (or LTD) have low
performance when applied to speech (hoarseness and artifacts)

 \We have proposed speech denoising algorithms, that are based on
WPD and LTD

« Enhanced speech quality is good, and resulting quantitave measures are
close to benchmark DFT-based speech denoising algorithms

 Proposed WPD-based speech denoising algorithm attains relatively high
SNR and is recommended for using with WPD-based speech coding
techniques

* Proposed LTD-based speech denoising algorithm is characterized by lower
complexity than WPD-based while obtaining good quality of enhanced
speech

 \We have presented results of theoretical investigations



Future Work

 Techniques for better estimation of noise spectral components
« Combined LTD-based segmentation and denoising

» Applying SILTD for speaker identification/verification



The End



