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Outline
:*

= Fundamentals of Multiple Description (MD) coding

= Framework: MD coding via polyphase transform
and selective quantization

= Proposed system:
Context-based MD wavelet image coder

= Motivation
= Detailed description

= Experimental results
= Summary and future directions



Fundamentals of MD Coding:

* Introduction

= Where does an SD (Single Description) coding
system go wrong?

[ | Receiver

Sender —»

= Packet losses!
= Intolerable retransmission delay
= No feedback channel
= Order must be maintained (layered coding)



Fundamentals of MD Coding:
* Introduction (cont.)

Purpose: Provide error resilience to information
transmitted on lossy networks (e.g., the Internet)

= Possible solution:
MD coding

= Represent the information source with several descriptions

= The source can be approximated from any (non-empty)
subset of the descriptions

—. Makes all received descriptions useful

= Both encoder and decoder are involved (different
from post processing-based error concealment)

= Caveat: No free lunch! (Redundant representation)



Fundamentals of MD Coding:
? Example — MD Coding vs. Layered Coding

\ Layered / \\Non-layered Layered

N

All 4 packets Packet #3 is lost

received



Fundamentals of MD Coding:

) Scenario for MD Coding (Two Descriptions)
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Channel 2 J Decoder 2 { k }

= Distortion attained by Decoder /:
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Fundamentals of MD Coding:
# Information Theoretic Aspects

= MD rate distortion region (MD region):
Closure of the set of achievable quintuples (R, R,, D,, D,, D)

= Achievable quintuples (not all) by [El Gamal and Cover, 1982]

= The MD region for a memoryless Gaussian source with
variance 02 and squared error distortion measure:
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Fundamentals of MD Coding:
MD Scalar Quantization (MDSQ)

s Example: Communicate a single real number = < |—1, 1]

)

! 1111=—1111
1110— 1110

1101—1011
1100 —0111

1011=1010

10—1101
] EI1 ?]ETGEFD
94 'GHF%JHD' - {x
0110= P11
0101—100
0100=0101
0011— 1000
0010—0100

0001— 0001
0000— 0000

(a)
4-bit quantizer Two 3-bit quantizers “Complicated” MDSQ
(From [Goyal, 2001]) (Total rate: 6 bits) (Total rate: ~5.2 bits)



Framework: MD Coding via Polyphase
* Transform and Selective Quantization

= Proposed by [Jiang and Ortega, 1999]

= Explicitly separates description generation and
redundancy addition
- Reduced complexity of design and implementation

= Enables simple generation of descriptions of
equal rate and importance (balanced case)

— Well suited to communication systems with no
priority mechanisms (e.g., the Internet)



Polyphase Transform-Based MD Coding:
# The Polyphase Transform

= Polyphase transform:
Decomposition to polyphase-like components

= Example — plain

olyphase transform:

Polyphase component #1

Polyphase component #2

10



Polyphase Transform-Based MD Coding:
; System Outline
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= For correlated input data (e.g., an image), a preliminary

decorrelating transform is required ”



Polyphase Transform-Based MD Coding:
# Experimental Results

» Wavelet transform used for decorrelation
= Polyphase transform — two alternatives:
= Plain

= Vector-form: Groups coefficients in different
subbands corresponding to the same spatial
location (similar to the zerotree structure)

= SPIHT used for quantization and entropy coding

12



Polyphase Transform-Based MD Coding:

Lena (grayscale)
512x512 pixels
Total rate = 1 bpp

Central PSNR [dB]

405

40
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385

375

37

36.5

Experimental Results (cont.)
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(From [Jiang and Ortega, 1999])

Side PSNR [dB]

n : —+— Polyphase (plain)
T o ; —+— Polyphase (vector-form)|
L e _____.—r.—_—_.—_—___,_-*____.___;:;ﬁ-_ S ——+— MDSQ-based
: : : : : : A
: : : : : : IR
. . . : ! ' \: I".
i i i ! i i i
24 26 28 30 32 24 36



Context-Based MD Wavelet Image Coding:

* Wavelet Background

= K-level 1-D discrete wavelet transform (DWT):

x(n)

» h(n)

—%Euaﬂj

» g(n)

d, (n)

= Approximation coefficients: {a,(n)}

» h(n)

C) an)

d,(n)

> a(n)

» h(n)

CjaMJ

» g(n)

d,(n)

s Detail coefficients: {d.(n)}, i<{1,...,K}
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Context-Based MD Wavelet Image Coding:
* Wavelet Background (cont.)

= 2-D DWT using separable filters:

Vertical

Horizontal > h(m) 4’@ > a,(mn)
o () ——

——» g(m) 4@—> d,H(m,n) 4| g0 d,"
2 2

x(m,n)

» h(m) —»@ » d.V(m,n) dlv dlD

|+ ——

+{g(m) @ > d,°(mn)

= Multiple levels (scales): Repeat on approximation s




Context-Based MD Wavelet Image Coding:

Wavelet Background (cont.)
* = Example:

Original - Wavelet transform



Context-Based MD Wavelet Image Coding:
# Statistical Characterization of Wavelet Coeffs

= Wavelet transform provides good energy compaction
(< reducing the correlation amongst wavelet coeffs)

= First order statistics of detail wavelet coeffs successfully
modeled using the Generalized Gaussian Distribution
(GGD):
1

N /s
Sl = - ’
fb-_?( ) ;"?\"I(S?'T‘) €

where N(s,r) = 2sI'(1/r)/r and T'(a) = [~ t* te " dt
= = 2: Gaussian distribution
= = 1: Laplacian distribution (double exponential distribution)

= /— o ; Uniform distribution (pointwise convergence on (-s,5) )
17



Context-Based MD Wavelet Image Coding:
Statistical Characterization of Wavelet Coeffs (cont.)

= Best fit of GGD for natural images: r< [0.5, 1]
[Buccigrossi and Simoncelli, 1999]
- First order statistics of detail wavelet coeffs can be

reasonably modeled using

0.35

Laplacian distribution
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Context-Based MD Wavelet Image Coding:

* Statistical Characterization of Wavelet Coeffs (cont.)

Spatial and scale-to-scale dependencies:
= Wavelet coefficients are not statistically independent

(although approximately decorrelated)
= Potential conditioning neighbors: | >

= Dependencies are implicitly utilized by numerous
image compression schemes (e.qg., EZW, SPIHT)

= Linear predictor for the magnitude of a coefficient
proposed by [Buccigrossi and Simoncelli, 1999]

= Contribution to the mutual information between a coeff’s
magnitude and its predictor (in decreasing order):
Local neighbors (“Left”, “Up”), parent, cousins, ...

19



Context-Based MD Wavelet Image Coding:

Proposed System Outline

= Concept: Improve coding efficiency of Q, via

utilization of contextual information from Q,
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Original

—
Image

Context-Based MD Wavelet Image Coding:

o\
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Proposed MD Encoder — Block Diagram
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Context-Based MD Wavelet Image Coding:

Proposed MD Decoder — Block Diagram

Channel 1
Primary Wavelet
Int i %—» Coefficients
nfarrmation | I.I Decoder l
f lI Irverse iq 1) Irverse Image
Cuantized Palyphase > Wavelet —= Reconstructed By
Coefficients Transform Transform Side Decoder 1
‘ ! F
Redundant Entropy | ContextBased | [ . .
Infarmation | Decoding Classification quantization
|
f
| F 3
side | |
Information 1/
i(m Inverse Image
» Wavelet — Heconstructed By
Transform Central Decoder
Side A
Information [
| II Y L 4
|
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Information Decoding Classification " Ped
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Quantized Inverse ¥ 12 Inverse Image
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, | Wavelet
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Context-Based MD Wavelet Image Coding:

* Context Formation

Classification of the wavelet coefficient X; ; is based on
the following context G; of quantized local neighbors:

Primary polyphase component

Redundant polyphase component 24



Context-Based MD Wavelet Image Coding:

= Classification offers a potential increase in coding

* Context-Based Classification

efficiency (quantization is adapted to the data)

Penalty of forward classification is avoided (classification

IS based on quantized coefficients)

Side information is transmitted for improved performance:

= Classification thresholds (allowing to select a class for a
coefficient given its context)

= Source statistics of each class (each class is modeled using a
parametric distribution)

Avoids explicit characterization of statistical dependencies

between neighboring wavelet coefficients

Classification procedure inspired by [Yoo et al., 1999]
(SD subband image coder)

25



Context-Based MD Wavelet Image Coding:
* Classification Rule

= Purpose: Assign one of a finite number of classes
to a coefficient X;; given its context G

= Classification is based on a weighted average of the
magnitudes of coefficients in G ; ("Activity”):

A= ﬁ-1|ira—1d'—1| + HQ|X:;—1J| + ﬂ-3|ﬁ«;—14‘+1| +ﬂi|i?é+l~j—l| + ﬂ-5|ﬁa+1.j| + aﬁ|4’?é+1.j+1|
where > _,ar =1

= E.g.: Weights are inversely proportional to the Euclidean
distances of the corresponding coeffs in C; from X;;

= Classification rule (for set classification thresholds):

0 ) o [ | o -y

|
| | | | |
-0 T T J T T, T=ow

N-2
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Context-Based MD Wavelet Image Coding:
* Classification Thresholds Design

Purpose (for a given subband):

= Determine the classification thresholds T,,T,,...,Ty.; from an
initial set of Ny,-1 candidate thresholds (where Ny>N)

= Goal: Maximization of the “classification gain” (coding gain
due to classification, under certain simplifying assumptions)

= Model assumption: Coeffs in each class of each subband

are drawn from a (zero-mean) Laplacian distribution
A :
Hlr) = Se_}""l'
= Holds for approximation subband as well, due to employment of a
DPCM-like prediction scheme (i.e., holds for prediction errors)

« The Laplacian parameter for each class is estimated using MLE:
. n 1

)\ — —
S|z %Z:‘;l | 27




Context-Based MD Wavelet Image Coding:
* Classification Thresholds Design (cont.)

= Classification threshold design algorithm (given subband):
Given: = The desired total number of classes N+1
s Ny-1 strictly increasing initial thresholds (where Ny>N)
= Classify all coeffs with zero activity to C, and estimate \, (MLE)

= Classify remaining coeffs according to the classification rule
C C C C

o S
0 T, T, Thg-2 LI
and estimate (using MLE) the Laplacian parameters \;...., \y,
= Iterate until total number of thresholds is reduced to N-1: | P>

= Finish: return 7i.....7v_1 and Ao, Ai..... A\
= Side information: Total of 2NS numbers (S=#subbands) s




Context-Based MD Wavelet Image Coding:
Model-Based Adaptive Quantization

= Purpose: Efficient quantization using a set of
quantizers, each customized to an individual class

Customization is based on the Laplacian parameter
estimates, obtained during classification thresholds
design
Two types of quantizers are examined:

= Uniform Threshold Quantizer (UTQ)

= Uniform Reconstruction with Unity Ratio Quantizer (URURQ)

Both types of quantizers well approximate the optimum
ECSQ for the Laplacian distribution (with MSE distortion)

Both are completely defined by a single parameter A

Number of quantization levels is odd (“mid-tread”) in
order to enable an output entropy < 1 bit/sample 30



Context-Based MD Wavelet Image Coding:
* Uniform Threshold Quantizer (UTQ)

= Completely defined by its step size A

= Reconstruction levels are optimized for minimum
distortion (centroid condition)

fx)




Context-Based MD Wavelet Image Coding:
:* Design Strategy for the Quantizers (UTQs)

= Purpose: Avoid complex entropy-constrained design
algorithms for the UTQs

= Means: Optimal bit allocation scheme based on a
pre-designed array of MSE-optimized UTQs of different
step sizes (with no constraint on output entropy)

- Goal: Design an MSE-optimal UTQ with step size A
for the Laplacian distribution with parameter )
= Expressions for bin boundaries, reconstruction levels and bin

probabilities are derived straightforwardly (also found in the

literature)
32



Context-Based MD Wavelet Image Coding:
# Quantizer Function of UTQ for Laplacian Distribution

Purpose: Estimate rate and distortion of UTQ to obtain
its operational DR function (quantizer function)

= Quantizer function is required for bit allocation
= Rate Ris estimated by the output entropy of UTQ:

Z D log 82 Pj

= We derive a closed form expressmn for the distortion D :

2 _af[/A\ A 2

1
Where 0 = 1 o A _ ] 33



Context-Based MD Wavelet Image Coding:
Quantizer Function of UTQ for Laplacian Distribution (cont.)

# = Off-line computation: Array of UTQs obtained for
closely spaced values of the step size A (for the
unit-variance Laplacian distribution)

= Result: Indexed operational DR function (indexed by slope)

|
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Context-Based MD Wavelet Image Coding:
:* Optimal Model-Based Bit Allocation

= Purpose:

= Given the desired redundancy rate, determine the
rate at which each UTQ operates

= Avoid complex on-line bit allocation procedures
= Means:

= Efficient optimal bit allocation procedure based on
variance scaling and on a pre-designed indexed
array of optimized UTQs (fixed resource of the
coder, used by encoder and decoder)

= Performed simultaneously over all classes from all
subbands

35



Context-Based MD Wavelet Image Coding:
* Optimal Model-Based Bit Allocation (cont.)

= Optimization problem:
Find the optimal rates {R;}, , such that the overall
distortion D is minimized, subject to the constraint & < Ry

= Lagrangian optimization:
Minimize the Lagrangian cost function J(¢) = D +¢R
(for a fixed Lagrange multiplier ¢, to be determined such
that R = R, )

= Resulting rate allocation equations (= “constant slope”

rinciple): ¢
principle) Dy(Ry) = _(1“' -

(G, is the synthesis energy gain factor of class 4's subband) o




Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation (cont.)

= Solving the rate allocation equations via variance
scaling:
= Observations:
= For a given rate, the optimal UTQ for input with variance o2 is a
scaled version, by o, of the optimal UTQ for unit-variance input

» The distortion attained by the scaled UTQ above is larger by a
factor of 02 compared to that attained by the unit-variance UTQ

= Consequence:
The operational DR function of the optimal UTQ for an input with
variance o2 is obtained from that for a unit-variance input by
scaling the distortion axis by a2 (the slope is affected similarly)

—. Strategy for solving the rate allocation equation of each class b :
> Slope normalization: —¢ /Gy, — —¢/(Gya2) (where 52 = 2_/}(;’: )
» Index the array of UTQs by the normalized slope
» Scale the obtained “normalized” UTQ by 7, to get the actual UTQ 37



Context-Based MD Wavelet Image Coding:
* Optimal Model-Based Bit Allocation (cont.)

= Adaptation of the arithmetic entropy encoder:
= Performed using the bin probabilities of the retrieved UTQ

= Entropy encoder exploits the higher level statistics captured
by the Laplacian model-based classification algorithm

= Determining the Lagrange multiplier ¢ such that r = R;:
= Define: F(6) = R*(¢&) — Ry
= Root finding of f(&):

o Note that f(¢) is monotonically non-increasing (with ¢)

o Bracket and use the bisection method (iterate until
convergence: R* € (Ry — €, Ry|)

= The resulting ¢* is also sent to the decoder 38




Experimental Results:

Configuration
:* = Balanced case: Descriptions of equal rate and
Importance
= Wavelet transform:

= Biorthogonal wavelet transform using Cohen-Daubechies-
Feauveau (CDF) 9/7-tap wavelet filters (three-level
decomposition)

= Whole-sample symmetric boundary extension
- No coefficient expansion

= Side information parameters are represented using 16
bits (each)

= For demonstrations: Lena image (grayscale), 512x512
pixels (—> Overhead rate per desc.: ~0.004 bpp) **



Experimental Results:

; Quality of Classification (Subjective)

Wavelet transform CIa55|f|cat|on map
(differential approximation)




Experimental Results:
Histograms of Coefficients in the Different Classes
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Experimental Results:
Performance of the Proposed Coder
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Experimental Results:
Performance Compared to Framework Coder
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Experimental Results:
3 Subjective Quality of Reconstruction

Original SD

1 bpp

PSNR:

40.63 dB
Proposed Proposed
Central rec. Side rec.
Total: 1 bpp Total: 1 bpp
Red.: 0.46 bpp Red.: 0.46 bpp
PSNR: PSNR:

37.38 dB 37.26 dB
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Experimental Results:

Total rate:
1 bpp

Central PSNR [dB]
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Experimental Results:

Context Gain
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Experimental Results:
# Determining Operating Point Based on Channel Properties

= Common channel model:
= Descriptions are sent over two independent channels
= Each channel fails with probability p

= Problem formulation (for the balanced case):
= Minimize (subject to a total rate constraint):
D= (1-p)’D.+2p(1 — p)Ds + p” Duone
- Minimize (subject to a total rate constraint):
D, + «aD,
2p
(1—p)

where o =
47



Experimental Results:
Determining Operating Point Based on Channel
Properties (cont.)

= For a fixed total rate (1 bpp):

: : - | —+— Proposed coder :
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Summary
:*

= Introduction and fundamentals of MD coding
= Framework: MD coding via polyphase transform

= Proposed context-based MD wavelet image coder
= Context formation
= Context-based classficiation
= Model-based adaptive quantization
= Optimal model-based bit allocation

= Experimental results
= Classification results
= RD performance (also compared to framework)
= Context gain
= Determining the optimal operating point (for a given channel) 49



Future Directions

= Reverse context-based MD coding system:
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= Utilization of across-scale dependencies
= Extensions to more than two descriptions
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