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Outline

 Fundamentals of Multiple Description (MD) coding

 Framework: MD coding via polyphase transform 
and selective quantization

 Proposed system:
Context-based MD wavelet image coder
 Motivation

 Detailed description

 Experimental results

 Summary and future directions
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 Where does an SD (Single Description) coding
system go wrong?

 Packet losses!

 Intolerable retransmission delay

 No feedback channel

 Order must be maintained (layered coding)

Fundamentals of MD Coding:
Introduction
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 Possible solution:
MD coding
 Represent the information source with several descriptions

 The source can be approximated from any (non-empty) 
subset of the descriptions

 Makes all received descriptions useful

 Both encoder and decoder are involved (different 
from post processing-based error concealment)

 Caveat: No free lunch! (Redundant representation)

Fundamentals of MD Coding:
Introduction (cont.)

 Purpose: Provide error resilience to information 
transmitted on lossy networks (e.g., the Internet)
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Fundamentals of MD Coding:
Example – MD Coding vs. Layered Coding 
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Fundamentals of MD Coding:
Scenario for MD Coding (Two Descriptions)

 Distortion attained by Decoder i :

N – Number of source symbols
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 MD rate distortion region (MD region):
Closure of the set of achievable quintuples (R1, R2, D0, D1, D2)

 Achievable quintuples (not all) by [El Gamal and Cover, 1982]

 The MD region for a memoryless Gaussian source with 
variance σ2 and squared error distortion measure:

Fundamentals of MD Coding:
Information Theoretic Aspects

where
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4-bit quantizer

(From [Goyal, 2001])

Two 3-bit quantizers

(Total rate: 6 bits)

“Complicated” MDSQ

(Total rate: ~5.2 bits)

Fundamentals of MD Coding:
MD Scalar Quantization (MDSQ)

 Example: Communicate a single real number
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Framework: MD Coding via Polyphase 
Transform and Selective Quantization

 Proposed by [Jiang and Ortega, 1999]

 Explicitly separates description generation and 
redundancy addition

 Reduced complexity of design and implementation

 Enables simple generation of descriptions of 
equal rate and importance (balanced case)

 Well suited to communication systems with no 
priority mechanisms (e.g., the Internet)
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Polyphase Transform-Based MD Coding:
The Polyphase Transform

 Polyphase transform:
Decomposition to polyphase-like components

 Example – plain polyphase transform:
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Polyphase Transform-Based MD Coding:
System Outline

 For correlated input data (e.g., an image), a preliminary 
decorrelating transform is required
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Polyphase Transform-Based MD Coding:
Experimental Results

 Wavelet transform used for decorrelation

 Polyphase transform – two alternatives:

 Plain

 Vector-form: Groups coefficients in different 
subbands corresponding to the same spatial 
location (similar to the zerotree structure)

 SPIHT used for quantization and entropy coding
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Polyphase Transform-Based MD Coding:
Experimental Results (cont.)

(From [Jiang and Ortega, 1999])

Lena (grayscale)

512x512 pixels

Total rate = 1 bpp
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 K-level 1-D discrete wavelet transform (DWT):

Context-Based MD Wavelet Image Coding:
Wavelet Background

 Approximation coefficients: {aK(n)}

 Detail coefficients: {di(n)}, i   {1,…,K}
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 2-D DWT using separable filters:

Context-Based MD Wavelet Image Coding:
Wavelet Background (cont.)

 Multiple levels (scales): Repeat on approximation
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 Example:

Context-Based MD Wavelet Image Coding:
Wavelet Background (cont.)

Original Wavelet transform
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 Wavelet transform provides good energy compaction 
( reducing the correlation amongst wavelet coeffs)

 First order statistics of detail wavelet coeffs successfully 
modeled using the Generalized Gaussian Distribution 
(GGD):

where                               and
 r = 2: Gaussian distribution

 r = 1: Laplacian distribution (double exponential distribution)

 r        : Uniform distribution (pointwise convergence on (-s,s) )

Context-Based MD Wavelet Image Coding:
Statistical Characterization of Wavelet Coeffs
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 Best fit of GGD for natural images: r [0.5, 1]
[Buccigrossi and Simoncelli, 1999]

 First order statistics of detail wavelet coeffs can be 
reasonably modeled using Laplacian distribution

Context-Based MD Wavelet Image Coding:
Statistical Characterization of Wavelet Coeffs (cont.)

r =1, s =1.5
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 Wavelet coefficients are not statistically independent 
(although approximately decorrelated)

 Potential conditioning neighbors:

Context-Based MD Wavelet Image Coding:
Statistical Characterization of Wavelet Coeffs (cont.)

Spatial and scale-to-scale dependencies:

 Dependencies are implicitly utilized by numerous 
image compression schemes (e.g., EZW, SPIHT)

 Linear predictor for the magnitude of a coefficient 
proposed by [Buccigrossi and Simoncelli, 1999]

 Contribution to the mutual information between a coeff’s 

magnitude and its predictor (in decreasing order):
Local neighbors (“Left”, “Up”), parent, cousins, …
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 Concept: Improve coding efficiency of Q2 via 
utilization of contextual information from Q1

Context-Based MD Wavelet Image Coding:
Proposed System Outline
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Context-Based MD Wavelet Image Coding:
Proposed MD Encoder – Block Diagram
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Context-Based MD Wavelet Image Coding:
Proposed MD Decoder – Block Diagram
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 Classification of the wavelet coefficient Xi,j is based on 
the following context Ci,j of quantized local neighbors:

Context-Based MD Wavelet Image Coding:
Context Formation
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 Penalty of forward classification is avoided (classification 
is based on quantized coefficients)

 Side information is transmitted for improved performance:

 Classification thresholds (allowing to select a class for a 
coefficient given its context)

 Source statistics of each class (each class is modeled using a 
parametric distribution)

 Avoids explicit characterization of statistical dependencies 
between neighboring wavelet coefficients

 Classification procedure inspired by [Yoo et al., 1999]
(SD subband image coder)

Context-Based MD Wavelet Image Coding:
Context-Based Classification

 Classification offers a potential increase in coding 
efficiency (quantization is adapted to the data)
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 Classification is based on a weighted average of the 
magnitudes of coefficients in Ci,j (“Activity”):

where

 E.g.: Weights are inversely proportional to the Euclidean 
distances of the corresponding coeffs in Ci,j from Xi,j

 Classification rule (for set classification thresholds):

Context-Based MD Wavelet Image Coding:
Classification Rule 

 Purpose: Assign one of a finite number of classes 
to a coefficient Xi,j given its context Ci,j
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 Model assumption: Coeffs in each class of each subband 
are drawn from a (zero-mean) Laplacian distribution

 Holds for approximation subband as well, due to employment of a 
DPCM-like prediction scheme (i.e., holds for prediction errors)

 The Laplacian parameter for each class is estimated using MLE:

Context-Based MD Wavelet Image Coding:
Classification Thresholds Design 

 Purpose (for a given subband):

 Determine the classification thresholds T1,T2,…,TN-1 from an 

initial set of N0-1 candidate thresholds (where N0>N)

 Goal: Maximization of the “classification gain” (coding gain 

due to classification, under certain simplifying assumptions)
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 Classification threshold design algorithm (given subband):

Given: ▫ The desired total number of classes N+1

▫ N0-1 strictly increasing initial thresholds (where N0>N)

 Classify all coeffs with zero activity to C0 and estimate     (MLE) 

 Classify remaining coeffs according to the classification rule

and estimate (using MLE) the Laplacian parameters

 Iterate until total number of thresholds is reduced to N-1:

 Finish: return                  and   

 Side information: Total of 2NS numbers (S=#subbands) 

Context-Based MD Wavelet Image Coding:
Classification Thresholds Design (cont.)
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 Customization is based on the Laplacian parameter 
estimates, obtained during classification thresholds 
design

 Two types of quantizers are examined:
 Uniform Threshold Quantizer (UTQ)

 Uniform Reconstruction with Unity Ratio Quantizer (URURQ)

 Both types of quantizers well approximate the optimum 
ECSQ for the Laplacian distribution (with MSE distortion) 

 Both are completely defined by a single parameter  

 Number of quantization levels is odd (“mid-tread”) in 
order to enable an output entropy < 1 bit/sample

Context-Based MD Wavelet Image Coding:
Model-Based Adaptive Quantization

 Purpose: Efficient quantization using a set of 
quantizers, each customized to an individual class
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Context-Based MD Wavelet Image Coding:
Uniform Threshold Quantizer (UTQ)

 Completely defined by its step size

 Reconstruction levels are optimized for minimum 
distortion (centroid condition)



32

Context-Based MD Wavelet Image Coding:
Design Strategy for the Quantizers (UTQs)

 Purpose: Avoid complex entropy-constrained design 
algorithms for the UTQs

 Means: Optimal bit allocation scheme based on a
pre-designed array of MSE-optimized UTQs of different 
step sizes (with no constraint on output entropy)

 Goal: Design an MSE-optimal UTQ with step size    
for the Laplacian distribution with parameter

 Expressions for bin boundaries, reconstruction levels and bin 
probabilities are derived straightforwardly (also found in the 
literature)
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Context-Based MD Wavelet Image Coding:
Quantizer Function of UTQ for Laplacian Distribution

 Purpose: Estimate rate and distortion of UTQ to obtain 
its operational DR function (quantizer function)

 Quantizer function is required for bit allocation

 Rate R is estimated by the output entropy of UTQ:

 We derive a closed form expression for the distortion D :

where
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Context-Based MD Wavelet Image Coding:
Quantizer Function of UTQ for Laplacian Distribution (cont.)

 Off-line computation: Array of UTQs obtained for 
closely spaced values of the step size     (for the 
unit-variance Laplacian distribution)

 Result: Indexed operational DR function (indexed by slope)
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation

 Purpose:
 Given the desired redundancy rate, determine the 

rate at which each UTQ operates

 Avoid complex on-line bit allocation procedures

 Means: 
 Efficient optimal bit allocation procedure based on 

variance scaling and on a pre-designed indexed 
array of optimized UTQs (fixed resource of the 
coder, used by encoder and decoder)

 Performed simultaneously over all classes from all 
subbands
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation (cont.)

 Optimization problem:
Find the optimal rates such that the overall 
distortion is minimized, subject to the constraint

 Lagrangian optimization:
Minimize the Lagrangian cost function                      
(for a fixed Lagrange multiplier   , to be determined such 
that            )

 Resulting rate allocation equations (≈ “constant slope”

principle):

( is the synthesis energy gain factor of class b’s subband)
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation (cont.)

 Solving the rate allocation equations via variance 
scaling:

 Observations:
▫ For a given rate, the optimal UTQ for input with variance σ2 is a

scaled version, by σ, of the optimal UTQ for unit-variance input
▫ The distortion attained by the scaled UTQ above is larger by a

factor of σ2 compared to that attained by the unit-variance UTQ

 Consequence:
The operational DR function of the optimal UTQ for an input with 
variance σ2 is obtained from that for a unit-variance input by 
scaling the distortion axis by σ2 (the slope is affected similarly)

 Strategy for solving the rate allocation equation of each class b :

▫ Slope normalization: (where                   )

▫ Index the array of UTQs by the normalized slope

▫ Scale the obtained “normalized” UTQ by       to get the actual UTQ
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Context-Based MD Wavelet Image Coding:
Optimal Model-Based Bit Allocation (cont.)

 Adaptation of the arithmetic entropy encoder:

 Performed using the bin probabilities of the retrieved UTQ

 Entropy encoder exploits the higher level statistics captured 
by the Laplacian model-based classification algorithm

 Determining the Lagrange multiplier    such that           :
 Define:

 Root finding of       :        

▫ Note that        is monotonically non-increasing (with   )

▫ Bracket and use the bisection method (iterate until
convergence:                            )

 The resulting     is also sent to the decoder
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Experimental Results:
Configuration

 Wavelet transform:

 Biorthogonal wavelet transform using Cohen-Daubechies-
Feauveau (CDF) 9/7-tap wavelet filters (three-level 
decomposition)

 Whole-sample symmetric boundary extension

 No coefficient expansion

 Side information parameters are represented using 16 
bits (each)

 For demonstrations: Lena image (grayscale), 512x512 
pixels (      Overhead rate per desc.: ~0.004 bpp)

 Balanced case: Descriptions of equal rate and 
importance
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Experimental Results:
Quality of Classification (Subjective)

Wavelet transform
(differential approximation)

Classification map
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Experimental Results:
Histograms of Coefficients in the Different Classes

In solid line:

The fitted Laplacian pdf



42

Experimental Results:
Performance of the Proposed Coder

Total rate:

1 bpp
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Experimental Results:
Performance Compared to Framework Coder

Total rate:

1 bpp
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Experimental Results:
Subjective Quality of Reconstruction

Proposed

Central rec.

Total: 1 bpp

Red.: 0.46 bpp

PSNR:

37.38 dB

Original SD

1 bpp

PSNR:

40.63 dB

Proposed

Side rec.

Total: 1 bpp

Red.: 0.46 bpp

PSNR:

37.26 dB
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Experimental Results:
Influence of the Number of Classes on Performance

Total rate:

1 bpp
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Experimental Results:
Context Gain

Total rate:

1 bpp
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Experimental Results:
Determining Operating Point Based on Channel Properties

 Common channel model:
 Descriptions are sent over two independent channels

 Each channel fails with probability p

 Problem formulation (for the balanced case):
 Minimize (subject to a total rate constraint):

 Minimize (subject to a total rate constraint):

where
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Experimental Results:
Determining Operating Point Based on Channel
Properties (cont.)

 For a fixed total rate (1 bpp):

min {             }

Slope 

Note:

Finding the optimum:

1-D minimization

(e.g., using golden

section search)
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Summary

 Introduction and fundamentals of MD coding

 Framework: MD coding via polyphase transform

 Proposed context-based MD wavelet image coder
 Context formation

 Context-based classficiation

 Model-based adaptive quantization

 Optimal model-based bit allocation

 Experimental results
 Classification results

 RD performance (also compared to framework)

 Context gain

 Determining the optimal operating point (for a given channel)
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Future Directions

 Reverse context-based MD coding system: 

 Utilization of across-scale dependencies

 Extensions to more than two descriptions
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