

SIGNAL & IMAGE PROCESSING LAB

LOCAL-GLOBAL BACKGROUND MODELING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES

Eyal Madar

<u>Supervisors:</u> Prof. David Malah Dr. Meir Bar-Zohar

7/12/2010

Outline

□ Hyperspectral Imaging

- Image Acquisition
- Anomaly Detection

□ Statistical Background Modeling

- Local Approach
- Global Approach

Combined Local/Global Approach – Proposed Algorithm

- Local Part
- Global Part
- □ Improvements of the Proposed Algorithm
 - Spectral Clustering
 - Non-Gaussian Fitting

□ Summary and Future Work

Outline

UHyperspectral Imaging

- Image Acquisition
- Anomaly Detection

Statistical Background Modeling

- Local Approach
- Global Approach

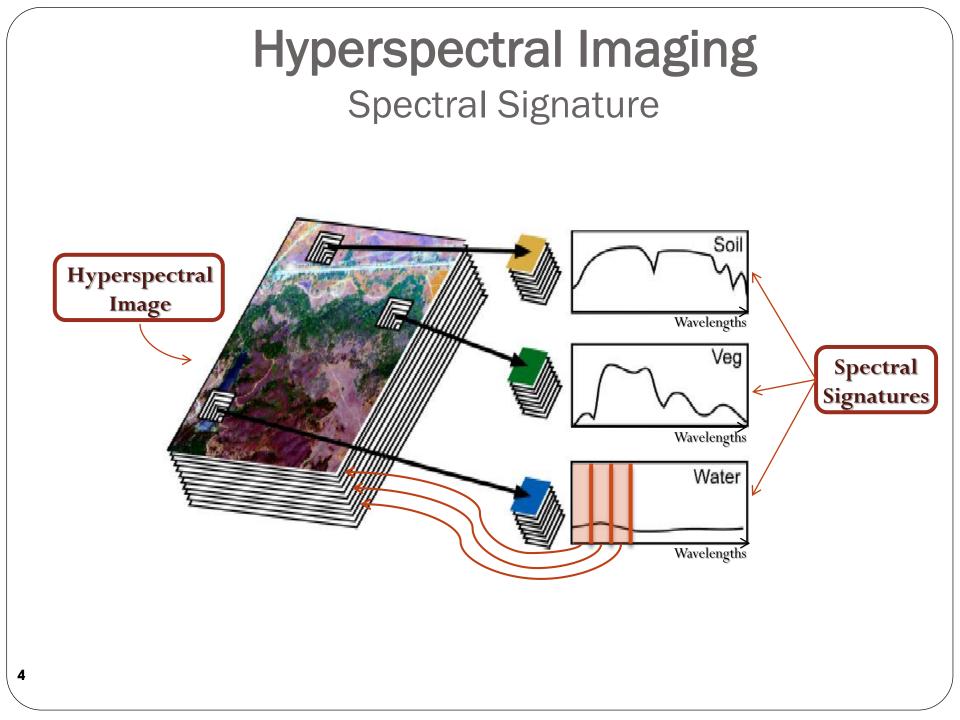
Combined Local/Global Approach – Proposed Algorithm

- Local Part
- Global Part

□ Improvements of the Proposed Algorithm

- Spectral Clustering
- Non-Gaussian Fitting

Summary and Future Work



Hyperspectral Imaging Image Acquisition

- Obtain a continuous spectrum of electromagnetic radiation reflected from the surface of the earth
- Each pixel corresponds to a spectral signature (spectrum) reflected from the pixel location
- Each material can be (uniquely) characterized by its spectrum

Detection in Hyperspectral Imaging

• Military Interest:

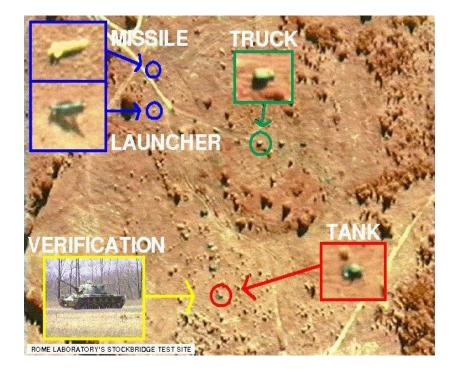
- Detect camouflaged man-made objects.
- Using the spectral signature to discriminate targets from the background

• Automatic Detection:

• Supervised Algorithms

Based on prior knowledge on the target spectral signature

• Unsupervised Algorithms No knowledge on the target spectral signature.



Anomaly Detection

Unsupervised Detection

Prior anomaly signatures are unknown

□ Anomaly detection methods:

- 1. Model the background
- 2. Detect anomalies by finding pixels that are not well-described by the background model

□ Statistical Background Modeling

- Local approach
- Global approach

Outline

□ Hyperspectral Imaging

- Image Acquisition
- Anomaly Detection

Statistical Background Modeling

- Local Approach
- Global Approach

Combined Local/Global Approach – Proposed Algorithm

- Local Part
- Global Part
- □ Improvements of the Proposed Algorithm
 - Spectral Clustering
 - Non-Gaussian Fitting

□ Summary and Future Work

Statistical Background Modeling

Local Approach:

- Background is estimated in a local neighborhood of a tested pixel.
- An anomaly is a pixel spectrally different from the local background

Global Approach:

- Background modeling is based on the entire image.
- An anomaly is a pixel spectrally different from the global background.

Local Approach RX (Reed-Xiaoli 1990) - 1

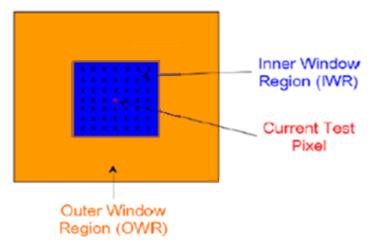
□ Assumption

The background pixels in a local neighborhood of a tested pixel are assumed to be independent, identically distributed, Gaussian random vectors.

> $H_0 = N(\mu, \Sigma)$ (Anomaly absent) $H_1 = N(\mu + a\mathbf{s}, \Sigma)$ (Anomaly present)

Maximum Likelihood Gaussian Statistics Estimation

$$\mu = \frac{1}{N_b} \sum_{i=1}^{N_b} \mathbf{x}_i$$
$$\Sigma = \frac{1}{N_b - 1} \sum_{i=1}^{N_b} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T$$
$$N_b = \text{Number of pixels in OWR}$$



Local Approach RX (Reed-Xiaoli 1990) - 2

Generalized Likelihood Ratio Threshold (GLRT)

The Mahalanobis distance between the tested pixel and the background mean vector is compared to a threshold to detect an anomaly:

$$RX(y) = (\mathbf{y} - \mu)^T \Sigma^{-1} (\mathbf{y} - \mu) > Th$$

GIODAI Approach GMM-RX

□ Assumption

The background process is modeled by a linear combination of K Gaussian distributions.

$$f(\mathbf{X}) = \sum_{k=1}^{K} \tau_k f_k(\mathbf{X}|\mu_k, \Sigma_k)$$

 $f_k(\mu_k, \Sigma_k)$: Gaussian Distribution τ_k : Probability of cluster k occurence

Anomaly Test

An anomaly is, as in local methods, a pixel that does not fit well to the background process.

GMM-RX(
$$\mathbf{y}$$
) = $\sum_{k=1}^{K} \tau_k f_k(\mathbf{y}|\mu_k, \Sigma_k) < P_{th}$

Local and Global Summary

Local Approach

Advantage

Due to the <u>many degrees of</u> <u>freedom</u>, local background models can be tightly fitted to the background data.

🖵 Problem

- Too high number of degrees of freedom may cause model <u>overfitting.</u>
- Insufficient data for parameters estimations of complex local models

Global Approach

🗖 Advantage

More resistant to the overfitting problem.

🗆 Problem

- Limited ability to adapt to all nuances of the background process (<u>underfitting</u> problem)
- Difficult optimization process with a lot of local minima

Outline

□ Hyperspectral Imaging

- Image Acquisition
- Anomaly Detection

□ Statistical Background Modeling

- Local Approach
- Global Approach

Combined Local/Global Approach

- Local Part
- Global Part
- □ Improvements of the Proposed Algorithm
 - Spectral Clustering
 - Non-Gaussian Fitting

□ Summary and Future Work

Combined Local-Global Approach

🗆 Goal

Significantly improve detector performance by a proper combination of the local and global background modeling principles.

□ Background Extreme Value Analysis - BEVA

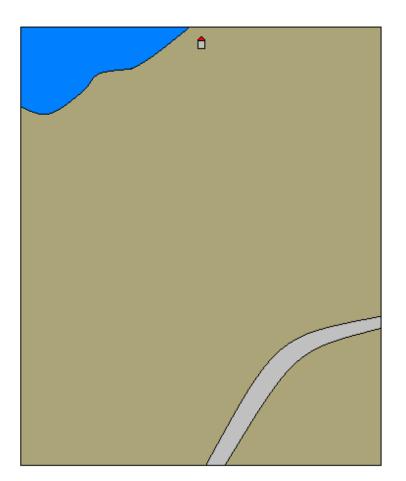
- Local part:
- Local background model estimation based on Extreme Value Theory

<u>Global part:</u>

Global post-filtering using a "dictionary" of local background model

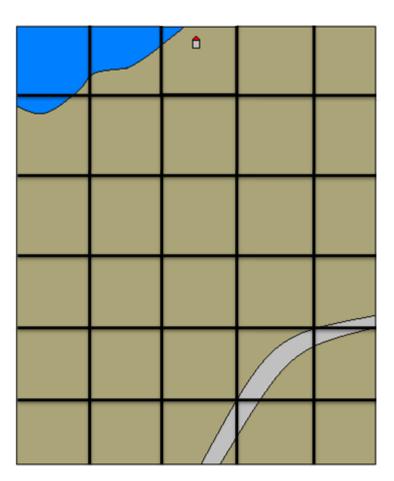
BEVA

Background Extreme Value Analysis



BEVA

Background Extreme Value Analysis



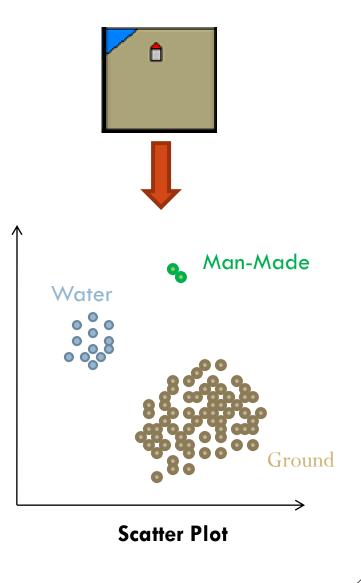
BEVA's Local Part

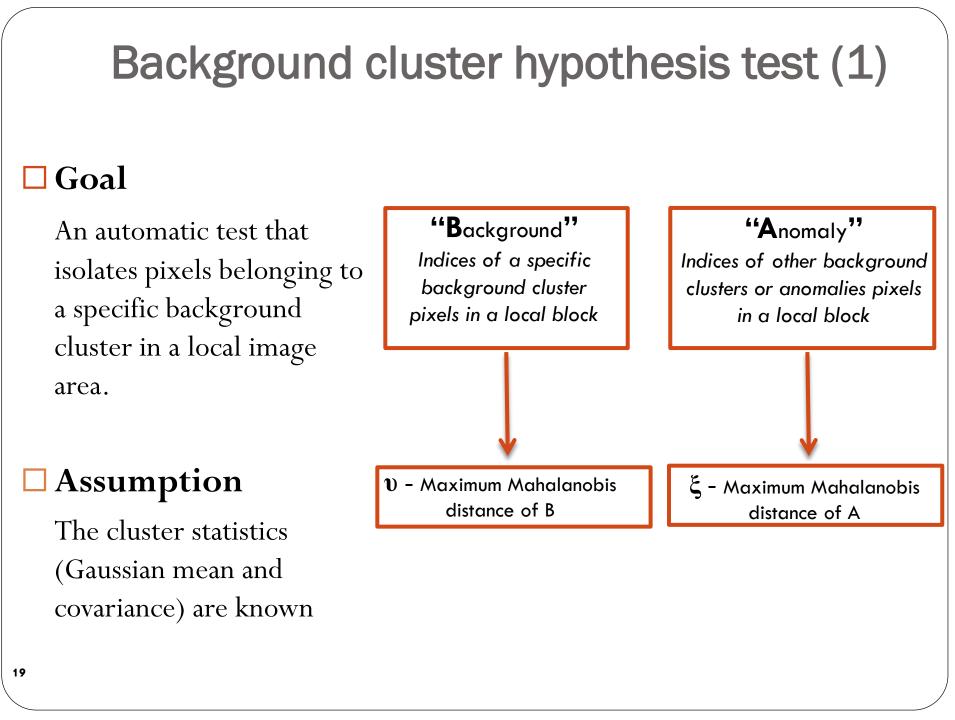
Background Model Assumption

• The local background model is :

- 1. Composed of a small number of distinct clusters up to L
- 2. Ordered by size
- 3. Each distributed as a separate Gaussian distribution

 $\begin{cases} x \in C_k, \ 1 \le k \le L \\ C_k \sim N(\mu_k, \Sigma_k) \\ |C_1| \ge |C_2| \ge \cdots \ge |C_L| \end{cases}$





Background cluster hypothesis test (2)

Distribution of v

Given by extreme value statistics of maximum-norm Gaussian realizations:

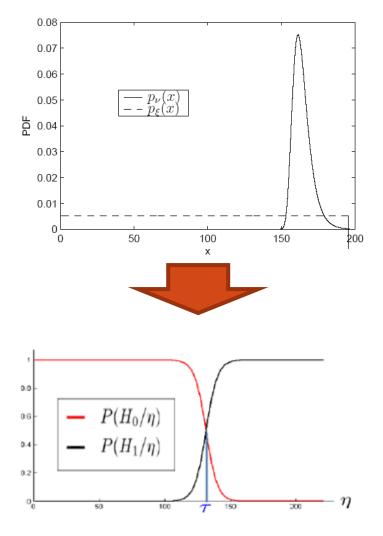
$$P(v \le x) = G(a_{p,N}(x - b_{p,N}))$$

with

 $G(x) = e^{-e^{-x}}$ (Gumbel distribution)

Distribution of ξ

Assumed to be uniformly-distributed



BEVA's Local Part Algorithm

Main Loop:

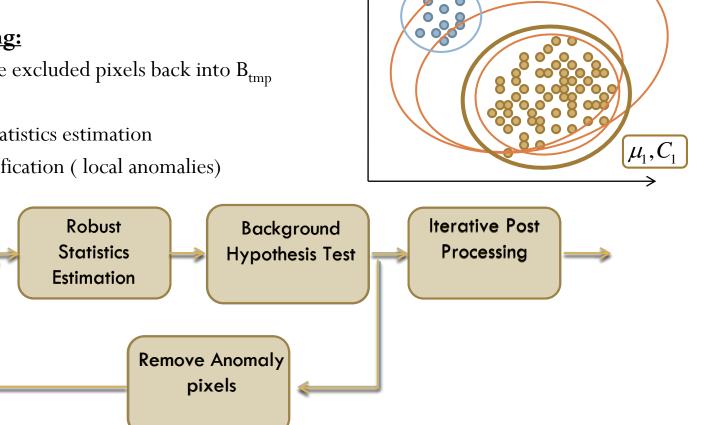
An intermediate set $\rm B_{tmp}$ exclusively composed of pixels of the dominant background cluster is obtained.

Post Processing:

Re-introduce the excluded pixels back into B_{tmp}

Result:

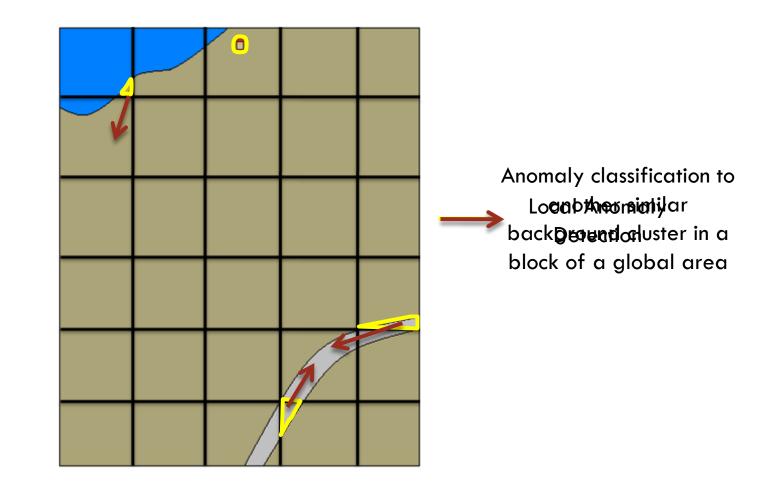
- Clusters statistics estimation
- Pixel classification (local anomalies)

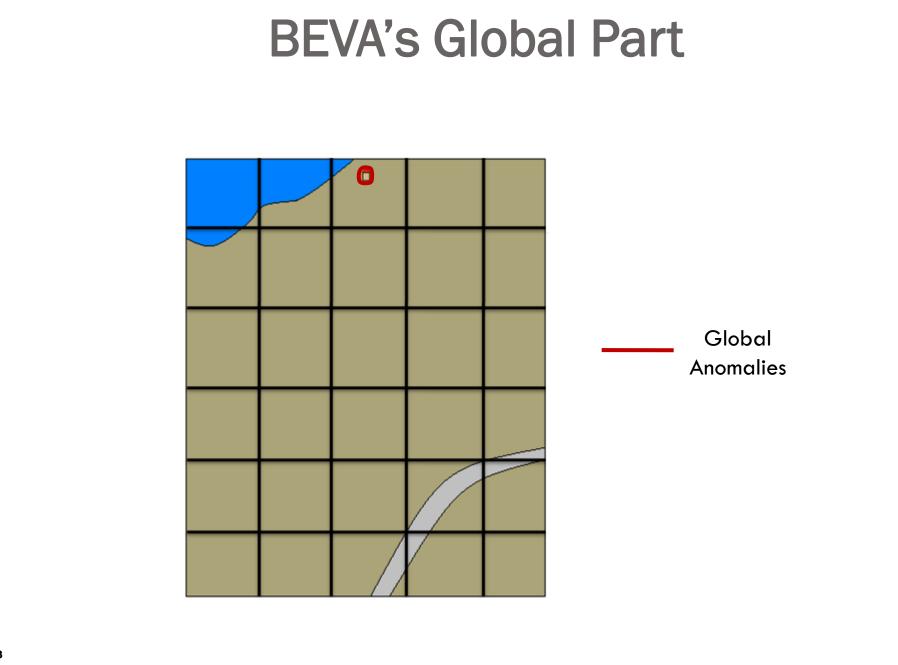


 μ_{2}, C_{2}

• Local Anomaly

BEVA's Global Part





Experimental Results

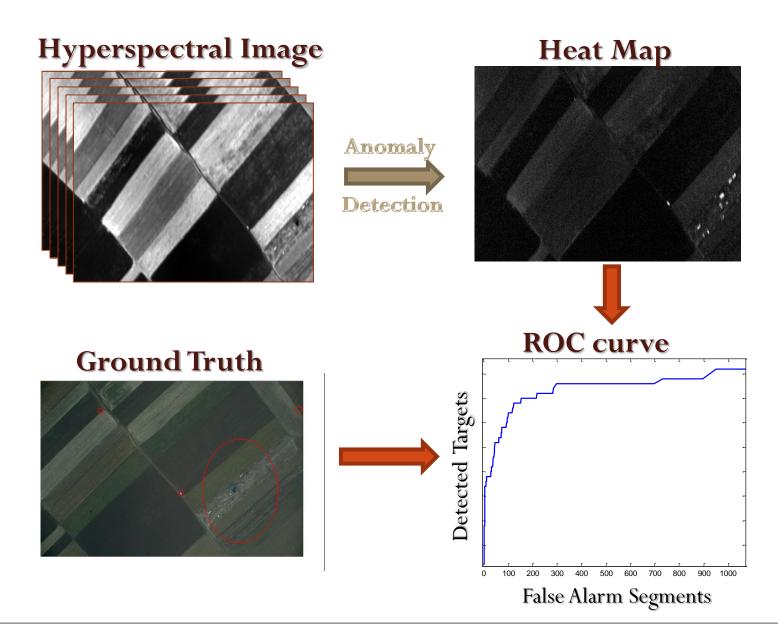
□ <u>Data:</u>

- AISA airborne sensor
- 5 real hyperspectral image cubes (1.2km²)
- 65 spectral bands (400-1000nm)
- 50 anomalies (vehicles and small constructions)

□ <u>Algorithm</u>:

- Local block size 35x35
- Global block size 525x300

ROC Curve



BEVA ROC Curve 49 F Detected Target Segments out of 50 - RX GMM-RX BEVA

False Alarm Segments

Outline

□ Hyperspectral Imaging

- Image Acquisition
- Anomaly Detection

Statistical Background Modeling

- Local Approach
- Global Approach
- Combined Local/Global Approach Proposed Algorithm
 - Local Part
 - Global Part

□ Improvements of the Proposed Algorithm

- Spectral Clustering
- Non-Gaussian Fitting

□ Summary and Future Work

Spectral BEVA Motivation

BEVA's drawbacks

Local Segmentation problem

Difficulties in multimodal background pdf estimation. More than 90% local blocks are segmented into just one cluster

Global Filter problem

Spatially dispersed background pixels are wrongly detected in BEVA as anomalies

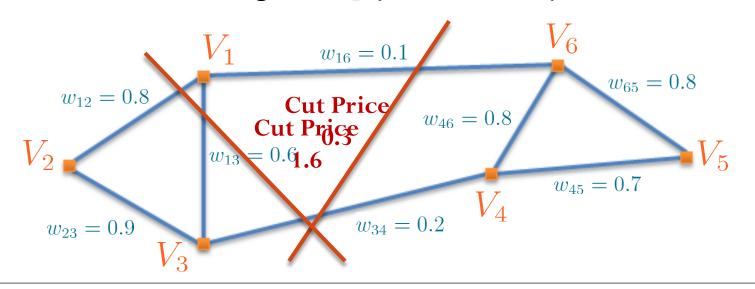
Spectral BEVA solution

- Segment the local block using Spectral Clustering
- Estimate background statistics for each local segment
- Add an auxiliary global background dictionary

Similarity Graph

Graph Theory

- Represent dataset as a weighted graph G(V, E)
- Pixels $\{x_i\}_1^N$ as the vertices V
- All pairs of vertices are connected by an edge $E = w_{ij}$
- Large weights mean that the adjacent vertices are very similar; small weights imply dissimilarity.



Spectral BEVA Normalized Graph Cut

Definition

$$Ncut(A_1, \cdots, A_C) = \sum_{i=1}^C \frac{cut(A_i, \bar{A}_i)}{vol(A_i)}$$
$$vol(A) = \sum_{i,j \text{ in } A} w_{i,j}$$

$$\mathbf{A}^* = min_{A_1, \cdots, A_C} Ncut$$

Why use this criterion?

- Segments the vertices of the graph
- Favors balanced partitions.

Computing an optimal cut is NP-hard

Spectral BEVA

Spectral Clustering Algorithm (1)

1. Define an similarity function between 2 pixels

$$w_{ij} = exp(-\frac{||x_i - x_j||_2^2}{\sigma^2})$$

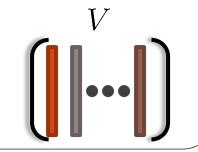
Compute similarity matrix (W), degree diagonal matrix (D) and normalized Laplacian matrix (L)

$$D_{ii} = \sum_{j=1}^{N} w_{ij}$$
$$L = D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$$

3. Solve: $Lv = \lambda v$

31

4. Find the C largest eigenvalues of L : $V = \{v_1, v_2, \cdots, v_C\} \in \mathbb{R}^{N \times C}$

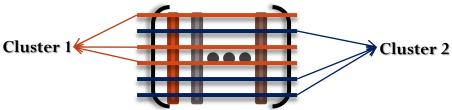


Spectral BEVA Spectral Clustering Algorithm (2)

5. Re-normalize the rows of V

$$\widetilde{V}_{ij} = V_{ij} / \sqrt{\sum_j V_{ij}^2}$$

6. Treat each row of \widetilde{V} as a point in \mathbb{R}^C and cluster via k-means

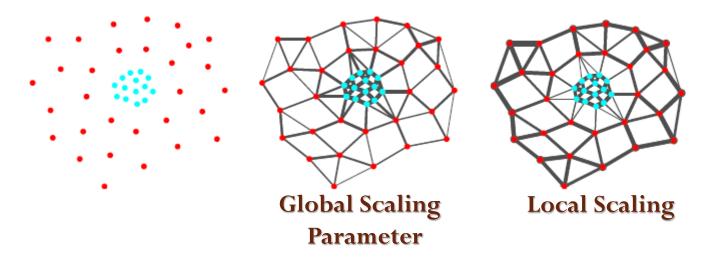


7. Assign the original point x_i to cluster c if and only if the corresponding row i of the matrix \widetilde{V} was assigned to cluster c

32

Spectral BEVA Local Scaling (Zelnik-Manor, Perona – 2004)

□ Motivation



Calculate a local scaling parameter σ_i for each data point x_i

□ Self Tuning

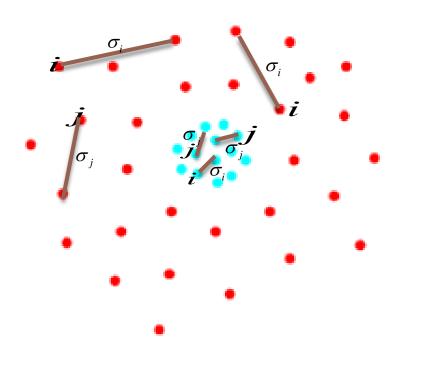
Using the local statistics of the neighborhood of point x_i $\sigma_i = d(x_i, x_K)$ where x_K is the K'th neighbor of point x_i

Spectral BEVA Local Scaling

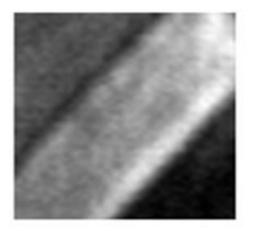
Cases:

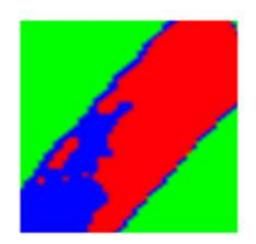
- Both large scaling parameters, large distance \rightarrow High similarity
- One small scaling parameter, large distance \rightarrow Low similarity
- Both small scaling parameters, small distance → High similarity

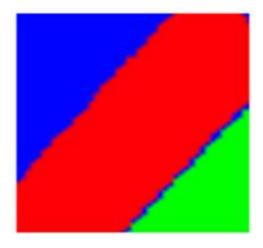
$$w_{ij} = e^{-\frac{||x_i - x_j||_2^2}{\sigma_i \sigma_j}}$$
$$\sigma_i = d(x_i, x_K)$$

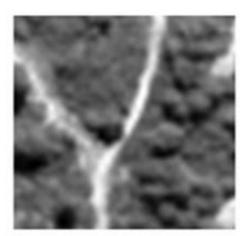


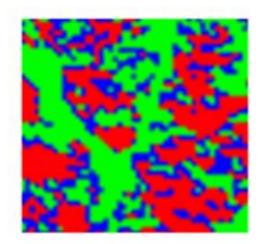
Spectral BEVA Clustering Results



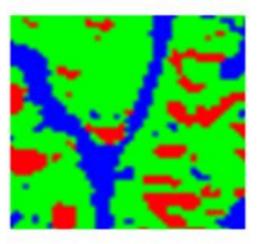




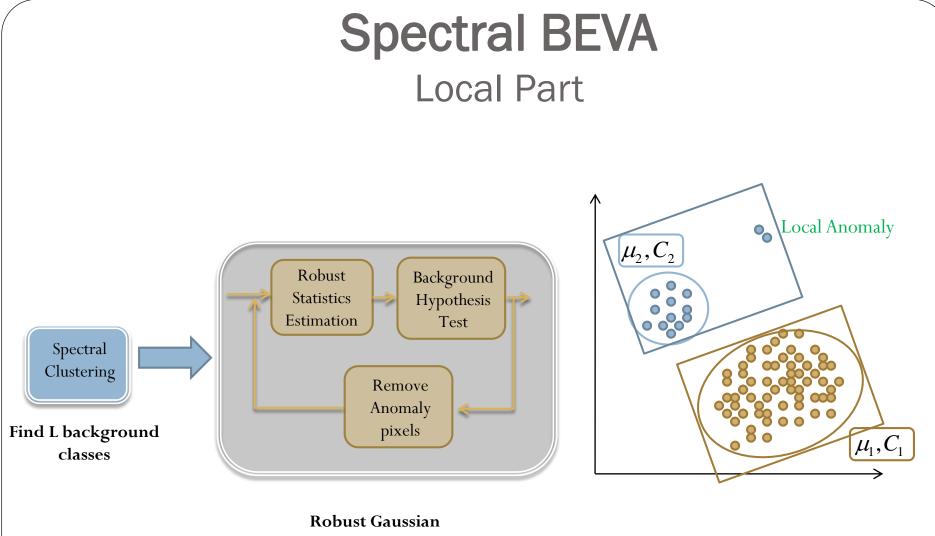




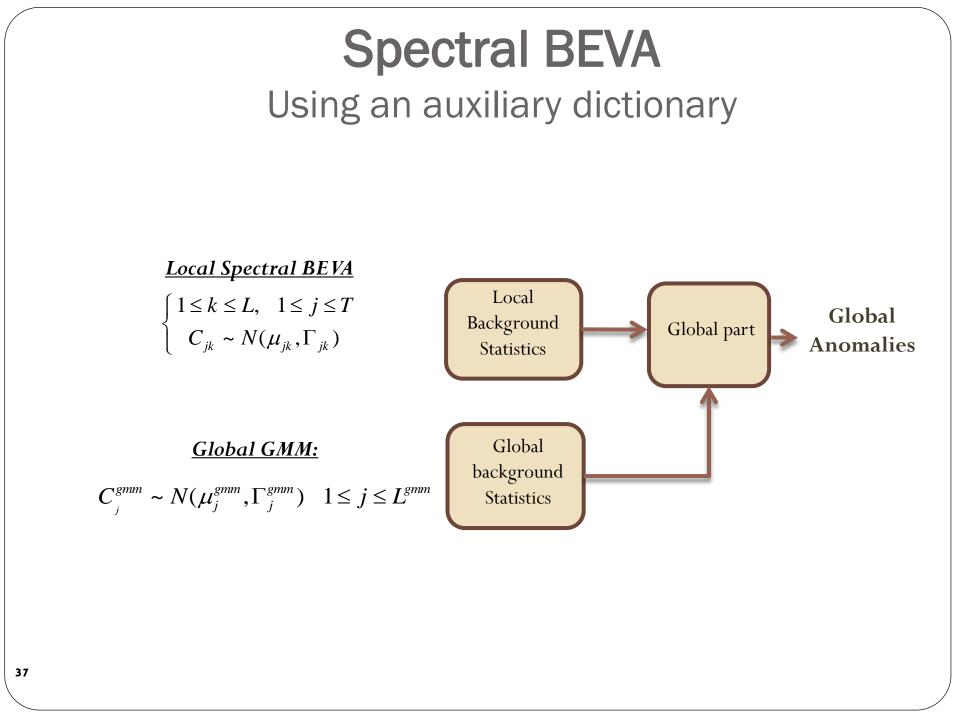
Global Scaling



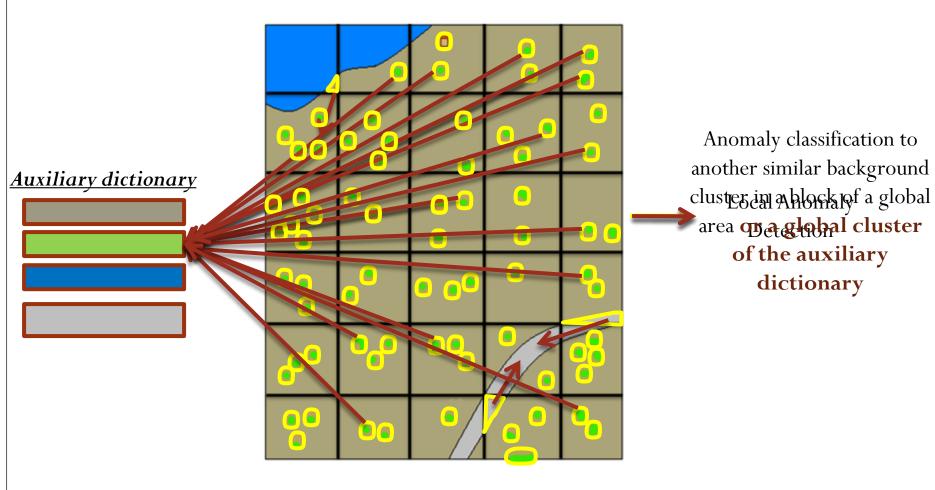
Local Scaling



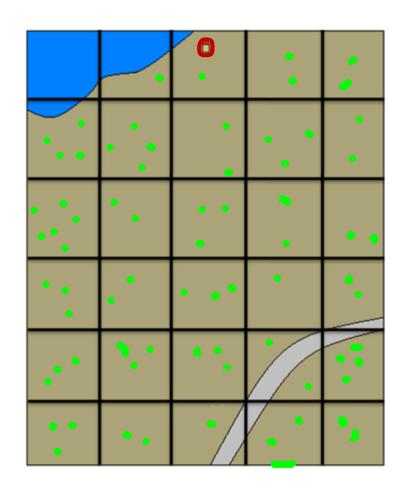
Statistics estimation for each background class

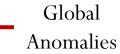


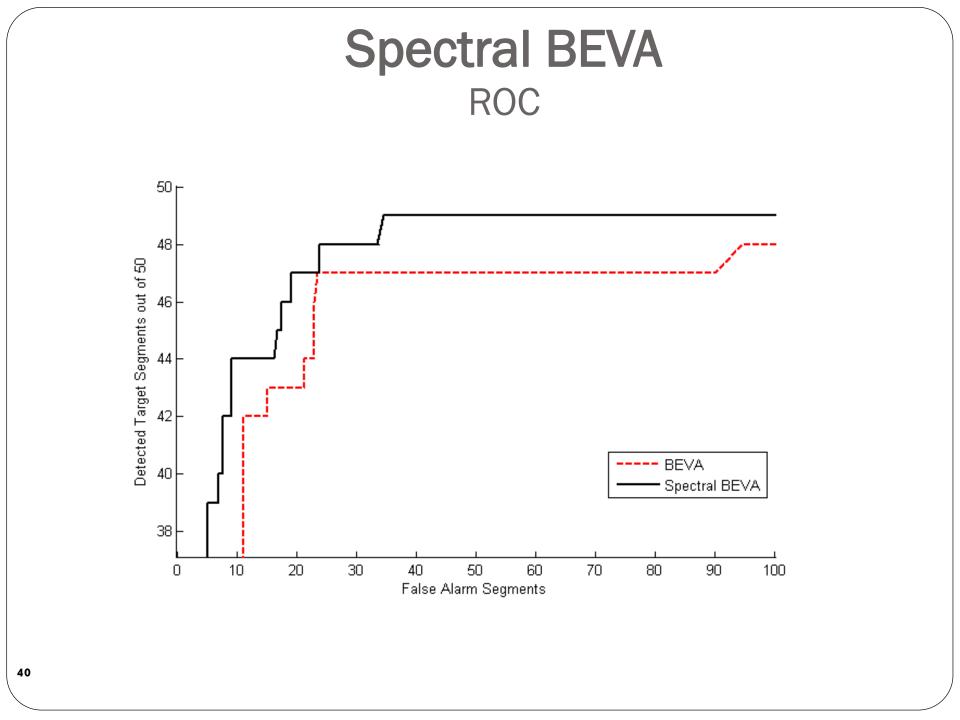
Spectral BEVA Global Part



Spectral BEVA Global Part







Gaussian Assumption in BEVA

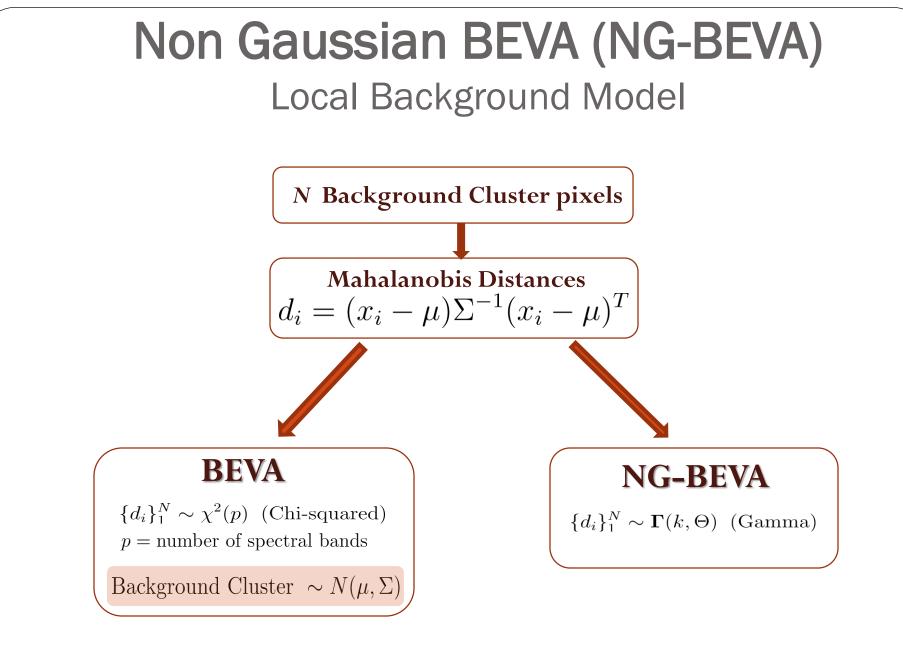
Pros

- Efficient processing
- Mathematically tractability
- Simplifies the derivation of decision rules

Cons

- Not sufficiently adequate to represent the statistical behavior of real hyperspectral background cluster
- Distributions of hyperspectral data have heavier tails than the Gaussian pdf

Can lead to an excess number of false alarms



NG-BEVA

Gamma Fitting

 $\square\operatorname{\mathsf{Pdf}}$ of the Gamma Distribution $\mathbf{\Gamma}(k,\Theta)$:

$$f(u) = \frac{1}{\Theta^k \Gamma(k)} u^{k-1} e^{-u/\Theta} \quad \text{with} \quad u \ge 0$$
Gamma function

□ The Chi-squared distribution is a special case of the Gamma distribution

$$\chi^2(p) \triangleq \Gamma(k = \frac{p}{2}, \Theta = 2)$$

 \square Θ and k are estimated using Maximum Likelihood

NG-BEVA

Maximum Likelihood Estimation

□ Iterative estimation of *k*

$$k_{0} = \frac{3 - s + \sqrt{(s - 3)^{2} + 24s}}{12s}$$

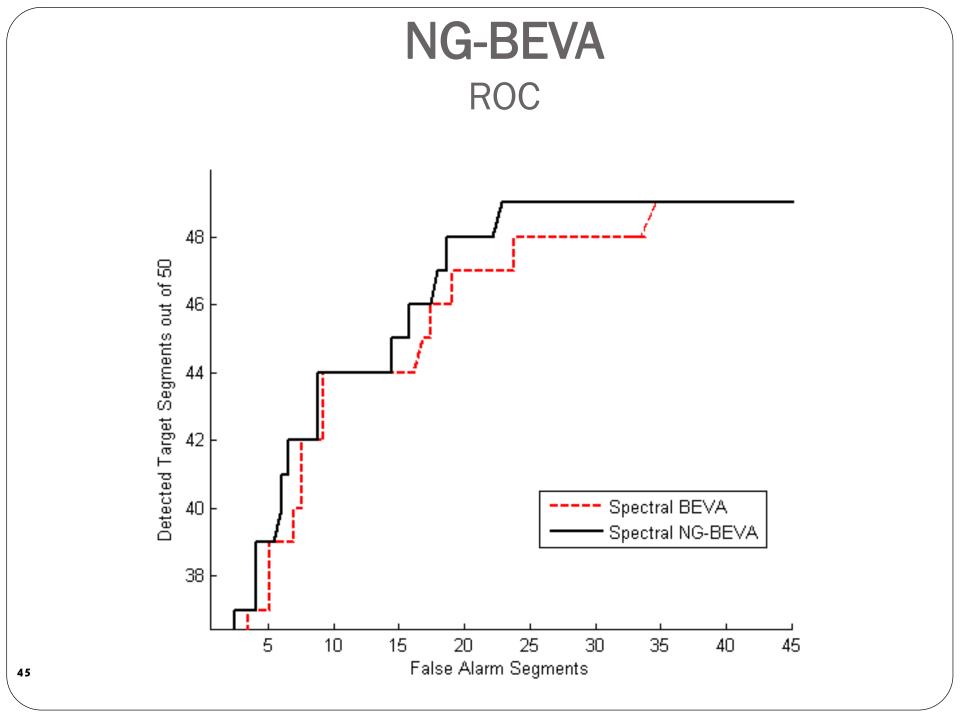
$$k_{i+1} = k_{i} - \frac{\ln(k_{i}) - \psi(k_{i}) - s}{\frac{1}{k_{i}} - \psi'(k_{i})}$$

$$s = \ln(\frac{1}{N}\sum_{i=1}^{N} x_{i}) - \frac{1}{N}\sum_{i=1}^{N} \ln(x_{i})$$

$$\psi(k) = \frac{\Gamma'(k)}{\Gamma(k)}$$

Estimation of Θ

$$\hat{\Theta} = \frac{1}{kN} \sum_{i=1}^{N} x_i$$



Outline

□ Hyperspectral Imaging

- Image Acquisition
- Anomaly Detection

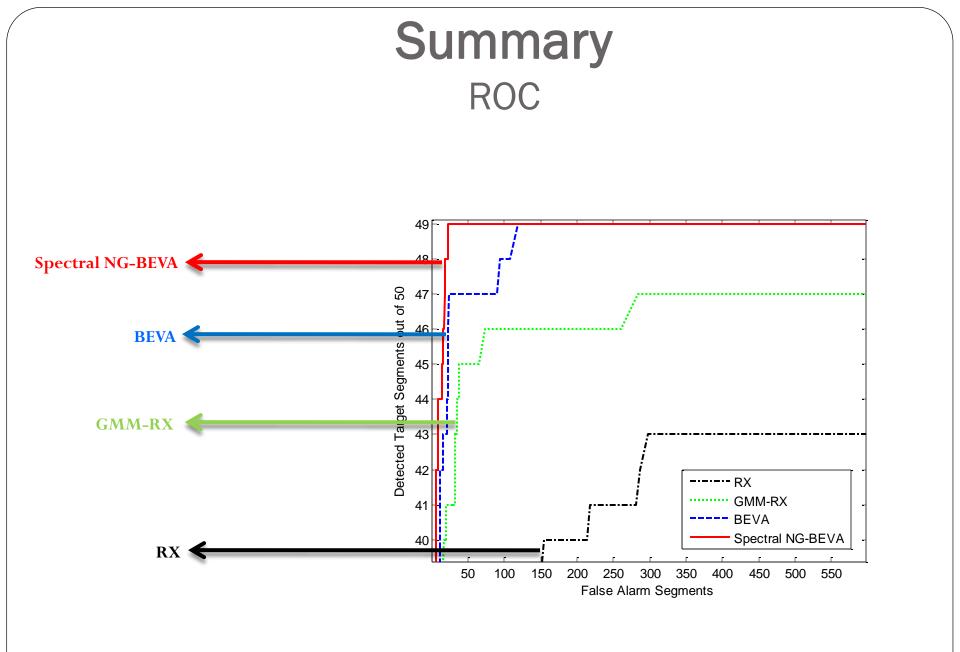
□ Statistical Background Modeling

- Local Approach
- Global Approach

Combined Local/Global Approach – Proposed Algorithm

- Local Part
- Global Part
- □ Improvements of the Proposed Algorithm
 - Spectral Clustering
 - Non-Gaussian Fitting

Summary and Future Work



Summary

Combined Local-Global proposed algorithm

- Local Spectral Clustering, greedy sequential estimation process and Gamma distribution fitting
- Global Filtering using large image area statistics and an auxiliary dictionary

Pros

- Reduces the vast number of degrees of freedom while retaining the ability to be locally adjusted to the background.
- Outperforms both standard local and global algorithms.

Computation Time

• Data

- 350x350
- 65 bands

• **BEVA**

- Local part 35x35
- Global part 350x280

• Computer

- Intel Core 2 duo 2Ghz
- 2 GB Ram
- Environment Matlab

RX	770 sec
GMM-RX	27 sec
BEVA	61 sec
Spectral BEVA	413 sec
Spectral NG BEVA	491 sec

Future Work

Non-linear local-global algorithm based on a kernelization using the similarity map obtained by Spectral Clustering

Automatically select the proper number of clusters for each local block

Dimensionality reduction as a preprocessing stage of the BEVA algorithm

