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Outline

 Fundamentals of Multiple Description (MD) coding

 Framework: MD coding via polyphase transform 
and selective quantization

 Proposed system:
Context-based MD wavelet image coder
 Motivation

 Detailed description

 Experimental results

 Summary and future directions
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 Where does an SD (Single Description) coding
system go wrong?

 Packet losses!

 Intolerable retransmission delay

 No feedback channel

 Order must be maintained (layered coding)

Fundamentals of MD Coding:
Introduction
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 Possible solution:
MD coding
 Represent the information source with several descriptions

 The source can be approximated from any (non-empty) 
subset of the descriptions

 Makes all received descriptions useful

 Both encoder and decoder are involved (different 
from post processing-based error concealment)

 Caveat: No free lunch! (Redundant representation)

Fundamentals of MD Coding:
Introduction (cont.)

 Purpose: Provide error resilience to information 
transmitted on lossy networks (e.g., the Internet)
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Fundamentals of MD Coding:
Example – MD Coding vs. Layered Coding 
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Fundamentals of MD Coding:
Scenario for MD Coding (Two Descriptions)

 Distortion attained by Decoder i :

N – Number of source symbols
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 MD rate distortion region (MD region):
Closure of the set of achievable quintuples (R1, R2, D0, D1, D2)

 Achievable quintuples (not all) by [El Gamal and Cover, 1982]

 The MD region for a memoryless Gaussian source with 
variance σ2 and squared error distortion measure:

Fundamentals of MD Coding:
Information Theoretic Aspects

where
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4-bit quantizer

(From [Goyal, 2001])

Two 3-bit quantizers

(Total rate: 6 bits)

“Complicated” MDSQ

(Total rate: ~5.2 bits)

Fundamentals of MD Coding:
MD Scalar Quantization (MDSQ)

 Example: Communicate a single real number
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Framework: MD Coding via Polyphase 
Transform and Selective Quantization

 Proposed by [Jiang and Ortega, 1999]

 Explicitly separates description generation and 
redundancy addition

 Reduced complexity of design and implementation

 Enables simple generation of descriptions of 
equal rate and importance (balanced case)

 Well suited to communication systems with no 
priority mechanisms (e.g., the Internet)
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Polyphase Transform-Based MD Coding:
The Polyphase Transform

 Polyphase transform:
Decomposition to polyphase-like components

 Example – plain polyphase transform:
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Polyphase Transform-Based MD Coding:
System Outline

 For correlated input data (e.g., an image), a preliminary 
decorrelating transform is required
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Polyphase Transform-Based MD Coding:
Experimental Results

 Wavelet transform used for decorrelation

 Polyphase transform – two alternatives:

 Plain

 Vector-form: Groups coefficients in different 
subbands corresponding to the same spatial 
location (similar to the zerotree structure)

 SPIHT used for quantization and entropy coding
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Polyphase Transform-Based MD Coding:
Experimental Results (cont.)

(From [Jiang and Ortega, 1999])

Lena (grayscale)

512x512 pixels

Total rate = 1 bpp
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 K-level 1-D discrete wavelet transform (DWT):

Context-Based MD Wavelet Image Coding:
Wavelet Background

 Approximation coefficients: {aK(n)}

 Detail coefficients: {di(n)}, i   {1,…,K}
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 2-D DWT using separable filters:

Context-Based MD Wavelet Image Coding:
Wavelet Background (cont.)

 Multiple levels (scales): Repeat on approximation
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 Example:

Context-Based MD Wavelet Image Coding:
Wavelet Background (cont.)

Original Wavelet transform
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 Wavelet transform provides good energy compaction 
( reducing the correlation amongst wavelet coeffs)

 First order statistics of detail wavelet coeffs successfully 
modeled using the Generalized Gaussian Distribution 
(GGD):

where                               and
 r = 2: Gaussian distribution

 r = 1: Laplacian distribution (double exponential distribution)

 r        : Uniform distribution (pointwise convergence on (-s,s) )

Context-Based MD Wavelet Image Coding:
Statistical Characterization of Wavelet Coeffs
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 Best fit of GGD for natural images: r [0.5, 1]
[Buccigrossi and Simoncelli, 1999]

 First order statistics of detail wavelet coeffs can be 
reasonably modeled using Laplacian distribution

Context-Based MD Wavelet Image Coding:
Statistical Characterization of Wavelet Coeffs (cont.)

r =1, s =1.5
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 Wavelet coefficients are not statistically independent 
(although approximately decorrelated)

 Potential conditioning neighbors:

Context-Based MD Wavelet Image Coding:
Statistical Characterization of Wavelet Coeffs (cont.)

Spatial and scale-to-scale dependencies:

 Dependencies are implicitly utilized by numerous 
image compression schemes (e.g., EZW, SPIHT)

 Linear predictor for the magnitude of a coefficient 
proposed by [Buccigrossi and Simoncelli, 1999]

 Contribution to the mutual information between a coeff’s 

magnitude and its predictor (in decreasing order):
Local neighbors (“Left”, “Up”), parent, cousins, …
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 Concept: Improve coding efficiency of Q2 via 
utilization of contextual information from Q1

Context-Based MD Wavelet Image Coding:
Proposed System Outline
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Context-Based MD Wavelet Image Coding:
Proposed MD Encoder – Block Diagram
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Context-Based MD Wavelet Image Coding:
Proposed MD Decoder – Block Diagram
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 Classification of the wavelet coefficient Xi,j is based on 
the following context Ci,j of quantized local neighbors:

Context-Based MD Wavelet Image Coding:
Context Formation
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 Penalty of forward classification is avoided (classification 
is based on quantized coefficients)

 Side information is transmitted for improved performance:

 Classification thresholds (allowing to select a class for a 
coefficient given its context)

 Source statistics of each class (each class is modeled using a 
parametric distribution)

 Avoids explicit characterization of statistical dependencies 
between neighboring wavelet coefficients

 Classification procedure inspired by [Yoo et al., 1999]
(SD subband image coder)

Context-Based MD Wavelet Image Coding:
Context-Based Classification

 Classification offers a potential increase in coding 
efficiency (quantization is adapted to the data)
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 Classification is based on a weighted average of the 
magnitudes of coefficients in Ci,j (“Activity”):

where

 E.g.: Weights are inversely proportional to the Euclidean 
distances of the corresponding coeffs in Ci,j from Xi,j

 Classification rule (for set classification thresholds):

Context-Based MD Wavelet Image Coding:
Classification Rule 

 Purpose: Assign one of a finite number of classes 
to a coefficient Xi,j given its context Ci,j
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 Model assumption: Coeffs in each class of each subband 
are drawn from a (zero-mean) Laplacian distribution

 Holds for approximation subband as well, due to employment of a 
DPCM-like prediction scheme (i.e., holds for prediction errors)

 The Laplacian parameter for each class is estimated using MLE:

Context-Based MD Wavelet Image Coding:
Classification Thresholds Design 

 Purpose (for a given subband):

 Determine the classification thresholds T1,T2,…,TN-1 from an 

initial set of N0-1 candidate thresholds (where N0>N)

 Goal: Maximization of the “classification gain” (coding gain 

due to classification, under certain simplifying assumptions)
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 Classification threshold design algorithm (given subband):

Given: ▫ The desired total number of classes N+1

▫ N0-1 strictly increasing initial thresholds (where N0>N)

 Classify all coeffs with zero activity to C0 and estimate     (MLE) 

 Classify remaining coeffs according to the classification rule

and estimate (using MLE) the Laplacian parameters

 Iterate until total number of thresholds is reduced to N-1:

 Finish: return                  and   

 Side information: Total of 2NS numbers (S=#subbands) 

Context-Based MD Wavelet Image Coding:
Classification Thresholds Design (cont.)
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 Customization is based on the Laplacian parameter 
estimates, obtained during classification thresholds 
design

 Two types of quantizers are examined:
 Uniform Threshold Quantizer (UTQ)

 Uniform Reconstruction with Unity Ratio Quantizer (URURQ)

 Both types of quantizers well approximate the optimum 
ECSQ for the Laplacian distribution (with MSE distortion) 

 Both are completely defined by a single parameter  

 Number of quantization levels is odd (“mid-tread”) in 
order to enable an output entropy < 1 bit/sample

Context-Based MD Wavelet Image Coding:
Model-Based Adaptive Quantization

 Purpose: Efficient quantization using a set of 
quantizers, each customized to an individual class
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Context-Based MD Wavelet Image Coding:
Uniform Threshold Quantizer (UTQ)

 Completely defined by its step size

 Reconstruction levels are optimized for minimum 
distortion (centroid condition)
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Context-Based MD Wavelet Image Coding:
Design Strategy for the Quantizers (UTQs)

 Purpose: Avoid complex entropy-constrained design 
algorithms for the UTQs

 Means: Optimal bit allocation scheme based on a
pre-designed array of MSE-optimized UTQs of different 
step sizes (with no constraint on output entropy)

 Goal: Design an MSE-optimal UTQ with step size    
for the Laplacian distribution with parameter

 Expressions for bin boundaries, reconstruction levels and bin 
probabilities are derived straightforwardly (also found in the 
literature)
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Context-Based MD Wavelet Image Coding:
Quantizer Function of UTQ for Laplacian Distribution

 Purpose: Estimate rate and distortion of UTQ to obtain 
its operational DR function (quantizer function)

 Quantizer function is required for bit allocation

 Rate R is estimated by the output entropy of UTQ:

 We derive a closed form expression for the distortion D :

where
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Context-Based MD Wavelet Image Coding:
Quantizer Function of UTQ for Laplacian Distribution (cont.)

 Off-line computation: Array of UTQs obtained for 
closely spaced values of the step size     (for the 
unit-variance Laplacian distribution)

 Result: Indexed operational DR function (indexed by slope)
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation

 Purpose:
 Given the desired redundancy rate, determine the 

rate at which each UTQ operates

 Avoid complex on-line bit allocation procedures

 Means: 
 Efficient optimal bit allocation procedure based on 

variance scaling and on a pre-designed indexed 
array of optimized UTQs (fixed resource of the 
coder, used by encoder and decoder)

 Performed simultaneously over all classes from all 
subbands
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation (cont.)

 Optimization problem:
Find the optimal rates such that the overall 
distortion is minimized, subject to the constraint

 Lagrangian optimization:
Minimize the Lagrangian cost function                      
(for a fixed Lagrange multiplier   , to be determined such 
that            )

 Resulting rate allocation equations (≈ “constant slope”

principle):

( is the synthesis energy gain factor of class b’s subband)
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation (cont.)

 Solving the rate allocation equations via variance 
scaling:

 Observations:
▫ For a given rate, the optimal UTQ for input with variance σ2 is a

scaled version, by σ, of the optimal UTQ for unit-variance input
▫ The distortion attained by the scaled UTQ above is larger by a

factor of σ2 compared to that attained by the unit-variance UTQ

 Consequence:
The operational DR function of the optimal UTQ for an input with 
variance σ2 is obtained from that for a unit-variance input by 
scaling the distortion axis by σ2 (the slope is affected similarly)

 Strategy for solving the rate allocation equation of each class b :

▫ Slope normalization: (where                   )

▫ Index the array of UTQs by the normalized slope

▫ Scale the obtained “normalized” UTQ by       to get the actual UTQ
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation (cont.)

 Adaptation of the arithmetic entropy encoder:

 Performed using the bin probabilities of the retrieved UTQ

 Entropy encoder exploits the higher level statistics captured 
by the Laplacian model-based classification algorithm

 Determining the Lagrange multiplier    such that           :
 Define:

 Root finding of       :        

▫ Note that        is monotonically non-increasing (with   )

▫ Bracket and use the bisection method (iterate until
convergence:                            )

 The resulting     is also sent to the decoder
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Experimental Results:
Configuration

 Wavelet transform:

 Biorthogonal wavelet transform using Cohen-Daubechies-
Feauveau (CDF) 9/7-tap wavelet filters (three-level 
decomposition)

 Whole-sample symmetric boundary extension

 No coefficient expansion

 Side information parameters are represented using 16 
bits (each)

 For demonstrations: Lena image (grayscale), 512x512 
pixels (      Overhead rate per desc.: ~0.004 bpp)

 Balanced case: Descriptions of equal rate and 
importance
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Experimental Results:
Quality of Classification (Subjective)

Wavelet transform
(differential approximation)

Classification map



41

Experimental Results:
Histograms of Coefficients in the Different Classes

In solid line:

The fitted Laplacian pdf
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Experimental Results:
Performance of the Proposed Coder

Total rate:

1 bpp
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Experimental Results:
Performance Compared to Framework Coder

Total rate:

1 bpp
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Experimental Results:
Subjective Quality of Reconstruction

Proposed

Central rec.

Total: 1 bpp

Red.: 0.46 bpp

PSNR:

37.38 dB

Original SD

1 bpp

PSNR:

40.63 dB

Proposed

Side rec.

Total: 1 bpp

Red.: 0.46 bpp

PSNR:

37.26 dB
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Experimental Results:
Influence of the Number of Classes on Performance

Total rate:

1 bpp
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Experimental Results:
Context Gain

Total rate:

1 bpp
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Experimental Results:
Determining Operating Point Based on Channel Properties

 Common channel model:
 Descriptions are sent over two independent channels

 Each channel fails with probability p

 Problem formulation (for the balanced case):
 Minimize (subject to a total rate constraint):

 Minimize (subject to a total rate constraint):

where
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Experimental Results:
Determining Operating Point Based on Channel
Properties (cont.)

 For a fixed total rate (1 bpp):

min {             }

Slope 

Note:

Finding the optimum:

1-D minimization

(e.g., using golden

section search)



49

Summary

 Introduction and fundamentals of MD coding

 Framework: MD coding via polyphase transform

 Proposed context-based MD wavelet image coder
 Context formation

 Context-based classficiation

 Model-based adaptive quantization

 Optimal model-based bit allocation

 Experimental results
 Classification results

 RD performance (also compared to framework)

 Context gain

 Determining the optimal operating point (for a given channel)
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Future Directions

 Reverse context-based MD coding system: 

 Utilization of across-scale dependencies

 Extensions to more than two descriptions
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