Signal and Image Processing lab

Anomaly Preserving Redundancy Reduction in High-Dimensional Signals

Oleg Kuybeda

PhD Research under the supervision of:
Prof. David Malah
Dr. Meir Barzohar

Outline

- Signal subspace estimation of noisy linear mixtures
- Drawbacks of using ℓ_{2}-norm for anomaly representation
- Proposal of $\ell_{2, \infty}$-norm as a remedy
- Greedy subspace estimation algorithm
- Anomaly detection algorithm
- Optimal subspace estimation algorithm
- Multispectral filter design for anomaly detection

Linear Mixture Model

$\mathbf{X}=\mathbf{A S}+\mathbf{Z}$

- X - pxN matrix of observations

ㅁ \mathbf{A}-pxr matrix of endmembers

- S - rxN matrix of endmember abundances

ㅁ $\mathbf{Z}-\mathrm{pxN}$ data acquisition/model error

$$
\text { The signal rank is at most } r<p!
$$

Linear Mixture Model Example Hyperspectral images

Background versus Anomalies

Subspace estimation

ℓ_{2}-norm based subspace estimation

$$
\begin{aligned}
\hat{\mathcal{S}}_{r}= & \underset{\mathcal{L}}{\operatorname{argmin}}\left\|\mathcal{P}_{\mathcal{L}^{\perp}} \mathbf{X}\right\|_{F b}^{2} \\
& \text { s.t. } \quad \operatorname{rank} \mathcal{L}=r,
\end{aligned}
$$

- The signal subspace \mathcal{L} can be estimated via SVD
- Anomaly vector contributions to the ℓ_{2}-norm are weaker than contribution of noise
- The resultant subspace is skewed in a way that misses the anomaly vectors with probability close to 1

An example of anomaly misrepresentation

 as a result of ℓ_{2}-norm minimization- Maximum-norm error (dashed and dot-dashed) vs. norm of an anomaly vector (solid)

$$
N=10^{5}, p=100, r=r_{b}+r_{a}=5+1
$$

$\max \left\|\mathcal{P}_{\hat{S}_{r}^{\perp}} \mathbf{x}_{i}\right\|^{2}$

Subspace estimation

$\ell_{2, \infty \text {-norm based subspace estimation }}$

$$
\begin{aligned}
\hat{\mathcal{S}}_{r}= & \underset{\mathcal{L}}{\operatorname{argmin}} \max _{i=1, \ldots, N}\left\|\mathcal{P}_{\mathcal{L}^{\perp}} \mathbf{x}_{i}\right\|^{2}=\underset{\mathcal{L}}{\operatorname{argmin}}\left\|\mathcal{P}_{\mathcal{L}^{\perp}} \mathbf{X}\right\|_{2, \infty}^{2} \\
& \text { s.t. } \quad \operatorname{rank} \mathcal{L}=r,
\end{aligned}
$$

\square is equivalent to

$$
\begin{aligned}
\hat{\mathcal{S}}_{r}= & \underset{\mathcal{L}, \gamma}{\operatorname{argmin}} \gamma \\
& \text { s.t. }\left\|\mathcal{P}_{\mathcal{L}^{\perp}} \mathbf{x}_{j}\right\|_{2}^{2} \leq \gamma \quad \forall j=1, \ldots, N, \\
& \text { rank } \mathcal{L}=r,
\end{aligned}
$$

- very hard to optimize due to a large number of constraints and a non-convex constraint

Greedy MX-SVD

- Look for a basis of the form:

$$
\left[\boldsymbol{\Psi}_{k-h} \mid \boldsymbol{\Omega}_{h}\right]
$$

- $\boldsymbol{\Omega}_{h}$ represents anomaly vectors
${ }_{\square} \boldsymbol{\Psi}_{k-h}$ represents the background

MX-SVD vs. SVD

Maximum residual norm distribution

Fig. 4. The pdfs of $\left\|\mathcal{P}_{\hat{\mathcal{S}}_{k}^{\perp}} \mathbf{X}\right\|_{2, \infty}^{2}$, obtained via a Monte-Carlo simulation. (a) The empirical pdfs of $\left\|\mathcal{P}_{\hat{\mathcal{S}}_{k}^{\perp}} \mathbf{X}\right\|_{2, \infty}^{2}$ obtained by MX-SVD (dashed line) and SVD (solid line) for $\operatorname{RSNR}=10, \sigma=1, p=10^{2}, N=10^{5}, k=r_{\text {abund }}+r_{\text {rare }}=5+3=8$ (b) The empirical pdf of $\left\|\mathcal{P}_{\hat{\mathcal{S}}_{k}^{\perp}} \mathbf{X}\right\|_{2, \infty}^{2}$ by MX-SVD (dashed-line) versus the exact pdf of $\left\|\mathcal{P}_{\hat{\mathcal{S}} \perp} \mathbf{Z}\right\|_{2, \infty}^{2}$ (solid line).

Anomaly
misrepresentation
via ℓ_{2}

Rank estimation via MOCA

Maximum-residual norm $=$ maximum of 2 maxima

Rank estimation via MOCA

$\mathrm{P}\left(\mathrm{H}_{0} \mid \mathrm{y}_{\mathrm{k}}\right)$ and $\mathrm{P}\left(\mathrm{H}_{1} \mid \mathrm{y}_{\mathrm{k}}\right)$ are functions of $p_{\nu_{k}}(\cdot)$ and $p_{\xi_{k}}(\cdot)$

$$
p_{\nu_{k}}(\cdot) \quad p_{\xi_{k}}(\cdot)
$$

- Distribution of the maximum noisenorm:

$$
P\left(v_{k} \leq x\right)=G\left(a_{N}\left(x-b_{N}\right)\right)
$$

- Gumbel distribution:

$$
\mathcal{G}(x)=e^{-e^{-x}}
$$

- The maximum signal-norm is assumed to be uniformlydistributed:

$$
\xi_{k} \sim U\left(0, y_{k-1}\right)
$$

- y_{k-1-} is the maxim-norm of dataresiduals obtained in the previous MOCA iteration

Signal-subspace and rank by MOCA Flowchart

Anomaly Detection Approaches: Matched Subspace Detector (MSD)

- Define two hypotheses: $H_{0}: \mathbf{x}_{i} \sim \mathcal{N}\left[\mathbf{B b}_{i}, \sigma^{2} \mathbf{I}\right]$

$$
H_{1} \quad: \quad \mathbf{x}_{i} \sim \mathcal{N}\left[\mathbf{B b}_{i}+\mathbf{T} \theta_{i}, \sigma^{2} \mathbf{I}\right]
$$

- B background subspace basis
- \mathbf{T} anomaly subspace basis
- Generalized Log-Likelihood Ratio Test (GLRT)

$$
L(\mathbf{x})=\frac{1}{\sigma^{2}} \mathbf{x}^{T} \mathcal{P}_{\mathbf{B}^{\perp} \mathbf{T}^{\mathbf{x}}} \stackrel{H_{1}}{\stackrel{H_{1}}{\gtrless}} \eta
$$

$\mathcal{P}_{\mathbf{B}}{ }^{\perp} \mathbf{T}$ is a projection onto $(\text { range } \mathbf{B})^{\perp} \bigcap$ range \mathbf{T}

- Drawbacks
- The Background and Anomaly subspaces and their ranks are not known

Anomaly Detection Approaches: Gaussian Mixture Model (GMM)

- Gaussian mixture $\quad p(\mathbf{x})=\sum_{c=1}^{C} \alpha_{c} N\left(\mathbf{x} \mid \mu_{c}, \boldsymbol{\Gamma}_{c}\right)$
- Hypotheses:

$$
\begin{aligned}
& H_{0}: \quad \mathbf{x} \sim p(\mathbf{x}) \\
& H_{1}: \mathbf{x}-\mathbf{a} \sim p(\mathbf{x})
\end{aligned}
$$

- GLRT - Reed Xiaoli (RX)

$$
L(\mathbf{x})=-\log p(\mathbf{x}) \underset{\underset{H_{0}}{\stackrel{H_{1}}{\gtrless}}}{\stackrel{\rightharpoonup}{\gtrless}} \eta
$$

- Drawbacks
- The number of Gaussians is not known
- Initial-Condition dependent (prone to local minima)
- Doesn't fit well the Hyperspectral data

MOCA versus MSD

$$
\left[\boldsymbol{\Psi}_{k-h} \mid \boldsymbol{\Omega}_{h}\right]
$$

- MSD
- B background subspace basis
- T anomaly subspace basis
- MOCA
- Ω_{h} represents anomaly subspace

■ $\boldsymbol{\Psi}_{k-h}$ complements $\boldsymbol{\Omega}_{h}$ to represent background

Anomaly Extraction and Discrimination Algorithm (AXDA)

 A simplified outline

A detailed flowchart

Initialize:
$j=h$ - rare-vectors rank
$s=\hat{r}$ - signal rank
Find principal-subspace of rank s-j in rare-vectors residual-subspace
$\mathbf{\Psi}_{s-j}:=\operatorname{svd}_{s-j} \mathcal{P}_{\Omega_{j}^{+}} \mathbf{X}$

$$
\mathbf{\Omega}_{h} \text { - rare-vector }
$$

Reduce the rare-vectors basis
$\boldsymbol{\Omega}_{j-1}=\boldsymbol{\Omega}_{j}(:, 1: j-1)$

Find principal-subspace of rank $s-j+1$ in rare-vectors
residual-subspace
$\mathbf{\Psi}_{s-j+1}=\operatorname{svd}_{s-j+1} \mathcal{P}_{\boldsymbol{\Omega}_{j-1}^{\perp}} \mathbf{X}$
Calculate data residual-norms in the combined residual-subspace
$r_{i}=\left\|\mathcal{P}_{\left[\mathbf{\Psi}_{s-j+1} \mid \boldsymbol{\Omega}_{j-1}\right]^{\perp}} \mathbf{X}_{i}\right\|^{2}$
Find indexes of data residuals that exceed the noise level

$$
\left\{\omega_{t}\right\}=I\left(r_{i}>y_{s}\right)
$$

Calculate maximum residual-norm
$\frac{y_{s}=\max _{\mathbf{x} \in \operatorname{cols} \mathbf{x}}\left\|\mathcal{P}_{\left[\mathbf{\Psi}_{s-j} \mid \boldsymbol{\Omega}_{j}\right]^{\perp}} \mathbf{x}\right\|^{2}}{\downarrow}$
Reduce the rare-vectors basis
$\boldsymbol{\Omega}_{j-1}=\boldsymbol{\Omega}_{j}(:, 1: j-1)$

Find principal-subspace of rank s-1-j

$$
\mathbf{\Psi}_{s-1-j}:=\operatorname{svd}_{s-1-j} \mathcal{P}_{\boldsymbol{\Omega}_{j}^{\perp}} \mathbf{X}
$$

Results of MOCA/AXDA applied on real data
$r=19, h=11, r_{b}=14, \#$ anomaly spectra $=11$

- r - the estimated signal-subspace rank
- h - the estimated number of rarevectors
- r_{b} - the obtained background rank
- \# anomaly spectra - the obtained number of anomaly spectra in the scene
- \bigcirc - a singlepixel man-made anomaly
$\square \quad \square$-a vegetation-related anomaly

$$
r=12, h=6, r_{b}=9, \# \text { anomaly spectra }=6
$$

$r=9, h=0, r_{b}=9, \#$ anomaly spectra $=0$

ROC curves

Fig. 6. ROC curves corresponding to GMRX, MSD and AXDA. The nominal operating point of AXDA is marked in magenta color and is pointed out by the arrow. This point corresponds to 24 detected anomalies and 6 false alarm segments.

Optimal $\ell_{2, \infty}$ minimization

$$
\begin{aligned}
& \hat{\mathcal{S}}_{r}= \underset{\mathcal{L}}{\operatorname{argmin}}\left\|\mathcal{P}_{\mathcal{L}^{\perp}} \mathbf{X}\right\|_{2, \infty}^{2} \equiv \underset{[\mathbf{W}]}{\operatorname{argmin}}\left\|\mathbf{W}^{\top} \mathbf{X}\right\|_{2, \infty}^{2} \\
& \text { s.t. } \quad \operatorname{rank} \mathcal{L}=r \\
& \text { s.t. } \quad[\mathbf{W}] \in G_{p, p-r}
\end{aligned}
$$

- [W]- equivalence class of $p \times p-r$ orthogonal matrices whose columns span the same subspace in \mathbb{R}^{p} as \mathbf{W}
- $G_{p, p-r}$ - Grassmann manifold, the set of all $p-r$ dimensional subspaces in \mathbb{R}^{p}

Line search on Grassmannian

- Continuous choice of subspaces on geodesics
- $\mathbf{H}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ - a descend direction of a function $F([\mathbf{W}])$
- The corresponding geodesic is:

$$
\mathbf{W}(t)=\left(\begin{array}{ll}
\mathbf{W} \mathbf{V} & \mathbf{U}
\end{array}\right)\binom{\cos (t \boldsymbol{\Sigma})}{\sin (t \boldsymbol{\Sigma})} \mathbf{V}^{\top}
$$

- $t \boldsymbol{\Sigma}$ traverse Principal Angles between column spaces $[\mathbf{W}]$ and $[\mathbf{W}(t)]$
- Geodesic distance $\left.d([\mathbf{W}(t)],[\mathbf{W}])=t \sqrt{\operatorname{tr}\left(\boldsymbol{\Sigma}^{2}\right.}\right)$

ㅁ Line search $\underset{t}{\operatorname{argmin}} F([\mathbf{W}(t)]) \quad$ (Armijo rule)

Gradient on Grassmannian

$$
\nabla F=F_{\mathbf{W}}-\mathbf{W} \mathbf{W}^{\top} F_{\mathbf{W}}
$$

- $F_{\mathbf{W}}$ - is the matrix of partial derivatives of $F([\mathbf{W}])$ with respect to the elements of \mathbf{W}
- ∇F is the projection of $F_{\mathbf{W}}$ onto the tangent space at \mathbf{W}
- Gradient of $\left\|\mathbf{W}^{\top} \mathbf{X}\right\|_{2, \infty}^{2}$:
single maximum vector

$$
F_{\mathbf{W}}=\mathbf{x}_{j} \mathbf{x}_{j}^{\top} \mathbf{W}
$$

multiple maximum vectors $\left\{\mathbf{x}_{j}\right\} j \in J$

$$
\begin{aligned}
F_{\mathbf{W}} /\left\|F_{\mathbf{W}}\right\|_{2}= & \max _{\mathbf{G}} \min _{j \in J}\left\langle\mathbf{G}, \mathbf{x}_{j} \mathbf{x}_{j}^{\top} \mathbf{W}\right\rangle \\
\text { s.t. } & \left\langle\mathbf{G}, \mathbf{x}_{j} \mathbf{x}_{j}^{\top} \mathbf{W}\right\rangle>0 \forall j \in J \\
& \langle\mathbf{G}, \mathbf{G}\rangle=1
\end{aligned}
$$

pdf of $\ell_{2, \infty}$ - norm of residuals

Monte-Carlo simulations

$$
\begin{aligned}
& \text { number of anomalies } N_{a}=10 \\
& \text { anomaly subspace rank } \quad r_{a}=5 \\
& \text { anomaly loading ratio } \quad R_{a} \triangleq N_{a} / r_{a}=2
\end{aligned}
$$

Mean estimated subspace error $\angle\{\hat{\mathcal{S}}, \mathcal{S}\}$

Designing Multispectral Filters for Anomaly
 Detection in Remote Sensing

Hyperspectral Anomalies

- Anomaly vs. Background spectra scatter

Mean background spectrum

Anomaly spectrum

65 channels 400 nm - 1000nm

Hyperspectral Imager Drawbacks

- Expensive
- Heavy
- High power consumption
- Fragile

From Hyperspectral to Multispectral

- Given hyperspectral images, partition spectra into a number of bands K

- Which partition is better for detecting anomalies for a given K ?

Problem Statement

- Determine a vector of K

$$
\mathbf{b}_{K}=\left\{b_{1}, \ldots, b_{K}\right\}
$$ breakpoints

- Corresponding to $K-1$ contiguous intervals
- Producing a set of constants at each pixel j
- Such that a cost function is

$$
J\left(\mathbf{b}_{K}, \mathbf{X}\right)
$$ minimized

Fast Hyperspectral Feature Reduction (FFR) [1]

ㅁ Error vector at interval k in $\mathbf{e}_{k, j} \triangleq\left\{\left(x_{i, j}-\mu_{k, j}\right): i \in I_{k}\right\}$ pixel j

- Squared error at pixel j
- Sum of squared error cost

$$
\begin{aligned}
& e_{j}^{2} \triangleq \sum_{k=1}^{K-1}\left\|\mathbf{e}_{k, j}\right\|^{2} \\
& J\left(\mathbf{b}_{K}, \mathbf{X}\right) \triangleq \sum_{j=1}^{N} e_{j}^{2}
\end{aligned}
$$

- Is not sensitive enough to anomaly contributions
- Partition is governed by the background process
- Anomalies are misrepresented

The proposed

Maximum of Mahalanobis Norms (MXMN)

- Error vector at interval k in pixel $j \quad \mathbf{e}_{k, j} \triangleq\left\{\left(x_{i, j}-\mu_{k, j}\right): i \in I_{k}\right\}$
- Error covariance matrix in an interval $k \quad \boldsymbol{\Sigma}_{k}$
- Mahalanobis norm of error j in interval k
$G\left(\mathbf{e}_{k, j}\right)=\sqrt{\mathbf{e}_{k, j}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{e}_{k, j}}$
- Potential Anomaly Loss (PAL) measure $D_{k}=\max _{j=1}^{N} G\left(\mathbf{e}_{j, k}\right)$
- Maximum of PAL measures cost
- Allows capturing misrepresented anomaly contributions
- Eliminates heavy tails of errors pdf
- The more "Gaussian" interval is, the coarser is the partition in it

$$
J\left(\mathbf{b}_{K}, \mathbf{X}\right)=\max _{k=1}^{K} D_{k}
$$

MXMN Training

- MXMN produces a coarser partition in "more Gaussian" channels
- We attribute these channels to background clutter
- Usually, background clutter channels are not good for anomaly mining
- Moreover, they may mask anomalies during detection
- As a matter of fact, all background clutter related information is found in images without anomalies
- By design, MXMN is able to identify and disregard background clutter channels by a coarse partitioning
- A reasonable question is whether exploiting background clutter statistics alone suffice for obtaining a good partition for anomaly detection purposes
- In our simulations we examined the hard case by training MXMN on an image that does not contain known anomalies

Partition breakpoints: MXMN vs. FFR MXMN trained on image without anomalies

Partition breakpoints by MXMN

Partition breakpoints by FFR

Number of Multispectral Filters 10 | Number of Hyperspectral Channels 65

ROC curves by applying RX

- Number of hyperspectral channels 65
- Number of multispectral channels 10
- Number of hyperspectral images $6(300 \times 400 \times 65)$

Summary

- MOCA - a greedy algorithm for anomaly preserving signal subspace estimation based on $\ell_{2, \infty}$ - norm minimization
- The signal-subspace rank is estimated by applying Extreme Value Theory results to the $\ell_{2, \infty}$ - norm of residuals
- The structure of MOCA is used for developing Anomaly Extraction and Discrimination Algorithm - AXDA
- $\ell_{2, \infty}$ - optimal anomaly preserving subspace estimation on a Grassmann Manifold
- The principle of maximum error norm minimization is used for multispectral filter design tuned to anomaly detection algorithms

Future directions

- Develop an anomaly detection algorithm that is based on $\ell_{2, \infty}$-optimal subspace
- Develop a technique for a robust anomaly discrimination/classification
- Determination of multispectral dimensionality, which is optimal in terms of anomaly detection algorithm performance

Thank you!

