

Technion-Israel Institute of Technology Department of Electrical Engineering



Signal and Image Processing Lab

# Wavelet-Based Denoising of Speech

Arkady Bron

supervised by Prof. Shalom Raz and Prof. David Malah

## Outline

- Why do we need to enhance speech?
- State of the art of speech denoising algorithms
- Joint time-frequency representations
- Wavelet-based denoising techniques
- The proposed speech denoising algorithms
- A comparative performance analysis
- Summary and conclusions

# Why do we need to enhance speech?

- Improvement in the quality and comprehension of speech.
- Preprocessing stage in coding and recognition techniques.



## **Speech Examples**

#### "An icy wind raked the beach" pronounced by a female

Clean speech  $\mathbf{f} = \{f_i\}_{i=0}^{N-1}$ 



Noisy speech



# State of the Art of Speech Denoising (1)



State of the Art of Speech Denoising (2)

#### Non-casual Wiener filter

$$G_{w}(Y_{k},\hat{Z}_{k}) = \begin{cases} \left(1 - \left[\frac{|\hat{Z}_{k}|}{|Y_{k}|}\right]^{2}\right), & \left[\frac{|\hat{Z}_{k}|}{|Y_{k}|}\right]^{2} < 1, \quad \alpha = 1, \beta = 0, \gamma_{1} = 2, \gamma_{2} = 1\\ 0, & otherwise. \end{cases}$$

Amplitude Spectral Subtraction Power Spectral Subtraction

$$\begin{aligned} & (Y_k, \hat{Z}_k) = \begin{cases} \left(1 - \frac{|\hat{Z}_k|}{|Y_k|}\right), & \frac{|\hat{Z}_k|}{|Y_k|} < 1, \\ 0, & otherwise. \end{cases} & G_P(Y_k, \hat{Z}_k) = \begin{cases} \left(1 - \left[\frac{|\hat{Z}_k|}{|Y_k|}\right]^2\right)^{\frac{1}{2}}, & \left[\frac{|\hat{Z}_k|}{|Y_k|}\right]^2 < 1, \\ 0, & otherwise. \end{cases} \\ & \alpha = 1, \beta = 0, \gamma_1 = \gamma_2 = 1 \end{aligned}$$

# Ephraim-Malah (E-M) Speech Denoising Algorithm (1984/5)

- 1984 Spectral Amplitude Estimator
- 1985 Log-Spectral Amplitude Estimator

$$E\left\{\left(\log A_{k} - \log \hat{A}_{k}\right)^{2}\right\} \to \min \qquad G(\xi_{k}, \gamma_{k}) = \frac{\xi_{k}}{\xi_{k} + 1} \exp\left\{\frac{1}{2}\int_{\nu_{k}}^{\infty} \frac{e^{-t}}{t}dt\right\}$$
$$\nu_{k} = \frac{\xi_{k}}{\xi_{k} + 1}\gamma_{k} \qquad \xi_{k} = \frac{E\left\{\left|F_{k}\right|^{2}\right\}}{E\left\{\left|Z_{k}\right|^{2}\right\}} (a \text{ priori SNR}) \qquad \gamma_{k} = \frac{\left|Y_{k}\right|^{2}}{E\left\{\left|Z_{k}\right|^{2}\right\}} (a \text{ posteriori SNR})$$

"Decision Directed" a priori SNR Estimation  $\hat{\xi}_{k}(n) = \alpha \frac{\left|\hat{F}_{k}(n-1)\right|^{2}}{E\left\{\left|Z_{k}(n-1)\right|^{2}\right\}} + (1-\alpha)\eta_{s}\left(\gamma_{k}(n),1\right)$   $\eta_{s}\left(\gamma_{k}(n),1\right) = \begin{cases} \gamma_{k}(n)-1, \ \gamma_{k}(n) \ge 1\\ 0, \qquad \gamma_{k}(n) < 1 \end{cases} \qquad \hat{\xi}_{k}(0) = \alpha + (1-\alpha)\eta_{s}\left(\gamma_{k}(0),1\right) \end{cases}$ 

Joint Time-Frequency Representations (1) Wavelet Packet Decomposition (WPD)  $\mathcal{B} = \left\{ \psi_{\ell,n,k}(t) = 2^{\ell/2} \psi_n(2^\ell t - k) : \ell \in \mathbb{Z}_+, n \in \mathbb{Z}_+, k \in \mathbb{Z} \right\} \text{ (library of wavelet packets)}$  $\ell$  – scaling parameter (resolution level) n – oscillation parameter *k* – *time* – *domain positionindex* (low – pass filtering, followed  $\psi_{2n}(t) \equiv \sqrt{2} \sum_{k} h_k \psi_n(2t - k) \equiv H \psi_n(t)$ *by decimation*(2:1)) (high – pass filtering, followed  $\psi_{2n+1}(t) \equiv \sqrt{2} \sum_{k} g_k \psi_n(2t-k) \equiv G \psi_n(t)$ *by decimation*(2:1))  $\sum_{l} h_{l-2k}^* g_{l-2n} = 0 \qquad \sum_{k} h_k = \sqrt{2} \qquad \sum_{k} g_k = 0$ (orthogonality, perfect reconstruction and "admissibility" conditions)  $\sum_{l} [h_{k-2l} h_{m-2l}^* + g_{k-2l} h_{m-2l}^*] = \delta_{m,k}$  $g_{k} = (-1)^{k} h_{1-k}$ 

#### Joint Time-Frequency Representations (2)

#### Wavelet Packet Decomposition (cont'd)

 $\psi_0(t) \equiv \varphi(t)$  (characteristic (scaling) function)  $\psi(t) \equiv \sqrt{2} \sum_k g_k \varphi(2t - k) = \psi_1(t)$  (mother wavelet)

 $\{I_{\ell,n}\} = \{ [2^{\ell} n, 2^{\ell} (n+1)) : (\ell,n) \in E \} \text{ has to be a disjoint cover of } [0,1)$  $B = \{ \psi_{\ell,n,k}(t) = 2^{\ell/2} \psi_n(2^{\ell} t - k) : (\ell,n) \in E, k \in \mathbb{Z} \}$ 



 $E \subset \{(-1,0), (-1,1), (-2,0), \\ (-2,1), (-2,2), (-2,3)\}$ 

 $O(rN\log_2 N)$ 

#### Joint Time-Frequency Representations (3)

# Local Trigonometric Decomposition (LTD) $\Psi_{i}^{k}(t) \equiv b_{i}(t)F_{i}^{k}(t)$ (local trigonometric basis function)

$$b_{j}(t) \equiv r \left(\frac{t-a_{j}}{\eta}\right) r \left(\frac{a_{j+1}-t}{\eta}\right) \text{ (window function)}$$
$$I_{j} \equiv [a_{j}, a_{j+1}) \qquad R = \bigcup_{j \in \mathbb{Z}} I_{j} \qquad 0 < \eta \leq \frac{\left|I_{j}\right|}{2}, \ \forall j$$

$$r(t) = \begin{cases} 0, & \text{if } t \le -1 \\ 1, & \text{if } t > 1 \end{cases} ("right cut - off function")$$







#### Joint Time-Frequency Representations (4)

# Local Trigonometric Decomposition (cont'd) $f(t) = \sum_{i} P_{I_j} f(t) = \sum_{i} c_j^k \Psi_j^k(t)$ $c_j^k = \langle f(t), \Psi_j^k(t) \rangle = \langle Tf(t), \mathbf{1}_{I_j} \Psi_j^k(t) \rangle$ (expansion coefficients)





 $O(LN\log_2 N)$ 

#### *Joint Time-Frequency Representations (5)*

#### Shift-Invariance

#### • Wavelet Packet Decomposition (WPD) is translation-variant







Entropy = 2.84







#### Joint Time-Frequency Representations (6)

### Shift-Invariance (cont'd)

• Shift-Invariant Wavelet Packet Decomposition (SIWPD) posses shift-invariance property and characterizes by lower information cost (Cohen *et. al.*)









Entropy = 1.92



Entropy = 1.92



#### Wavelet-Based Denoising Techniques (2)

### The Donoho-Johnstone Algorithm (cont'd.)



**RiskShrink :**  $t_{\ell,n,k} = \lambda(\ell)\sigma$ 

**VisuShrink** :  $t_{\ell,n,k} = \lambda_d(\ell)\sigma = \sigma\sqrt{2(\ell+J)\ln 2}$ 

SureShrink : adaptive threshold selection based on Stein unbiased estimate of risk

#### Wavelet-Based Denoising Techniques (3)

# Coifman-Donoho Translation-Invariant Denoising (1994/5)









### Saito Adaptive Estimator (1994)



### Cohen-Raz-Malah Adaptive Estimator (1998)



$$\mathbf{w} = \{ w_{\ell,n,k}^{(m)} \} \qquad \qquad \mathbf{w}_{\ell,n}^{(m)} = \{ w_{\ell,n,k}^{(m)} \}_{k=0}^{2^{(\ell+J)}-1} \qquad \qquad \hat{\mathbf{\theta}} = \{ \hat{\theta}_{\ell,n,k}^{(m)} \}$$

$$K_{opt} = \# \left\{ (w_{\ell,n,k}^{(m)})^2 > 3\sigma^2 \ln N \right\}$$

$$MDL(\mathbf{w}_{\ell,n}^{(m)}) = 3 + \frac{1}{2\sigma^2 \ln 2} \sum_{k=0}^{2^{(\ell+J)}-1} \min\left\{ (w_{\ell,n,k}^{(m)})^2, 3\sigma^2 \ln N \right\}$$

 $\hat{\boldsymbol{\theta}} = \eta_h \left( \mathbf{w}, 3\sigma^2 \ln N \right)$ 

# Implementation and Quality Measures

All examinations were done for 3 following sentences, each pronounced by a male and a female:

A lathe is a big tool
An icy wind raked the beach
Joe brought a young girl
Each sentence was sampled at 8 KHz sampling frequency and has 16384 samples (*J*=14).

$$SNR = 10\log_{10} \left( \frac{\|\mathbf{f}\|_{2}^{2}}{\|\mathbf{f} - \hat{\mathbf{f}}\|_{2}^{2}} \right) [dB]$$

$$SEGSNR = \frac{1}{M} \sum_{i=1}^{M} SNR_{i}, \quad SNR_{i} = 10\log_{10} \left( \frac{\|\mathbf{f}_{i}\|_{2}^{2}}{\|\mathbf{f}_{i} - \hat{\mathbf{f}}_{i}\|_{2}^{2}} + 1 \right) [dB]$$

$$LSD = \frac{1}{M} \sum_{i=1}^{M} D_{i}, \quad D_{i} = \left[ \frac{1}{N} \sum_{k=1}^{N} (10\log_{10} |F_{i}(k)| - 10\log_{10} |\hat{F}_{i}(k)|)^{2} \right]^{\frac{1}{2}} [dB]$$

$$F_{i}(k) = DFT\{\mathbf{f}_{i}\}(k), \quad \hat{F}_{i}(k) = DFT\{\hat{\mathbf{f}}_{i}\}(k)$$

# WPD-Based Denoising of Speech (1)

- Daubechies nearly symmetric mother wavelet of 8'th order (DNS(8))
- Entropy-based best-basis selection (*L*=6)
- Soft-thresholding

Test sentence #2, pronounced by a female • Clean Speech

| Estimator<br>type | Input<br>SNR | Input<br>SEGSNR | Input<br>LSD | Output<br>SNR    | Output<br>SEGSNR | Output<br>LSD |
|-------------------|--------------|-----------------|--------------|------------------|------------------|---------------|
| VisuShrink        | 10           | 6.68            | 9.47 📢       | <u></u><br>10.08 | 6.76             | 6.88          |
| RiskShrink        | 10           | 6.68            | 9.47 📢       | <u></u><br>12.69 | 8.13             | 6.47          |
| SureShrink        | 10           | 6.68            | 9.47 📢       | <u></u><br>14.73 | 9.28             | 6.35          |
| Saito             | 10           | 6.68            | 9.47 📢       | ₹ 9.55           | 6.52             | 7.44          |
| Cohen             | 10           | 6.68            | 9.47         | ₹11.28           | 7.62             | 6.85          |
| Wiener            | 10           | 6.68            | 9.47         | ₹13.35           | 8.63             | 7.34          |

• Thresholding-based algorithms – oversmoothing and artifacts

WPD-Based Denoising of Speech (2)

# Oversmoothing and Artifacts in Thresholding-Based Denoising



Overstifaothimgspeephechhankeddeyl SyrRSshrSthrink

WPD-Based Denoising of Speech (3)

### **Suppression of Artifacts**

Increasing temporal support of basis functions:

- Choosing appropriate cost function
- Increasing temporal support of mother wavelet

### **Influence of Cost Function**

- DNS(8)
- Best-basis selection algorithm (*L*=6)
- Wiener estimator

| Cost<br>function | Input<br>SNR | Output<br>SNR |
|------------------|--------------|---------------|
| Entropy          | 10           | 13.35         |
| Log-Energy       | 10           | 13.53         |
| $l^{I}$          | 10           | 13.49         |

• There is no significant difference in the quality of enhanced speech

| Full    | 10 | 13.55 |
|---------|----|-------|
| Subband |    |       |

• Full subband WPD-based denoising attains the highest SNR

WPD-Based Denoising of Speech (4)

#### **Increasing Temporal Support of Mother Wavelet**

• Meyer mother wavelet

$$m_{0}(\omega) = \begin{cases} 1, & |\omega| \le \frac{\pi}{3} \\ \cos\left[\frac{\pi}{2}\nu\left(\frac{3}{\pi} \mid \omega \mid -1\right)\right], & \frac{\pi}{3} \le |\omega| \le \frac{2\pi}{3} \\ 0, & |\omega| \ge \frac{2\pi}{3} \end{cases} \\ \nu(x) - auxiliary function, & x \in [0,1] \\ \nu(x) = 35x^{4} - 84x^{5} + 70x^{6} - 20x^{7} \end{cases}$$







WPD-Based Denoising of Speech (5)

#### **Temporal Support and Frequency Localization**

- Entropy-based best-basis selection algorithm (*L*=6)
- SureShrink and Wiener estimators

DNS(8) mother wavelet



Generalized Meyer mother wavelet

- Increasing temporal support suppress the artifacts
- Improving frequency localization improves the resulting SNR

WPD-Based Denoising of Speech (6)

#### **SIWPD-Based Denoising**

- Generalized Meyer mother wavelet (N = 64, r = 0.2)
- Full subband decomposition (*L*=6)
- Wiener estimator

| Speaker | Decompo-<br>sition type | Input<br>SNR | Output<br>SNR | Speaker | Decompo-<br>sition type | Input<br>SNR | Output<br>SNR |
|---------|-------------------------|--------------|---------------|---------|-------------------------|--------------|---------------|
| Female  | WPD                     | 10           | 13.63         | Male    | WPD                     | 10           | 12.79         |
| Female  | SIWPD                   | 10           | 13.77         | Male    | SIWPD                   | 10           | 12.78         |

Test signals of Donoho:

- DNS(8) mother wavelet
- Entropy-based best-basis selection (*L*=6)
- SureShrink estimator

| Test<br>Signal | Decomposi-<br>tion type | Input<br>SNR | Output<br>SNR |  |
|----------------|-------------------------|--------------|---------------|--|
| Blocks         | WPD                     | 17           | 18.23         |  |
| Blocks         | SIWPD                   | 17           | 18.24         |  |

| Test<br>Signal | Decomposi-<br>tion type | Input<br>SNR | Output<br>SNR |  |
|----------------|-------------------------|--------------|---------------|--|
| Bumps          | WPD                     | 17           | 21.34         |  |
| Bumps          | SIWPD                   | 17           | 21.39         |  |

#### WPD-Based Denoising of Speech (7)

#### SIWPD-Based Denoising (cont'd)

#### WPD-based VisuShrink



#### SIWPD-based VisuShrink



• Property of shift-invariance does not improve denoising performance

WPD-Based Denoising of Speech (8)

### Framing

- Denoising without framing
- Full subband decomposition (*L*=6)

| Speaker | Input<br>SNR | Output<br>SNR |            | Speaker | Input<br>SNR | Output<br>SNR |   |
|---------|--------------|---------------|------------|---------|--------------|---------------|---|
| Female  | 10           | 13.63         | <b>₩</b> E | Male    | 10           | 12.79         | Q |

- Framing (Hanning window, 50% overlapping, 256 samples per frame)
- Full subband decomposition (*L*=5)

| Speaker | Input<br>SNR | Output<br>SNR |    | Speaker | Input<br>SNR | Output<br>SNR |  |
|---------|--------------|---------------|----|---------|--------------|---------------|--|
| Female  | 10           | 15.69         | ₩. | Male    | 10           | 14.95         |  |

• Framing improves resulting SNR • Smoothing of gains fluctuations is needed

#### WPD-Based Denoising of Speech (9)

### Utilization of the "Decision Directed" A Priori SNR Estimation

- Framing: optimal frame length 256 samples
- Tracking a priori SNR for decomposition tree terminal nodes: the full subband decomposition is the optimal choice (*L*=*J*)

$$G(\mathbf{w}_{\ell,n}(j), \hat{\mathbf{z}}_{\ell,n}(j)) = \frac{\hat{\xi}_{\ell,n}(j)}{\hat{\xi}_{\ell,n}(j)+1}$$

$$\xi_{\ell,n}(j) = \frac{\|\mathbf{\theta}_{\ell,n}(j)\|_{2}^{2}}{\|\hat{\mathbf{z}}_{\ell,n}(j)\|_{2}^{2}} (a \text{ prioriSNR})$$

$$\hat{\xi}_{\ell,n}(j) = \alpha \frac{\|\hat{\mathbf{\theta}}_{\ell,n}(j-1)\|_{2}^{2}}{\|\hat{\mathbf{z}}_{\ell,n}(j-1)\|_{2}^{2}} + (1-\alpha)\eta_{s}(\gamma_{\ell,n}(j),1), \ j = 2,3,...M$$

$$\gamma_{\ell,n}(j) = \frac{\|\mathbf{w}_{\ell,n}(j)\|_{2}^{2}}{\|\hat{\mathbf{z}}_{\ell,n}(j)\|_{2}^{2}} (a \text{ posterioriSNR})$$

$$\hat{\xi}_{\ell,n}(1) = \alpha + (1-\alpha)\eta_{s}(\gamma_{\ell,n}(1),1)$$

WPD-Based Denoising of Speech (10)

### Proposed WPD-Based Speech Denoising Algorithm

- Wiener estimator, combined with the "decision directed" a priori SNR estimation (α=0.9, Hanning window, 50% overlapping, 256 samples per frame)
- Full Subband decomposition (*L*=*J*=8)
- Generalized Meyer mother wavelet (N = 64, r = 0.1)

| # | Speaker | Decomposi-<br>tion type | Input<br>SNR   | Input<br>SEGSNR | Input<br>LSD | Output<br>SNR   | Output<br>SEGSNR | Output<br>LSD |
|---|---------|-------------------------|----------------|-----------------|--------------|-----------------|------------------|---------------|
| 1 | Female  | WPD 📢                   | 美 10           | 6.06            | 11.51 📢      | É17.37          | 9.58             | 8.52          |
| 1 | Male    | WPD 📢                   | 美 10           | 5.96            | 11.53 🕻      | E15.95          | 8.48             | 9.62          |
| 2 | Female  | WPD 📢                   | 〔 10           | 6.68            | 9.47 🤨       | €16.01          | 9.58             | 6.62          |
| 2 | Male    | WPD 📢                   | 美 10           | 6.73            | 9 📢          | <u>ا ا ا</u>    | 9.54             | 6.31          |
| 3 | Female  | WPD 📢                   | ) <u> (</u> 10 | 6.17            | 11.11        | €16 <b>.5</b> 6 | 9.01             | 9.12          |
| 3 | Male    | WPD 📢                   | 美 10           | 5.92            | 11.51 📢      | ا<br>الآلي 15.7 | 7.94             | 9.96          |

# LTD-Based Denoising of Speech (1)

- Cosine Packet Decomposition (CPD) (DCT-IV) with Wickerhauser symmetric bell ( $\eta = 6$ )
- Entropy-based best-basis selection (*L*=6)
- Soft-thresholding



• Noisy Speech

Test sentence #2, pronounced by a female • Clean Speech

| Estimator<br>type | Input<br>SNR | Input<br>SEGSNR | Input<br>LSD | Output<br>SNR  | Output<br>SEGSNR | Output<br>LSD | WPD-based denoising |
|-------------------|--------------|-----------------|--------------|----------------|------------------|---------------|---------------------|
| VisuShrink        | 10           | 6.68            | 9.47 🛛       | <b>1</b> 10.34 | 6.91             | 6.81          | 10.08               |
| SureShrink        | 10           | 6.68            | 9.47         | €<br>14.48     | 9.06             | 5.9           | )<br>E 14.73        |
| Wiener            | 10           | 6.68            | 9.47         | £12.92         | 8.05             | 6.93          | 13.35               |

- Thresholding-based algorithms oversmoothing and artifacts
- Artifacts, that characterize LTD-based denoising, are less annoying

LTD-Based Denoising of Speech (2)

### **Influence of Cost Function**

- There is no significant difference in the quality of enhanced speech
- Full "subsegment" CPD-based denoising attains the highest SNR

Temporal Support and Frequency Localization  $a_{j+1} - a_j \ge 2\eta > 0$   $\eta_{\max} = 2^{J-L}/2$   $\eta_{\max}|_{J=14,L=6} = 128$ 

- CPD with Wickerhauser symmetric bell ( $\eta = \eta_{max}$ )
- Full "subsegment" decomposition (*L*=6)
- Wiener estimator

| Speaker | η   | Input<br>SNR | Output<br>SNR |  |
|---------|-----|--------------|---------------|--|
| Female  | б   | 10           | 12.99         |  |
| Female  | 128 | 10           | 13.24         |  |

| Speaker | η   | Input<br>SNR | Output<br>SNR |
|---------|-----|--------------|---------------|
| Male    | б   | 10           | 12.73         |
| Male    | 128 | 10           | 12.89         |

LTD-Based Denoising of Speech (3)

### Utilization of the "Decision Directed" A Priori SNR Estimation

- Tracking a priori SNR for decomposition tree nodes on the same decomposition level
- The full "subsegment" decomposition is the optimal choice (*L*=*J*)

$$G(w_{\ell,n,k}, \hat{z}_{\ell,n,k}) = \frac{\hat{\xi}_{\ell,n,k}}{\hat{\xi}_{\ell,n,k} + 1}$$
$$\xi_{\ell,n,k} = \frac{|\theta_{\ell,n,k}|^2}{|\hat{z}_{\ell,n,k}|^2} (a \text{ prioriSNR})$$
$$\hat{\xi}_{\ell,n,k} = \alpha \frac{|\hat{\theta}_{\ell,n-1,k}|^2}{|\hat{z}_{\ell,n-1,k}|^2} + (1-\alpha)\eta_s(\gamma_{\ell,n,k}, 1)$$
$$\gamma_{\ell,n,k} = \frac{|w_{\ell,n,k}|^2}{|\hat{z}_{\ell,n,k}|^2} (a \text{ posterioriSNR})$$
$$\hat{\xi}_{\ell,0,k} = \alpha + (1-\alpha)\eta_s(\gamma_{\ell,0,k}, 1)$$

LTD-Based Denoising of Speech (4)

### Proposed LTD-Based Speech Denoising Algorithm

Wiener estimator, combined with the "decision directed" a priori SNR estimation (α=0.9)

- Full "subsegment" decomposition (*L*=6)
- Improved frequency localization and increased time support ( $\eta = \eta_{max} = 2^{J-L-1}$ )

| # | Speaker | Decomposi-<br>tion type | Input<br>SNR | Input<br>SEGSNR | Input<br>LSD | Output<br>SNR    | Output<br>SEGSNR | Output<br>LSD |
|---|---------|-------------------------|--------------|-----------------|--------------|------------------|------------------|---------------|
| 1 | Female  | CPD                     | ) <b>10</b>  | 6.06            | 11.51        | € <b>16.6</b> 9  | 9.17             | 8.56          |
| 1 | Male    | CPD 🥊                   | 〔10          | 5.96            | 11.53 📢      | €1 <b>5.</b> 44  | 8.1              | 9.69          |
| 2 | Female  | CPD (                   | 〔 10         | 6.68            | 9.47 🥨       | €1 <b>5</b> .13  | 9.43             | 6.76          |
| 2 | Male    | CPD 🤇                   | 美 10         | 6.73            | 9 📢          | <u></u><br>14.37 | 9.06             | 6.39          |
| 3 | Female  | CPD 🧃                   | 〔 10         | 6.17            | 11.11 📢      | €1 <b>5.9</b> 4  | 8.59             | 9.2           |
| 3 | Male    | CPD 🤇                   | 美 10         | 5.92            | 11.51 📢      | €1 <b>5.2</b> 4  | 7.68             | 9.99          |

WPD Applied to DCT-I Coefficients Proposed Speech Denoising Algorithm

- Wiener estimator, combined with the "decision directed" a priori SNR estimation (α=0.9)
- Full "subsegment" decomposition (*L*=6)
- DNS mother wavelet (4'th order)

| # | Speaker | Decomposi-<br>tion type | Input<br>SNR | Input<br>SEGSNR | Input<br>LSD | Output<br>SNR    | Output<br>SEGSNR | Output<br>LSD |
|---|---------|-------------------------|--------------|-----------------|--------------|------------------|------------------|---------------|
| 1 | Female  | WPD(DCT)                | <u>ا جًا</u> | 6.06            | 11.51 📢      | <u></u><br>16.49 | 9.04             | 8.81          |
| 1 | Male    | WPD(DCT)                | E 10         | 5.96            | 11.53 📢      | E15.31           | 8.07             | 9.73          |
| 2 | Female  | WPD(DCT)                | 美 10         | 6.68            | 9.47 📢       | €1 <b>5.0</b> 2  | 9.35             | 6.95          |
| 2 | Male    | WPD(DCT)                | 差 10         | 6.73            | 9 📢          | Ę14.22           | 9                | 6.49          |
| 3 | Female  | WPD(DCT)                | <u>ا جًا</u> | 6.17            | 11.11 📢      | £15.83           | 8.42             | 9.35          |
| 3 | Male    | WPD(DCT)                | 〔 10         | 5.92            | 11.51        | € <b>15.16</b>   | 7.53             | 10.09         |

# "Ideal" Denoising (1)

- Decision directed approach smoothes gains fluctuations from frame to frame, caused by fluctuations of noise squared spectral amplitude
- "Ideal" denoising –assuming prior knowledge of noise squared-spectral amplitude exact value
- Results of "ideal" denoising:
  - Denoising, based on WPD : the proposed algorithm with  $\alpha=0$
  - Denoising, based on CPD (or WPD applied to DCT coefficients):
    - \* Hanning window, 512 samples per frame with 25% overlapping
      \* Decomposition with L=1

| Estimator type,<br>decomposition type | Input<br>SNR | Output<br>SNR |  |
|---------------------------------------|--------------|---------------|--|
| Wiener, WPD                           | 10           | 20.48         |  |
| Wiener, DCT                           | 10           | 20.45         |  |
| Wiener, CPD                           | 10           | 20.36         |  |

| Estimator type,<br>decomposition type | Input<br>SNR | Output<br>SNR |  |
|---------------------------------------|--------------|---------------|--|
| Wiener, WPD(DCT)                      | 10           | 20.5          |  |
| Wiener, $DFT_{2N}$                    | 10           | 19.86         |  |
| E-M, DFT <sub>2N</sub>                | 10           | 19.51         |  |

#### "Ideal" Denoising (2)

### DFT-Based "Ideal" Denoising vs. Real-Valued Transforms-Based "Ideal" Denoising



*"Ideal" Denoising (3)* 

### Advantages of Real-Valued Transform-Based "Ideal" Denoising

- Better frequency resolution when compared to DFT-based denoising (zero padding for DFT-based denoising improves resulting SNR)
- Exact phase reconstruction

#### **Temporal Support and Frequency Localization**

- Increasing *L* and decreasing *r* improves performance of the WPD-based "ideal" denoising
- Increasing  $\eta$  improves performance of the LTD-based "ideal" denoising

# A Comparative Performance Analysis (1)

#### • Results of practical denoising:

| Estimator type,<br>decomposition type | Input<br>SNR | Output<br>SNR |  |
|---------------------------------------|--------------|---------------|--|
| Wiener, WPD                           | )E 10 🔍      | £17.37        |  |
| Wiener, CPD                           | 10 📢         | 16.69         |  |
| Wiener, WPD(DCT)                      | 10 📢         | 16.49         |  |

| Estimator type,<br>decomposition type | Input<br>SNR | Output<br>SNR |  |
|---------------------------------------|--------------|---------------|--|
| Wiener, DFT                           | 10 🧃         | 17.83         |  |
| E-M, DFT                              | 10 🧃         | £17.22        |  |

- DFT-based Wiener estimator attains the highest SNR and is characterized by the lowest level of the residual background noise
- E-M algorithm is characterized by approximately white residual background noise
- WPD-based denoising algorithm attains SNRs, close to resulting by E-M algorithm SNR
- Denoising algorithms, based on LTD and WPD applied to DCT coefficients, attain the lowest SNRs, comparing to other transforms; speech quality is comparable to other algorithms

A Comparative Performance Analysis (2)

### DFT-Based Denoising vs. Real-Valued Transforms-Based Denoising

• Given only noisy observations and estimated noise squared-spectral components, the phase of clean speech can not be any more exactly reconstructed using real-valued transform

• The variance of noise squared-spectral components, obtained by realvalued transform, is twice the variance of noise squared-spectral components, obtained by DFT (except the DC coefficient)

# Summary

- Thresholding-based denoising techniques using WPD (or LTD) have low performance when applied to speech (hoarseness and artifacts)
- We have proposed speech denoising algorithms, that are based on WPD and LTD
- Enhanced speech quality is good, and resulting quantitave measures are close to benchmark DFT-based speech denoising algorithms
- Proposed WPD-based speech denoising algorithm attains relatively high SNR and is recommended for using with WPD-based speech coding techniques
- Proposed LTD-based speech denoising algorithm is characterized by lower complexity than WPD-based while obtaining good quality of enhanced speech
- We have presented results of theoretical investigations

## **Future Work**

- Techniques for better estimation of noise spectral components
- Combined LTD-based segmentation and denoising
- Applying SILTD for speaker identification/verification

The End