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2D Implicit Polynomials (IP)

P'(x,y)=4a, +
ta,X +a,Yy +
+ 8, X"+ a,Xy +ag,y +

+...+a,X" +a,y"

Q:[aoo Ay Yy Gy gy gy v Gy aOn]T
p"(x, y):[l Xy X5 xy y* . X" y”]T
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2D Implicit Polynomials (IP)

= The IP zero set represents a 2D contour

P"(x,y)=0
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3D Implicit Polynomials (IP)

P (X, y,2) =ay, +

+ a100)( + a'OlOy + a001Z +

2 2 2
+ a'200)( T allOXy t allez T a‘OZOy t a‘OllyZ t a'OOZZ +

Tt a‘nOOXn t a‘OnOyn t aOOnZn
-
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Pn(X1 Y, Z) = [En(x’ Y, Z):|T a



\ 3D IP Fitting

= Input: {(Xi’yi’zi)}‘izl ..... N
= Output:  pP"(x,y,7)

4th degree
IP fit




Fitting Algorithms
Minimizing the IP values at the data-points

mgin iZN_ll(Pa” (V.2 ))2

o Least Squares problem
o Unstable when the data-points are perturbed
o The surface may intersect itself



‘ Fitting Algorithms

= Minimizing the IP values at the data-points

4 degree
IP fit




Fitting Algorithms

Gradientl.:
o Fitting requirements:
The IP value at the data-points is O.

The IP gradient direction at each data-point equals the
local normal direction.

The gradient value is
the same (e.g. equal to 1) N \ aeen
at every data-point. T
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Fitting Algorithms

Gradientl:

P"(x,y,2)=[ " (x y,2)] 2

o Define the matrices:
M, ::_pn(xi’yl’zl) E”(xz,yz,zz)
M, ::EQ(Xl’yl’Zl) EQ(XZ,YZ,ZZ)

o Least Squares problem:

P" (X, Y Zy)
Py (X, Y Zy)
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‘ Fitting Algorithms

= Gradientl:
o Improved stability when the data-points are perturbed

6t degree
IP fit

Spurious
zero-sets

11



Fitting Algorithms

Min-Max/Min-Var:
o Fitting requirements:
The IP value at the data-points is O.

The IP gradient direction at each data-point equals the
local normal direction.

Min-Max: Minimize the maximum error of the zero-set
points

Min-Var: Minimize the error variance of the zero-set
points

(Helzer et al., 2004)
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Fitting Algorithms

Min-Max:
o Least Squares problem

Mo =] P04 Y1 2) P (%0 Y2 2,) oo
o Modify M,, M, and M,

Pr(XuYinz)  Pr(X Y, Z,)

M

X

_pn(Xv yl’zl)Hl En(xz’ yZ’ZZ)Hl

n T
P" (X Y Zy) |

Px (Xy» Yo Zy)

P (s Yoo 2y)|,
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Fitting Algorithms

Min-Var:
o Least Squares problem

Mo =] P04 Y1 2) P (%0 Y2 2,) oo
o Modify M,, M, and M,

Pr(%uYnz)  Pe(X Y, Z,)

M =

X

En(x1’ Y1 Zl)Hz En(XZ’ Y2y ZZ)Hz

n T
P" (X Y Zy) |

Px (Xy» Yo Zy)

P (X Yo 2y),
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‘ Fitting Algorithms

6" degree .|
IP fit

1 0.5 o 0s

Grao]ientl

Min-Max

-1 0.5 o 0s

Min-Var

spurious zero-sets
appear farther
away from the
desired zero-set
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‘ Fitting Algorithms

6t degree
IP fit
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Min-Max
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Gradientl
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spurious zero-sets
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away from the
desired zero-set
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Rotation Invariant Fitting

Gradientl fitting Is rotation invariant

Min-Max fitting depends on: ‘En(xi’yi’zi)Hl
—> not rotation invariant
Min-Var fitting depends on: ‘En(xi’yi’zi)Hz

— not rotation invariant
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Rotation Invariant Min-Max/Min-Var

Min-Max: We replace the expressions: HE”(Xw yi’zi)Hl

by: EM{‘_” . Z)Hl} 0<60<27 , 0<p<nrx

Min-Var: We replace each monomial x*y'z"

bv: n' o
4 \/klllmlxyz
Z)H = / d?P
-

We get:
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Rotation Invariant Fitting Algorithms

8th degree
IP fit

Min-Max

RI-Min-Max

N

Min-Var

w4

0s
K] : :
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RI-Min-Var

The rotation
Invariant
modification
hardly affects
the results
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IP Based Classification

The IP coefficients are not rotation invariant.
Rotation invariant expressions for classification:

o Exist for 2D polynomials

Analytically (Tarel et al., 2000)

Using symbolic computation (Keren, 1994)
o For 3D polynomials:

Exist only using symbolic computation (Keren et al.,
1996)
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Derivation of 3D Rotation Invariant
Parameters

Tensor Is a generalized linear representation (a
multi-dimensional array)

The rank of a tensor is the number of array indices
required to describe it

Tensors are used for IP based pose estimation
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Tensor Representation of Forms

Kol
Pn(Xl,XZ,X3)= Z A Xy szén =

0<k,I,m,k+l+m<n

n n n
= Bgog + oo Xy +BgiXy +8ggy Xg o F BropXy F oo BggXg o+ Bgpg Xy =

Ho Hy (%, %5,X3) Hp (X%,%0,%3)

:ZHr(Xsz’Xs)
r=0

H, (X, X,,X;) is a homogeneous ternary polynomial
of degree r (a 'form')

Hr (X1’ Xy Xe) = Z aklmxfxlzxein

kK+l+m=r

(Tarel et al., 1998)
22



Tensor Representation (Example)

A 2" degree form (3D):

H2(X1’ X2’ XB) — a‘200)(12 + a'020)(22 + aOOZXC’? + a110X1 X2 T allel X3 + a011)(2)(3
Tensor (rank 2) representation:

Xl X2 X3

alllo é101 ___________ X1

A0 2 2
_ oy | Q0 A1
Sz =8" = 7 A2 7 ““““““ X,
gy Qo a
2 2 002 |- X3
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Tensor Representation of Forms

Using n-dimensional array representation:

S, = (s™ )]sil,iz,...,ings

We can represent a form of order n:

Hn(xl’XZ’XB): Z a‘klmxlk)(IZXC;n

k+l+m=n

3 3 3

H, (X, X,,X;) = ZZ Zs'ﬂ XXX st =

h=1i,=1 i =1

24



Tensor Contraction

Contraction with respect to 2 indices:
summation over the components in which these 2
Indices have the same value

S, = (s™ )1si1,i2,...,inss

S, , = gislen zsililis...in
n_

A total contraction of a tensor gives a zero order
tensor which is an invariant.

Example: the trace of a matrix (tensor, rank 2)
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Tensor Representation (Example)

A 4™ degree form (3D):

_ 4 4 4
H, (X0 X5, X5) = 80X, + 800X, +8gps X5 +
3 3 3 3 3 3
Tag10% Xy T a0 Xy X3 - Aygo Xy Xy + 831 Xy X3 + 3%y Xg +gg3X, X3 +
2,2 2,2 2,2
T Xy Xy F 0% X3 + g Xy X5 +

2 2 2
+a‘211X1 X2 X3 + a121)(1 X2 X3 + a112)(1 X2 X3

In this case n=4 — the tensor representation
IS a 4-dim. array

—_ ili2i3i4
Sy = (8" )i, iy iy <2
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Tensor Representation (

11ij

21ij

3Lij

a. o By, |
400 4 4
a310 a220 a'211
4 6 12
a301 a211 a202
4 12 6
_a310 a220 a211_
4 6 12
a'220 a130 8121
6 4 12
a211 a121 a112
12 12 12 |
| a'301 a'211 a202 |
4 12 6
a211 alZl 8112
12 12 12
a202 a112 a103
6 12 4 |

12§

2§

320 _

—
“xample)
| Ap Gy Ay | | o A Gy W
4 6 12 4 12 6
Ao iz a121 S13ij — a211 a121 a112
6 4 12 12 12 12
Ay Ay Ay Qg Ay g
12 12 12 6 12 4
| Ao Sizp Ay ] Ay Gy Qi |
6 4 12 12 12 12
@ @ 23ij _ | S1p1 Aoz Qo
Aoag S -

4 4 12 4 6
Ay oz Ay A, yp Ay
12 4 6 (12 6 4
| Ay Gy Qi ] | Ao Ap Qg |
12 12 12 6 12 4
Ay oz Gy S33ij _ A,  Gyp  Ayg
12 4 6 12 6 4
A, oy Gyig % @ a,
12 6 4 | 4 4 “
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Tensor Contraction (Example)

First contraction:

Second contraction:

3 3
SO — Z Z S'1'1'3'3

i,=1 i;=1
The result:

1
So = Qg9 T Ao T Qggy + g (azzo + Ay, + 8y, )



Linear Rotation Invariants (3D)

From each even degree form, we derive 1 linear
Invariant:

3 3‘
Z‘ Zzs'l'ls's ]
=1 |3—1|n1—1
- By (n/2)!
Lo, k,.mzelven n'  (k/2)I(1/2){(m/2)!
rEm=n 11 im |

= BJH linear invariants from an IP of degree n
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Linear Rotation Invariants (2D)

Using the tensor representation we get explicit
rotation invariants for the 2D case as well:

= Y a,  (n/2)!
o e nl (k211 2)!
k+l=n kll!

Faster computation than the existing recursive
scheme (Tarel et al., 1998)
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Rotation Invariants and Quaternions

In 2D, quadratic invariants were derived using a
complex representation (Tarel et al., 1998) :

Z=X+I1y P"(x,y) = P"(z,7)
In 3D, the extension of the regular complex
representation is quaternions:
Q=0+ 0l +0, ) +qK j=k  jk=i  ki=]
i=—1 j*=-1 k*=-1 ji=—k kj=—1 k=]

multiplication is hon-commutative: 0,0, # 0,0,
—> calculations can’t be simplified
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(Quadratic Rotation Invariants

Instead of quaternions, we used trigonometric
identities and derived the following invariants:

2 2 2
Q3D,1 = Q90 T Ap10 T gy
. 2 2
QBD,Z — azoo T aozo T aooz o
_zazooaozo o 2azooaooz o 2aozoaooz +

2 2 2
+a110 + a101 + a011

32



3D Objects/Faces Classification

Important in various fields, such as robotics and
automatic security systems

We have a dictionary of L different 3D objects (each
has several representations)

Given a new representation of an object, we would
like to recognize it as one of the L objects in the
dictionary.
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3D Objects Database

= 40 rigid objects — acquired using the equipment of the Geometric
Image Processing (GIP) lab at the CS Faculty of the Technion.
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3D Objects Database

= Each object has more than one description:

A A A
momm
™ P
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‘ 3D Faces Database

= 41 faces* — gathered by the Geometric Image Processing (GIP)
lab at the CS Faculty of the Technion.

*cooperative situation



‘ 3D Faces Database

= each face has a few acquisitions:
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Pre—Processing

Translation
Scaling
Mirroring

2D Projections
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Translation

We locate the center of mass at the origin:

i N
I
Xi,translated =X — N Z Xy
k=1
i N
yi,translated =Yi—— Z Yk
N =

- N
I
Zi,transla'[ed =4 — W Z Z,
k=1

Center of mass Is invariant to rotation and scaling
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Scaling

For IP stablility reasons, the data should be scaled
so that it would be close to a sphere of radius 1

We choose our scaling factor to be the 75t
percentile of the distances of the data-points from

the origin:

Xi,scaled — Xi / S75%
yi,scaled — yi /875%
Zi,scaled — Zi /875%

(Landa, 2006)
40



f Faces

1Irroring o

M

roblems:

P

= IPitting stabil
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Mirroring of Faces

Mirroring scheme:
o Fit a plane to the entire face

o Slide it an empiric distance from the center of
mass

o Dispose of points below the plane

o Mirror the rest of the points with respect to the
plane

J
Flw'



f Faces

1Irroring o

M

Irroring result

= M

AR
o Y
OGRS

" R

S e
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2D Projections — Objects

Xy projection:

Dol Dol Ba)

Without mirroring, the xz and yz projections have
noisy contours:




2D Projections — Objects

Extract contours using morphological operators:
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2D Projections — Faces

After mirroring:
Xy projection Xz projection Yz projection

Xy projection is very similar for different faces
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2D Projections — Faces

Extract contours using morphological operators:

Xy projection Xz projection Yz projection
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Feature Extraction

We fit various degrees of IPs (2,4,6,8)*:
o to the 3D surface
o to the most descriptive 2D contours

For each 3D/2D IP — separate the forms and derive

linear rotation invariants from each even degree
form.

For each 3D IP — derive 2 quadratic invariants.

*Multi-Order and Fitting-Error Technique (MOFET, Landa, 2006)
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Additional Rotation Invariant Features

IP Fitting Error (2D/3D) — the 75" percentile of the IP
fitting errors at each data-point

Eigen Values of the data scatter matrix (PCA)

fo Zi:xiyi > xz,
v [x v =T Ty Twa
l _izzixi Zi:ziYi Zziz

S(x.y.2)=;

| X<
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The Features Vector

Objects Recognition

Faces Recognition

3D linear invariants IP degrees 2,4,6 9 IP degrees 2,4,6,8 | 14
3D IP fitting error IP degrees 2,4,6 3 0
3D gquadratic invariants IP degrees 2,4 4 IP degrees 2,4 4
2D linear invariants xy - IP degrees 2,4,6 | 9 | xz- IP degrees 2,4,6 | 9

yz-IP degrees 2,4 | 5
2D |P fitting error xy - IP degrees 2,4,6 | 3 0
3D PCA eigenvalues eigenvalues 3 eigenvalues 3

Total

31 features

35 features
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Learning and Testing

Rigid Objects:

o 9 different positions for each object (~12° difference), 5
consecutive frames each

o Even positions are used as learning (2,4,6,8)

o Odd positions are used as test (1,3,5,7,9)

Faces:
o ~50 different frames for each face (2.5 frame/sec)
a First 5 frames are used as learning

o 5 other frames are used as test (linearly spaced along
the rest of the movie)

1112113114][5] «eeeeesees 15 seernneens Y| R 32| ceneeranns | 50
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Classifier Design — Objects

For each learning position:

Q

Q

Q
Q

Each of the 5 frames is perturbed 10 times (colored
Gaussian noise, std=0.01)

For each of the 50 perturbed instances the features vector
IS calculated

Combine pairs of learning positions (2&4,4&6,6&38)

Calculate mean and covariance of parameters and create a
multi-Gaussian PDF for each pair:

P(v/O, .V, )= (2;;)0'}2 |2|1/2 exp{—%(y—E)T z—l(M—E)}

(d Is the parameters vector dimension)
O, , k=12,..,40

V. , n=2&4,4&6,6&8

n ]
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Classifier Design — Objects

For each test position:

o For each of the 5 frames, the features vector
v Is calculated

o The probabilities that the object was O, In
position V_, given that we observed V :

P(O.V,/v) , k=1..40,n=2&4,4&6,6&8
o Bayes rule:

P(Y/OLVa)P(OuVa) e
P(\_/) =C P(—/Ok’vn)

P(O.V,/v)=
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Experimental Results (Objects)

Comparison between different fitting algorithms:

Gradientl | RI-Min-Max | RI-Min-Var
98.8% 98.1% 98.0%
96.1% 94.8% 93.2%

entire features vector (d=31)
3D IP features only (d=16)

Comparison between our method and other approaches:

Our method Pose estimation Shape Spectrum
(Gradientl, d=31) | and IP coef. as Descriptor
features (d=35) (MPEG-7) (d=27)
98.8% 91.6% 90.1%
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Experimental Results (Faces)

Comparison between different fitting algorithms:

Gradientl | RI-Min-Max | RI-Min-Var
entire features vector (d=35) 97.1% 96.6% 93.7%
3D IP features only (d=18) 89.3% 91.7% 91.7%

Comparison between our method and other general
objects classification approaches:

Our method Pose estimation Shape Spectrum
(Gradientl, d=35) | and IP coef. as Descriptor
features (d=35) (MPEG-7) (d=27)
97.1% 93.2% 72.2%

(without the different views)

* Classifier design was the same as the objects’ classifier
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Running Times

Matlab implementation
Average classification time of a single

object/face:
Our method Pose estimation Shape Spectrum
(Gradientl, d=31) |and IP coef. as Descriptor
features (d=35) (MPEG-7) (d=27)
13 [Sec] 15 [Sec] 55 [Sec]
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Future Work

Dimensionality reduction for automatic features
selection

3D objects retrieval (classification into categories)

Derivation of additional quadratic invariants using
guaternions
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Summary

Rotation invariant Min-Max and Min-Var fitting
algorithms

Developing linear and quadratic 3D IP based
rotation invariants

Stabilization of IP coefficients using faces mirroring

Developing 3D Objects classification system,
applicable also to faces in a cooperative situation

Integrating both 2D and 3D features for better
classification performance
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