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Introduction to CTTS

 Front end: phonetic analysis to define appropriate sub-phonemes, 
their pitch, energy, duration, and context parameters.

 Segment selection: 

 Choose acoustic leaf according to sub-phoneme and its context. 

 Choose segment with lowest target and concatenation costs.

 Most of the footprint is due to the segment inventory or database.
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CTTS database structure

 Database consists of acoustic leaves, 

each corresponding to a specific sub-

phoneme in a specific context.

 A number of speech segments are 

stored in each acoustic leaf.

 Each speech segment consists of one 

or more speech frames.

 Each speech frame is represented by 

a set of parameters, usually using a 

spectral model.
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Problem Statement

 Reduce the footprint of a CTTS synthesizer without 

compromising obtained perceptual quality.

 Develop a (re) compression algorithm for a set of 3D 

data structures, containing parameters that exhibit 

redundancy, such as the acoustic leaves in a CTTS 

database.

 Algorithm should not be tightly bound to specific 

database characteristics.

 Additional requirement: Low decoding complexity.
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IBM small footprint CTTS:
speech model - 1

 Based on polar form of the complex spectral envelope of 

the speech frame:              

 We concentrate on amplitude parameters as they account 

for most of the footprint (5.7MB vs. 1.6MB for phase).

 A warped frequency scale, the Mel-scale, is used:
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(*) “Small footprint Concatenative text-to-speech synthesis using 

complex envelope modeling”, Chazan et al., INTERSPEECH 2005.
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IBM small footprint CTTS:
speech model – 2

 The log-amplitude spectrum of each frame is modeled by a 

linear combination of L basis functions:

 Bn are triangular.

 In Mel-scale they

have equal widths 

and half overlap.
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IBM small footprint CTTS:
speech model – 3

 G, frame energy, is embedded as follows: 

 Cn, the representing parameters, are used for segment 

selection, speech morphing and synthesis. 

 The 32 amplitude parameters of each frame are quantized 

using an 86 bit split-VQ scheme.

 The VQ is applied to the parameter differences, equivalent 

to the spectral ratios. The quantizer favors the low 

frequency data.
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 We wish to remove inter-frame 
redundancies.

 Distribution of segment lengths 
in a sample database --->

 Conclusion: Use a multi-segment approach.

 Natural candidate - the acoustic leaf. 

 Provides a good sized data chunk.

 Expect similarities between segments.

 Maintains database modularity.

Acoustic leaf (re) compression
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Where were we…

 We aim to reduce the CTTS footprint, most of which 
stems from the stored speech segments.

 Test system uses a parametric spectral model: 32 
amplitude parameters per speech frame.

 We want to compress further without compromising 
perceptual quality of synthesized speech. 

 Next: let’s review some prior art…



12

Previous work - 1

 Alternative speech compression schemes:

 Sinusoidal coding (McAulay and Quatiere, 1986).

 Harmonic+noise model (Stylianou, 2001).

 Sinusoidal model adapted for TTS applications (Macon and Clements, 1999).

 Decomposition of spectra into periodic and a-periodic components 

(d'Alessandro et al.,1998).

 Iterative signal subtraction for sinusoidal model based analysis by synthesis 

(George and Smith, 1997).

 Mel-frequency Cepstral Coefficients based coding (Chazan et al.,2002).

 These are allow for easy pitch modification and speech morphing, but do 

not deal with inter-frame redundancies.

 Adaptive speech compression schemes, such as Code Excited Linear 

Prediction, can be used. (Embedded CTTS, Karabetsos et. al, 2009).

 In this research we reused the existing signal compression scheme.
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Previous work - 2

Acoustic inventory compression using asynchronous 

interpolation (Kain and van Santen, 2002 and 2007).

 Approximate each diphone by interpolating between a left and 

right phoneme template, using two non-linear interpolation

functions.

 High compression ratios at the price of poor perceptual quality.

 Low flexibility- provides a single possible working point. 

 Creating the template database is a complex process.
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Previous work - 3

Temporal Decomposition (TD) approaches: 

 Underlying concept: remove temporal redundancy by modeling 

the paramater evolution over time.

 Vector TD is applied to data or parameter vectors.

 Seek a set of target vectors and interpolation functions.

Used for low rate speech coding:

 Nguyen, 2002 ;

 Athaudage et al, 2003 ; 

 Shechtman and Malah, 2004 emphasis on efficiency and perceptual quality.



15

Previous work - 4

Temporal Decomposition (TD) approaches: 

 Scalar TD: models the trajectory of a scalar, or a single vector 

parameter. 

 Seek a Pth order model for N values.

 DCT based model for the trajectories sinusoidal coding parameters, 

(Girin et al., 2007).

 Polynomial TD - Coming Soon to a seminar near you…



ReCompression using 

Vectorial Polynomial   Temporal 

Decomposition (TD)



17

 Proposed for speech compression by Dusan et al., (2007).

 Represent the trajectory of N data points, such as the ith

coefficient in N frames, with the approximating polynomial of 

order P (P<N-1).

 Represent the polynomial

by its P+1 samples.

Polynomial TD
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 Proposed for speech compression by Dusan et al., (2007).

 Represent the trajectory of N data points, such as the ith LSF 

coefficient in N frames, with the approximating polynomial of 

order P (P<N-1).

 Represent the polynomial

by its P+1 samples.

Polynomial TD
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 Proposed for speech compression by Dusan et al., (2007).

 Represent the trajectory of N data points, such as the ith LSF 

coefficient in N frames, with the approximating polynomial of 

order P (P<N-1).

 Represent the polynomial

by its P+1 samples.

Polynomial TD
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 Proposed for speech compression by Dusan et al., (2007).

 Represent the trajectory of N data points, such as the ith LSF 

coefficient in N frames, with the approximating polynomial of 

order P (P<N-1).

 Represent the polynomial

by its P+1 samples.

 We propose a vectorial form:

 Apply to amplitude vectors.

 Obtain P+1 representing vectors.

Polynomial TD
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Polynomial TD for acoustic leaf 

 Segments in each acoustic leaf are concatenated into a single super-

segment.

 Concatenation order is selected either according to sequential order or 

using the re-ordering presented later.

 What segments should we use for polynomial TD?

Entire super segment ? 

Original speech segments?

Fixed N and P values? (as in reference paper)
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Polynomial TD for acoustic leaf 

p=1 p=0 p=3 p=0

 Segments in each acoustic leaf are concatenated into a single super-

segment.

 Concatenation order is selected either according to sequential order or 

using the re-ordering presented later.

 Split super-segment into short TD segments and fit each with a set of 

low order polynomials.

 Low order polynomials (Low decoder complexity ; Less sensitive to quantization) 

with maximum distortion critera.

 Better adaptation to local data dynamics. 
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TD Segmentation and order selection

 Based on “R/D optimal linear prediction”, Prandoni et al. (2000).

 First, build graph with all possible segmentations.

 For each segment find lowest polynomial order that guarantees 
target distortion; assign a cost based on the corresponding rate. 

 Find lowest cost path across graph using backtracking.

Si,j: Segment 
that ends at 

frame i and is 
of length j.

S0,0 S1,1 S2,1 S3,1 S4,1 S5,1

S2,2 S3,2 S4,2 S5,2

S3,3 S4,3 S5,3

S4,4 S5,4

S5,5

131211104321 98765 1514

S3,3 S12,7S5,2 S15,3
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S2,2 S5,2

25

TD Segmentation and order selection

S0,0 S1,1 S2,1 S3,1 S4,1 S5,1

S3,2 S4,2

S3,3 S4,3 S5,3

S4,4 S5,4

S5,5

 Based on “R/D optimal linear prediction”, Prandoni et al. (2000).

 First, build graph with all possible segmentations.

 For each segment find lowest polynomial order that guarantees 
target distortion; assign a cost based on the corresponding rate. 

 Find lowest cost path across graph using backtracking.

Si,j: Segment 
that ends at 

frame i and is 
of length j.

S12,7 S15,3

4321 5

S3,1 S5,2
S2,2
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Acoustic inventory compression 
using Polynomial TD

 Target rate, or compression ratio, is defined over the entire inventory. 

 Goal: Obtain target rate (average) @ maximum quality (consistent).

 Distortion:

 Distortion value is the maximum allowed for each frame in each segment.

 For frame with original values V and reconstructed values V’, distortion is:

 MinMax MSE gave best results (compared to LSD, min-mean and more).

 Rate: 

 Each representing vector is quantized using the current, 86 bit per vector, 

split VQ quantizer. 

 When calculating the obtained rate, we also count algorithmic overhead bits.
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Iterative rate–distortion algorithm
Initializations

Calculate next 

Dg

Perform TD for all acoustic 
leaves in database & 

calculate obtained rate

Reached 
Target 
Rate?

END

YES

Update

R/D

parameters 

NO

 We seek the minimum Dg for 

which rate = target rate, using a 

Bi-section search.

 Dg is the maximum allowed 

distortion among all frames in 

all segments in all leaves.

 In the TD, we look  for 

segmentations and polynomial 

orders that will provide the 

lowest rate, given Dg.

 R/D parameters: rate and 

distortion values on active  

search interval edges.
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Some results

PESQ scores for x2 recompression (evaluated on 10 sentences):

(*) these will improve slightly when combined with segment re-ordering.

Samples:
Original Max poly. 

order 4

Max poly. 

order 1

S.8 (worst)

S.1 (avg.)

Setup
Max polynomial 

order = 4 
Max polynomial 

order = 1 
Naïve Down-
sampling 2:1 

Minimum 3.45 3.39 2.48

Average 3.55 3.66 2.84

PESQ
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ReCompression using 
Vectorial Polynomial TD - Summary

 We proposed a vectorial form of polynomial TD. 

 We combined TD with jointly optimized sub-segmentation and 

polynomial order selection, under distortion & complexity constraints.

 We obtain much higher quality than linear interpolation, even when 

using only polynomials of order 0 and 1.

 An iterative algorithm converges to (any) target rate with minmax 

distortion criteria.

 Important feature: The compressed data lies in the same space as 

the original data set, thus enabling reuse of existing quantizers.



ReCompression using 3D-SADCT
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2D DCT (reminder)

Discrete Cosine Transform definition:

Properties:

 Energy preserving reversible transform.

 Removes redundancies (energy compaction).

 Separable, real valued and easy to compute.
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Shape Adaptive DCT (SADCT)

 Motivation: coding of an arbitrary shaped object

 Perform DCT only for pixels that belong to our object. 

 Proposed for use within the MPEG-4 toolset for coding of audio-

visual objects (Sikora and B. Makai, 1995).

 Extended to 3D for coding of hyperspectral images (Markman and 

Malah, 2001).

Image (ROI in blue) DCT coeffs Contour
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2D - SADCT

DCT

x

y

x

y’
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Top: DCT along columns 
Bottom: DCT along rows
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3D-SADCT for Acoustic Leaf
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Potential of 3D-SADCT for       
acoustic leaf compression

leaf acousticin  features ofnumber 

energy  total theof 95%contain  that tscoefficien ofnumber 
ratio
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Improved energy 
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Quantizer design

 3D-SADCT results in a 3D data set with higher energy compactness.

 x2 recompression allows 43 bits per 32 element vector => VQ.

 We seek a set of quantizers that prioritize low frequency data (x 3 dims).

 Matrix quantization (Xydeas and Papanastasiou, 1999), or run-length coding do not 

apply well due to varying dimensionality and low bit-rate.

 Prior works on sub-band coding assume pre-known split between bands, or make 

assumption on the data or distortion functions that don't apply here. (Shoham & 

Gersho, 1988; Chatterjeet & Sreenivas 2008, Markman & Malah 2001). 

 We propose an algorithm for methodical splitting 

and bit allocation, applied twice:

 Split all vectors into M vector groups.

 Split vectors in each group into N sub-vectors.
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 Let Nu,v be the number of vectors in the database for bin {u,v}.

 Calculate STDu,v standard deviation of the vectors for each {u,v}. 

 separate DC bin and allocate with 50 bits ; Initialize (Ravg)1 ;

 Allocate bits for each AC bin using:

Where:

 Cluster the obtained Ru,v values into M-1 groups (M=5).

 Set bit allocation of each group to the cluster centroid.

 Calculate Ravg, if needed repeat until target rate is reached.

Splitting into groups

   
   QQ

qp qp

vu

qp qp

vu

kavgk

opt

vu

W

W
RR

11

,

2

,

2

,

22
1

.

2

,

2

,

22
1

, loglog








vu
WNwhichforqpofnumberQNSTD vuqpvuvuvu




1
;0},{; ,,,,,

u

v



39

Obtained quantizer setup - 1

Training is performed on the full acoustic leaf 

database, to avoid over-fitting.
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 For each group we wish to design a split VQ.

 DC allocation: 

 8 bits for DC group (m=1). 

 for m=2,..,5.

 Then for each group, AC elements are each allocated bits using:

Where:

 Cluster the obtained Rw into clusters, s.t. the largest cluster 

contains 8 elements at most (limit on codebook size). 

 Bit allocation for each sub vector is the sum of the allocations of 

its elements.

Vector splitting
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Obtained quantizer setup - 2

For each sub-vector of each group, a VQ is designed with 

the LBG algorithm (Linde, Buzo and Gray 1980).
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ReCompression using 
3D SADCT - Summary

 We apply the 3D SADCT, conventionally used for image/video 

coding, to a novel setup, thus enabling efficient compression of 

CTTS acoustic leaves.

 We propose a methodical approach to split VQ design, which 

provides splitting points and bit allocation based on data statistics. 

(we used two variants of this algorithm).

 Pro: Obtained PESQ score at x2 recompression: 3.84.

 Con: Algorithm has low flexibility. To obtain a new working point 

full quantizer re-design must be performed.



Segment reordering
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Segment Ordering

 Segments in each acoustic leaf have an arbitrary order.

 We wish to find the ‘best’ order, offline, prior to compression.

 For Polynomial TD: determines concatenation order.

 For 3D SADCT: affects energy compaction of transform along 

columns.

 A form of the Traveling Salesperson Problem, from the 

realm of combinatorial optimization.

 Not all TSP solutions apply since 

our cost function isn’t Euclidean.
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Segment Ordering – cont.

 Possible solutions:

 Binary Switching Algorithm (Zeger & Gersho, 1990).

 Enhancement of BSA (Spira & Malah, 2000).

 Simulated Annealing (Kirpatrick, 1983). 

 We propose a combined approach, based on the Metropolis 
algorithm (Metropolis, 1953) :

 Complexity similar to the enhanced Binary Switching Algorithm.

 Advantage: can exit local minima, as in the SA approach.

 The algorithm goal is to find the order that minimizes a specified 
cost function.
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Ordering cost functions:
Polynomial TD

 Define the super-segment as the concatenation of all segments 
in a specified order. 

 For the ith parameter, (i=1,..,32), approximate its trajectory along 

the super-segment with a second order polynomial – Poli. Then 

the cost is:

i.e., the weighted MSE between Vn,i , the actual value of 

parameter i at frame n of the super-segment, and its polynomial 

approximation.

 This cost measures the smoothness of the super-segment, while 
prioritizing parameters corresponding to lower frequencies.
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Ordering cost functions:
3D SADCT

 For 3D-SADCT the ordering 

affects the vertical transform, 

thus affecting overall 

obtained energy compaction.

 We wish to maximize the energy in G2, the first non-DC group.

 The cost is defined as:
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Proposed ordering algorithm

 For small leaves (7 segments or less) all possible arrangements 
are evaluated and the one with lowest cost is kept.

 For large leaves, we use a Metropolis Based Ordering approach:

 Given a cost function, a ‘move’ generator and iteration budget:

1. Initialize: set initial order, and set T to desired temperature.

2. Calculate current cost, C.

3. Perform a random move, calculate Cnew and the ΔC=Cnew - C.

4. If ΔC<0 keep the move.

5. If ΔC>0 and exp{-ΔC/T}>rand(0,1), also keep the move. 

6. If number of iterations below budget: GOTO 2.

7. Select point with lowest cost (non real-time).
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Where were we…

 We presented two recompression algorithms:

 Vectorial polynomial TD with optimal segmentation and 
polynomial order selection.

 3D-SADCT with automatic multi-split VQ design.

 We presented an algorithm for segment reordering.

 Next: Results…
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Experimental results

PESQ scores for x2 recompression (evaluated on 10 sentences):

Samples:
Original

POl TD; max order=1 SADCT

No Reo W.Reo No Reo W. Reo

S.8 (worst)

S.1 (avg.)

Setup POL TD

Max poly. order=4

POL TD

Max poly. order=1 
SADCT

No ReOrd w. ReOrd No ReOrd w. ReOrd No ReOrd w. ReOrd 

Minimum 3.45 3.49 3.39 3.51 3.53 3.65

Average 3.55 3.67 3.66 3.69 3.84 3.85

PESQ
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Summary

 Two recompression approaches were presented:

 Vectorial Polynomial TD with adaptive segmentation and 

polynomial order selection.

 3D SADCT with methodical quantizer design.

 A Metropolis based segment reordering algorithm was 

proposed.

 Applying these algorithms to small footprint CTTS 

acoustic leaf re-compression, provides a factor of 2, 

without degrading perceptual quality.

 The proposed algorithms are generic and may be applied 

to a variety of re-compression challenges.
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Future work

In the scope of acoustic leaf compression:

 Examining the recompression and overall performance when 
using alternative signal models, such as sinusoidal modeling.

 Applying the proposed algorithms to phase parameters.

In the scope of the proposed algorithms:

 Trying to develop quantizer design that is even more ‘automatic’.

 Applying the proposed algorithms to other test cases, such as:

 Sign language databases (http://archive.ics.uci.edu/ml/datasets/Libras+Movement).

 Image classification databases (Bag of Words).

 Personalized content recommendation databases.

http://archive.ics.uci.edu/ml/datasets/Libras+Movement
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Thank you


