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Why do we need to enhance speech?

• Improvement in the quality and comprehension of 

speech.

• Preprocessing stage in coding and recognition 

techniques.



Speech Examples

“An icy wind raked the beach” pronounced by a female
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State of the Art of Speech Denoising (1)
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Non-casual Wiener filter
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Amplitude Spectral 

Subtraction
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Power Spectral 

Subtraction

State of the Art of Speech Denoising (2)



Ephraim-Malah (E-M) Speech Denoising 

Algorithm (1984/5)
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“Decision Directed” a priori SNR Estimation
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• 1984 – Spectral Amplitude Estimator

• 1985 – Log-Spectral Amplitude Estimator
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Joint Time-Frequency Representations (1)
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Wavelet Packet Decomposition (WPD)
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Joint Time-Frequency Representations (2)
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Wavelet Packet Decomposition (cont’d)
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Joint Time-Frequency Representations (3)

Local Trigonometric Decomposition (LTD)
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Local Trigonometric Decomposition (cont’d)

Joint Time-Frequency Representations (4)



• Wavelet Packet Decomposition (WPD) is translation-variant

Joint Time-Frequency Representations (5)

Shift-Invariance

Entropy = 2.84

Entropy = 2.59



• Shift-Invariant Wavelet Packet Decomposition (SIWPD) posses shift-invariance 

property and characterizes by lower information cost (Cohen et. al.)

Shift-Invariance (cont’d)

Joint Time-Frequency Representations (6)

Entropy = 1.92

Entropy = 1.92



Wavelet-Based Denoising Techniques (1)

The Donoho-Johnstone Algorithm (1994/5)
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Wavelet-Based Denoising Techniques (2)

The Donoho-Johnstone Algorithm (cont’d.)
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Coifman-Donoho Translation-Invariant Denoising 

(1994/5)

Wavelet-Based Denoising Techniques (3)



Saito Adaptive Estimator (1994)
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Wavelet-Based Denoising Techniques (4)



Cohen-Raz-Malah Adaptive Estimator (1998)
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Wavelet-Based Denoising Techniques (5)



All examinations were done for 3 following sentences, each pronounced by a 

male and a female:
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Each sentence was sampled at 8 KHz sampling frequency and has 16384 samples 

(J=14).
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• A lathe is a big tool • An icy wind raked the beach • Joe brought a young girl

Implementation and Quality Measures



WPD-Based Denoising of Speech (1)

Output 

LSD

Output

SEGSNR

Output

SNR

Input 

LSD

Input

SEGSNR

Input

SNR

Estimator 

type

Test sentence #2, pronounced by a female

6.886.7610.089.476.6810VisuShrink

6.478.1312.699.476.6810RiskShrink

6.359.2814.739.476.6810SureShrink

7.348.6313.359.476.6810Wiener

7.446.529.559.476.6810Saito

6.857.6211.289.476.6810Cohen

• Clean Speech • Noisy Speech

• Thresholding-based algorithms – oversmoothing and artifacts

• Daubechies nearly symmetric mother wavelet of 8’th order (DNS(8))

• Entropy-based best-basis selection (L=6)

• Soft-thresholding



WPD-Based Denoising of Speech (2)

Oversmoothing in speech, enhanced by RiskShrinkArtifacts in speech, enhanced by SureShrink

Oversmoothing and Artifacts              

in Thresholding-Based Denoising



• Full subband WPD-based denoising 

attains the highest SNR

Increasing temporal support of basis functions:

• Choosing appropriate cost function

• Increasing temporal support of mother wavelet

Output

SNR

Input

SNR

Cost 

function

13.3510Entropy

13.5310Log-Energy

13.4910l1

13.5510Full 

Subband

WPD-Based Denoising of Speech (3)

Suppression of Artifacts

Influence of Cost Function

• DNS(8)

• There is no significant difference in 

the quality of enhanced speech

• Best-basis selection algorithm (L=6)

• Wiener estimator
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Increasing Temporal Support of Mother Wavelet

• Meyer mother wavelet
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• Generalized Meyer mother wavelet
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WPD-Based Denoising of Speech (4)
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Output

SNR
N, rEstimator type

14.8132, 1/3SureShrink

14. 9264, 1/5SureShrink

13.5332, 1/3Wiener

13. 6364, 1/5Wiener

14.7310SureShrink

13.3510Wiener

Temporal Support and Frequency Localization

WPD-Based Denoising of Speech (5)

Output

SNR

Input

SNR

Estimator 

type

• Entropy-based best-basis selection algorithm (L=6)

• Increasing temporal support suppress the artifacts

• Improving frequency localization improves the resulting SNR

DNS(8) mother wavelet

• SureShrink and Wiener estimators

Generalized Meyer mother wavelet



SIWPD-Based Denoising

WPD-Based Denoising of Speech (6)

Output

SNR

Input

SNR

Decompo-

sition type

Speaker

13.6310WPDFemale

13.7710SIWPDFemale

Output

SNR

Input

SNR

Decompo-

sition type

Speaker

12.7910WPDMale

12.7810SIWPDMale

Test signals of Donoho:

Output

SNR

Input

SNR

Decomposi-

tion type

Test 

Signal

18.2317WPDBlocks

18.2417SIWPDBlocks

Output

SNR

Input

SNR

Decomposi-

tion type

Test 

Signal

21.3417WPDBumps

21.3917SIWPDBumps

• Generalized Meyer mother wavelet (N = 64, r = 0.2)

• Full subband decomposition (L=6)

• Wiener estimator

• DNS(8) mother wavelet

• Entropy-based best-basis selection (L=6)

• SureShrink estimator



SIWPD-Based Denoising (cont’d)

WPD-Based Denoising of Speech (7)

• Property of shift-invariance does not improve denoising performance

SIWPD-based VisuShrinkWPD-based VisuShrink



Framing

WPD-Based Denoising of Speech (8)

• Denoising without framing

Output

SNR

Input

SNR

Speaker

13.6310Female

Output

SNR

Input

SNR

Speaker

12.7910Male

• Framing (Hanning window, 50% overlapping, 256 samples per frame)

Output

SNR

Input

SNR

Speaker

15.6910Female

Output

SNR

Input

SNR

Speaker

14.9510Male

• Framing improves resulting SNR • Smoothing of gains fluctuations is needed

• Full subband decomposition (L=5)

• Full subband decomposition (L=6)



• Framing: optimal frame length – 256 samples

• Tracking a priori SNR for decomposition tree terminal nodes: the full 

subband decomposition is the optimal choice (L=J)
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Utilization of the “Decision Directed” 

A Priori SNR Estimation

WPD-Based Denoising of Speech (9)



Output 

LSD

Output

SEGSNR

Output

SNR

Input 

LSD

Input

SEGSNR

Input

SNR

Decomposi-

tion type
Speaker#

8.529.5817.3711.516.0610WPDFemale1

9.628.4815.9511.535.9610WPDMale1

6.629.5816.019.476.6810WPDFemale2

6.319.5415.0596.7310WPDMale2

9.129.0116.5611.116.1710WPDFemale3

9.967.9415.711.515.9210WPDMale3

• Wiener estimator, combined with the “decision directed” a priori SNR 

estimation (=0.9, Hanning window, 50% overlapping, 256 samples per 

frame)

• Full Subband decomposition (L=J=8)

• Generalized Meyer mother wavelet (N = 64, r = 0.1)

WPD-Based Denoising of Speech (10)

Proposed WPD-Based Speech 

Denoising Algorithm



LTD-Based Denoising of Speech (1)

Output 

LSD

Output

SEGSNR

Output

SNR

Input 

LSD

Input

SEGSNR

Input

SNR

Estimator 

type

6.816.9110.349.476.6810VisuShrink

5.99.0614.489.476.6810SureShrink

6.938.0512.929.476.6810Wiener

• Thresholding-based algorithms – oversmoothing and artifacts

• Cosine Packet Decomposition (CPD) (DCT-IV) with 

Wickerhauser symmetric bell ( = 6)

• Entropy-based best-basis selection (L=6)

• Soft-thresholding

Test sentence #2, pronounced by a female • Clean Speech • Noisy Speech

WPD-based 

denoising

10.08

14.73

13.35

• Artifacts, that characterize LTD-based denoising, are less annoying
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LTD-Based Denoising of Speech (2)

Influence of Cost Function

• There is no significant difference in the quality of enhanced speech

• Full “subsegment” CPD-based denoising attains the highest SNR

Temporal Support and Frequency Localization

• CPD with Wickerhauser symmetric bell ( = max)

Output

SNR

Input

SNR
Speaker

12.99106Female

13.2410128Female

Output

SNR

Input

SNR
Speaker

12.73106Male

12.8910128Male

• Full “subsegment” decomposition (L=6)

• Wiener estimator



• Tracking a priori SNR for decomposition tree nodes on the same 

decomposition level
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LTD-Based Denoising of Speech (3)

Utilization of the “Decision Directed” 

A Priori SNR Estimation

• The full “subsegment” decomposition is the optimal choice (L=J)



• Wiener estimator, combined with the “decision directed” a priori SNR 

estimation (=0.9)

• Full “subsegment” decomposition (L=6)

• Improved frequency localization and increased time support ( = max = 2J-L-1)

Output 

LSD

Output

SEGSNR

Output

SNR

Input 

LSD

Input

SEGSNR

Input

SNR

Decomposi-

tion type
Speaker#

8.569.1716.6911.516.0610CPDFemale1

9.698.115.4411.535.9610CPDMale1

6.769.4315.139.476.6810CPDFemale2

6.399.0614.3796.7310CPDMale2

9.28.5915.9411.116.1710CPDFemale3

9.997.6815.2411.515.9210CPDMale3

LTD-Based Denoising of Speech (4)

Proposed LTD-Based Speech 

Denoising Algorithm



WPD Applied to DCT-I Coefficients

• Wiener estimator, combined with the “decision directed” a priori SNR 

estimation (=0.9)

• Full “subsegment” decomposition (L=6)

• DNS mother wavelet (4’th order)

Output 

LSD

Output

SEGSNR

Output

SNR

Input 

LSD

Input

SEGSNR

Input

SNR

Decomposi-

tion type
Speaker#

8.819.0416.4911.516.0610WPD(DCT)Female1

9.738.0715.3111.535.9610WPD(DCT)Male1

6.959.3515.029.476.6810WPD(DCT)Female2

6.49914.2296.7310WPD(DCT)Male2

9.358.4215.8311.116.1710WPD(DCT)Female3

10.097.5315.1611.515.9210WPD(DCT)Male3

Proposed Speech Denoising Algorithm



Output

SNR

Input

SNR

Estimator type, 

decomposition type

20.4810Wiener, WPD

20.4510Wiener, DCT

20.3610Wiener, CPD

“Ideal” Denoising (1)
• Decision directed approach smoothes gains fluctuations from frame to 

frame, caused by fluctuations of noise squared spectral amplitude

• “Ideal” denoising –assuming prior knowledge of noise squared-spectral 

amplitude exact value

- Denoising, based on CPD (or WPD applied to DCT coefficients): 

* Hanning window, 512 samples per frame with 25% overlapping

* Decomposition with L=1

- Denoising, based on WPD : the proposed algorithm with =0

• Results of  “ideal” denoising:

Output

SNR

Input

SNR

Estimator type, 

decomposition type

20.510Wiener, WPD(DCT)

19.8610Wiener, DFT2N

19.5110E-M, DFT2N



“Ideal” Denoising (2)

DFT-Based “Ideal” Denoising vs. Real-Valued 

Transforms-Based “Ideal” Denoising



“Ideal” Denoising (3)

• Better frequency resolution when compared to DFT-based denoising (zero 

padding for DFT-based denoising improves resulting SNR)

Advantages of  Real-Valued Transform-Based 

“Ideal” Denoising

• Exact phase reconstruction

Temporal Support and Frequency Localization

• Increasing L and decreasing r improves performance of the WPD-based 

“ideal” denoising 

• Increasing  improves performance of the LTD-based “ideal” denoising 



A Comparative Performance Analysis (1)

Output

SNR

Input

SNR

Estimator type, 

decomposition type

17.3710Wiener, WPD

16.6910Wiener, CPD

16.4910Wiener, WPD(DCT)

Output

SNR

Input

SNR

Estimator type, 

decomposition type

17.8310Wiener, DFT

17.2210E-M, DFT

• Results of practical denoising:

• DFT-based Wiener estimator attains the highest SNR and is characterized 

by the lowest level of the residual background noise

• E-M algorithm is characterized by approximately white residual 

background noise

• WPD-based denoising algorithm attains SNRs, close to resulting by E-M 

algorithm SNR

• Denoising algorithms, based on LTD and WPD applied to DCT 

coefficients, attain the lowest SNRs, comparing to other transforms; 

speech quality is comparable to other algorithms



A Comparative Performance Analysis (2)

DFT-Based Denoising vs. Real-Valued 

Transforms-Based Denoising

• Given only noisy observations and estimated noise squared-spectral 

components, the phase of clean speech can not be any more exactly 

reconstructed using real-valued transform

• The variance of noise squared-spectral components, obtained by real-

valued transform, is twice the variance of noise squared-spectral 

components, obtained by DFT (except the DC coefficient)



Summary

• We have proposed speech denoising algorithms, that are based on 

WPD and LTD

• Enhanced speech quality is good, and resulting quantitave measures are 

close to benchmark DFT-based speech denoising algorithms

• We have presented results of theoretical investigations

• Thresholding-based denoising techniques using WPD (or LTD) have low 

performance when applied to speech (hoarseness and artifacts)

• Proposed WPD-based speech denoising algorithm attains relatively high 

SNR and is recommended for using with WPD-based speech coding 

techniques

• Proposed LTD-based speech denoising algorithm is characterized by lower 

complexity than WPD-based while obtaining good quality of enhanced 

speech



• Combined LTD-based segmentation and denoising

• Techniques for better estimation of noise spectral components

• Applying SILTD for speaker identification/verification

Future Work



The End


