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Outline

� Signal subspace estimation of noisy linear 
mixtures

� Drawbacks of using      -norm for anomaly 
representation

� Proposal of          -norm as a remedy

� Greedy subspace estimation algorithm

� Anomaly detection algorithm

� Optimal subspace estimation algorithm

� Multispectral filter design for anomaly detection

ℓ2

ℓ2,∞
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� - pxN matrix of observations

� - pxr matrix of endmembers

� - rxN matrix of endmember abundances

� - pxN data acquisition/model error

The signal rank is at most r < p !

Linear Mixture Model

X = AS+ Z

A

S

X

Z
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Linear Mixture Model Example 

Hyperspectral images
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Background versus Anomalies
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Subspace estimation

-norm based subspace estimation

� The signal subspace can be estimated via SVD

� Anomaly vector contributions to the     -norm are 
weaker than contribution of noise

� The resultant subspace is skewed in a way that 
misses the anomaly vectors with probability close 
to 1

ℓ2

L

ℓ2

Ŝr = argmin
L

‖PL⊥X‖
2
Fb

s.t. rank L = r,
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An example of anomaly misrepresentation  

as a result of     -norm minimization

� Maximum-norm error (dashed and dot-dashed) 
vs. norm of an anomaly vector (solid) 

N = 105, p = 100, r = rb + ra = 5 + 1

max ‖PŜ⊥r
i=1,...,N

xi‖2

‖ya‖2

ℓ2

RSNR = ‖ya‖
2

(p−r)σ2
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Subspace estimation

-norm based subspace estimation

� is equivalent to

� very hard to optimize due to a large number of 
constraints and a non-convex constraint

ℓ2,∞

Ŝr = argmin
L

max
i=1,...,N

‖PL⊥xi‖
2 = argmin

L
‖PL⊥X‖

2
2,∞

s.t. rank L = r,

Ŝr = argmin
L,γ

γ

s.t. ‖PL⊥xj‖
2
2 ≤ γ ∀j = 1, . . . , N,

rank L = r,
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Greedy MX-SVD

� Look for a basis of    

the form:

� represents 

anomaly vectors

� represents     

the background

Ωh

[Ψk−h|Ωh]

Ψk−h
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MX-SVD vs. SVD 

Maximum residual norm distribution

Anomaly
misrepresentation

via ℓ2
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Max residual norm

yk = max{ri} = max(νk, ξk)

Max signal-related residual 

norm                              

Max noise-related residual 

norm                              

The group of noise-related

residual norms       

The group of signal-related

residual norms         

Data residual-norms

νk = max
ψj

{rψj}

H0 : yk = νk H1 : yk = ξk

Rank estimation via MOCA
Maximum-residual norm = maximum of 2 maxima

{rψj} {rωj}

ξk = max
ωj

{rωj}

{ri}
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Rank estimation via MOCA
P(H0|yk) and P(H1|yk) are functions of             and

� Distribution of the maximum noise-
norm:

� Gumbel distribution:

� The maximum signal-norm is 
assumed to be uniformly-
distributed:

� - is the maxim-norm of data-
residuals obtained in the previous 
MOCA iteration

G(x) = e−e
−x

rank test 
threshold

pνk(·)

ξk ∼ U(0, yk−1)
P (νk ≤ x) = G (aN (x − bN ))

yk−1

yk−1

yk = max(νk, ξk)

pνk(·)

pξk(·)

pξk (·)
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Signal-subspace and rank by MOCA 

Flowchart

Obtain 
signal-subspace basis

Calculate maximum 
residual-norm 

Is the 
max-norm noise 
test passed?

Stop.

The estimated
signal-rank:    
The estimated 
subspace:

Increment rank
conjecture

k := k + 1

noyes

Initialize:
k=1 - initial rank 

conjecture

r̂ = k
Perform noise-related 

hyp. testing of yk

Φk

yk = max
x∈cols X

‖PΦ⊥
k
x‖2

Φk
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Anomaly Detection Approaches:

Matched Subspace Detector (MSD)

� Define two hypotheses:

�  background subspace basis

� anomaly subspace basis

� Generalized Log-Likelihood Ratio Test (GLRT)

� Drawbacks

� The Background and Anomaly subspaces and their ranks 
are not known

B

T

H0 : xi ∼ N [Bbi, σ
2I]

H1 : xi ∼ N [Bbi +Tθi, σ
2I]

PB⊥T is a projection onto (range B)
⊥
⋂
range T

L(x) =
1

σ2
xTPB⊥Tx

H1
>
<

H0

η
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Anomaly Detection Approaches:

Gaussian Mixture Model (GMM)

� Gaussian mixture

� Hypotheses:

� GLRT - Reed Xiaoli (RX)

� Drawbacks

� The number of Gaussians is not known

� Initial-Condition dependent (prone to local minima)

� Doesn’t fit well the Hyperspectral data

p(x) =
C∑

c=1

αcN(x|µc,Γc)

H0 : x ∼ p(x)

H1 : x− a ∼ p(x)

L(x) = −log p(x)
H1
>
<

H0

η



16

MOCA versus MSD

� MSD   

� background subspace basis

� anomaly subspace basis

� MOCA

� represents anomaly subspace

� complements      to represent background

T

B

Ωh
ΩhΨk−h

[Ψk−h|Ωh]
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Reduce the rare-vectors basis:

then identify and deplete
all rare-vectors in the data 

that belong to the 
last (reduced) vector 

Ωj−1 = Ωj(:, 1 : j − 1), Decrement 
rare-vectors 

rank
j :=j−1

j == 0?

S
to
p

yes

no

Analyze the 
reduced-rank 

system 
of rank s-1 
in terms 

of max-norm 
residual hyp.

Is the 
max-norm noise 
test passed?

Decrement
the total rank

s := s − 1

Anomaly Extraction and Discrimination Algorithm (AXDA) 

A simplified outline

Initialize:
- rare-vectors rank
- signal rank
- rare-vector 

matrix

s = r̂
j = h

Ωh

yes

no
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Find principal-subspace 
of rank s-j+1 in rare-vectors

residual-subspace

Ψs−j+1 = svd
s−j+1

PΩ⊥

j−1
X

Find principal-subspace
of rank s-j in rare-vectors 

residual-subspace

Reduce the rare-vectors basis

Ωj−1 = Ωj(:, 1 : j − 1)

Are there such 
indexes?

does        meet 
the max-norm
noise hyp.?

Decrement 
rare-vectors 

rank
j :=j−1

Find principal-subspace
of rank s-1-j

Decrement
the total rank

s := s − 1

yes

no

yes

AXDA

A detailed flowchart
Initialize:

- rare-vectors rank
- signal rank
- rare-vector 

matrix

s = r̂
j = h

Calculate data residual-norms in 
the combined residual-subspace

ri = ‖P[Ψs−j+1|Ωj−1]
⊥xi‖2

Calculate maximum 
residual-norm

j == 0?

S
to
p

yes

no

no

Associate the 
found data indexes 
with the anomaly j

Find indexes of data residuals 
that exceed the noise level

Nullify data vectors 
that exceeded
the noise level

Calculate maximum 
residual-norm 

ys = max
x∈cols X

‖P[Ψs−j|Ωj]
⊥x‖2

{ωt} = I(ri > ys)

ys−1 = max
x∈cols X

‖P[Ψs−1−j |Ωj ]
⊥x‖2

ys−1

Ωh

Ψs−j := svd
s−j

PΩ⊥

j
X

Ψs−1−j := svd
s−1−j

PΩ⊥

j
X

xωt := 0
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Results of MOCA/AXDA 

applied on real data
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� r – the estimated 
signal-subspace  
rank

� h – the estimated 
number of rare-
vectors

� rb – the obtained 
background rank

� # anomaly 
spectra – the 
obtained number 
of anomaly 
spectra in the 
scene

� - a single-
pixel man-made 
anomaly

� - a 
vegetation-related 
anomaly
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No anomalies 
detected!
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ROC curves
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� - equivalence class of                 orthogonal matrices 

whose columns span the same subspace in       as

� - Grassmann manifold, the set of all           -

dimensional subspaces in

Optimal          minimization ℓ2,∞

Gp,p−r

p× p− r

IRp W

[W]

p− r

IRp

Ŝr = argmin
L

‖PL⊥X‖
2
2,∞ ≡ argmin

[W]

‖W⊤X‖22,∞

s.t. rank L = r s.t. [W] ∈ Gp,p−r
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� Continuous choice of subspaces on geodesics

� - a descend direction of a function 

� The corresponding geodesic is:

� traverse Principal Angles between column spaces        

and   

� Geodesic distance

� Line search                                       (Armijo rule)

Line search on Grassmannian

[W]

[W(t)]

argmin
t

F ([W(t)])

F ([W])

W(t) = (WV U)

(
cos (tΣ)
sin (tΣ)

)
V⊤

H = UΣV⊤

d([W(t)], [W]) = t
√
tr(Σ2)

tΣ
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Gradient on Grassmannian

�     - is the matrix of partial derivatives of               with 

respect to the elements of

� is the projection of       onto the tangent space at

� Gradient of                    :

single maximum vector multiple maximum vectors

F ([W])FW
W

FW W∇F

FW = xjx
⊤
j W FW�‖FW‖2 = max

G
min
j∈J

〈
G,xjx

⊤
j W

〉

s.t.
〈
G,xjx

⊤
j W

〉
> 0 ∀j ∈ J

〈G,G〉 = 1

∇F = FW −WW⊤FW

{xj} j ∈ J

‖W⊤X‖22,∞
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pdf of          - norm of residuals

Monte-Carlo simulations
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MX−SVD

SVD

‖W⊤X‖22,∞

ℓ2,∞

number of anomalies

anomaly subspace rank

anomaly loading ratio

Na = 10

ra = 5

Ra � Na�ra = 2
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Mean estimated subspace error
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Designing Multispectral 

Filters for Anomaly 

Detection in Remote Sensing 
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Hyperspectral Anomalies

Mean background 

spectrum

Anomaly spectrum

� Anomaly vs. Background spectra scatter

spectral channel

65 channels

400nm – 1000nm
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Hyperspectral Imager Drawbacks

� Expensive

� Heavy

� High power consumption

� Fragile
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spectral channel

� Given hyperspectral images, partition spectra into a number of 
bands K

� Which partition is better for detecting anomalies for a given K?

From Hyperspectral to Multispectral



34

Problem Statement

� Determine a vector of K
breakpoints

� Corresponding to           
contiguous intervals

� Producing a set of constants 
at each pixel j

� Such that a cost function is 
minimized 

bK = {b1, . . . , bK}

Ik = [bk, bk + 1)

µk,j =
1
|Ik|

∑
i∈Ik

xi,j

J(bK ,X)

K − 1
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Fast Hyperspectral Feature Reduction (FFR) [1]

� Error vector at interval k in 
pixel j

� Squared error at pixel j

� Sum of squared error cost

� Is not sensitive enough to anomaly 
contributions

� Partition is governed by the 
background process

� Anomalies are misrepresented

J(bK ,X) �

N∑

j=1

e2j

e2j �

K−1∑

k=1

‖ek,j‖
2

ek,j � {(xi,j − µk,j) : i ∈ Ik}
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The proposed 

Maximum of Mahalanobis Norms (MXMN)

� Error vector at interval k in pixel j

� Error covariance matrix in an interval k

� Mahalanobis norm of error j in interval k 

� Potential Anomaly Loss (PAL) measure

� Maximum of PAL measures cost

� Allows capturing misrepresented 
anomaly contributions

� Eliminates heavy tails of errors pdf

� The more “Gaussian” interval is, the 
coarser is the partition in it

Dk = max
N
j=1G(ej,k)

anomaly error

Background errors

J(bK ,X) = max
K
k=1Dk

ek,j � {(xi,j − µk,j) : i ∈ Ik}

Σk

G(ek,j) =
√
e⊤k,jΣ

−1
k ek,j
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MXMN Training  

� MXMN produces a coarser partition in “more Gaussian” channels 

� We attribute these channels to background clutter

� Usually, background clutter channels are not good for anomaly 
mining

� Moreover, they may mask anomalies during detection

� As a matter of fact, all background clutter related information is 
found in images without anomalies

� By design, MXMN is able to identify and disregard background 
clutter channels by a coarse partitioning

� A reasonable question is whether exploiting background clutter 
statistics alone suffice for obtaining a good partition for anomaly 
detection purposes

� In our simulations we examined the hard case by training MXMN 
on an image that does not contain known anomalies
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Partition breakpoints: MXMN vs. FFR
MXMN trained on image without anomalies

Partition breakpoints by MXMN

Partition breakpoints by FFR

Number of Multispectral Filters 10 | Number of Hyperspectral Channels 65



39

ROC curves by applying RX

� Number of hyperspectral channels 65

� Number of multispectral channels 10

� Number of hyperspectral images 6 (300 x 400 x 65)

ROC curves
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� MOCA – a greedy algorithm for anomaly preserving signal 

subspace estimation based on           - norm minimization 

� The signal-subspace rank is estimated by applying Extreme 

Value Theory results to the           - norm of residuals

� The structure of MOCA is used for developing Anomaly 

Extraction and Discrimination Algorithm - AXDA

� - optimal anomaly preserving subspace estimation on 

a Grassmann Manifold

� The principle of maximum error norm minimization is used 

for multispectral filter design tuned to anomaly detection 

algorithms

Summary

ℓ2,∞

ℓ2,∞

ℓ2,∞
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Future directions

� Develop an anomaly detection algorithm that is 
based on         -optimal subspace

� Develop a technique for a robust anomaly 
discrimination/classification

� Determination of multispectral dimensionality, 
which is optimal in terms of anomaly detection 
algorithm performance

ℓ2,∞
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Thank you!


