



# Model-Based Adaptive Non-Local Means Image Denoising

M.Sc. Research by

Hila Berkovich

Supervisors: Prof. David Malah

Dr. Meir Barzohar

22nd April, 2014

### Outline

- Introduction to Image Denoising
- Standard Non-Local Means (NLM)
- Proposed NLM Modifications
- Correlation Analysis Between Dissimilarities
- Integration of NLM Modifications into Block Matching 3D (BM3D)
- Poisson Image Denoising
- Summary
- Future Work

## **Introduction to Image Denoising**

- Image denoising is used to estimate the original image given its noisy version.
- Common noise model:

$$Y = X + N, N \sim \mathcal{N}(0, \sigma_n^2)$$

Y =noisy image

*X* = original image (unknown)

N = additive white noise

### It is assumed that X and N are independent

 Patch-based denoising methods have drawn much attention.

## **Standard Non-Local Means (NLM)**

- Introduced by Buades et. al (2005).
- Exploits image redundancy.
- <u>Pixel restoration</u>: Weighted average of all gray values within the defined search region.

$$\hat{X}_i = \sum_{j \in S_i} w_{i,j} Y_i$$



**Standard Non-Local Means (NLM)** 

### **Weights Definition**

The weights are based on similarity between pixel neighborhoods

 $w_{i,k} = \frac{1}{W_i} \exp\left(\frac{d_i(k)}{h^2}\right), k \in S_i, i \text{ is the Pixel of Interest (POI)}$  $\underbrace{d_i(k) = \frac{1}{p^2}}_{p^2} \left\| Y(A_i - Y(A_k) \right\|_2^2$ 

 $d_i(k)$  = dissimilarity measure between neighboorhoods of pixels *i* and *k*  $A_i, A_k$  = similarity patches of size  $p \times p$  centered at pixels *i*, *k* respectively  $S_i$  = rectangular search region of size  $M \times M$ 

h = weight smoothing parameter

 $W_i$  = normalization factor  $\left(\sum_{k \in S_i} W_{i,k}\right)$ 



Standard Non-Local Means (NLM)

### The Parameter h



The NLM algorithm is sensitive to the selection of the parameter h

$$W_{i,j} = \frac{1}{W_i} e^{-\frac{d_i(j)}{b^2}}, \quad j \in S_i$$

- It is usually set to be proportional to  $\sigma_n$ .
- In addition, simulations suggest that *h* should match local structure:





There are NLM modifications that suggest to use an adaptive h, matched to local structure (e.g., Duval et al. 2010, Dinesh et al. 2009) **High computational complexity** 

# Adaptive Search Region As An Alternative to Local *h*

- <u>Method</u>: use an anisotropic adaptive region, which includes only pixels with similar neighborhoods to that of the POI.
- Prior art:
  - Gradient-based classification (Mahmoudi et al. 2005) sensitive to noise
  - Similarity patch correlation (Dinesh et al. 2009) a threshold is required
  - Local Polynomial Approximation combined with the Intersection of Confidence Intervals (LPA-ICI) (Sun et al. 2009) — complex and enforces contiguity of search region



Creates wide edge  $\rightarrow$  causes over-smoothing



Assumptions:

$$\forall k \in S_i^S : X(A_i) = X(A_k) \to Y(A_i) - Y(A_k) = N(A_i) - N(A_k)$$
  
$$\forall j \in S_i^D : X(A_i) = C_j + X(A_j) \to Y(A_i) - Y(A_j) = C_j + N(A_i) - N(A_j)$$

### **Distribution of Dissimilarity Measure**

For a compared patch included in  $S_i^S$ :

$$\forall k \in S_i^S \setminus \{i\}: \quad \frac{d_i(k)}{2\sigma_n^2} = \frac{1}{p^2} \frac{\left\|Y(A_i) - Y(A_k)\right\|_2^2}{2\sigma_n^2} = \frac{1}{p^2} \sum_{\substack{m \in A_i \\ l \in A_k}} \left(\frac{N_m - N_l}{\sqrt{2}\sigma_n}\right)^2 \sim \chi_{p^2}^2$$
$$E\left[\frac{d_i(k)}{2\sigma_n^2}\right] = 1, \quad Var\left[\frac{d_i(k)}{2\sigma_n^2}\right] = \frac{2}{p^2} \qquad \sim \mathcal{N}\left(0,1\right)$$

Non-Central

re

9

For a compared patch included in  $S_i^D$ :

$$\forall j \in S_i^D: \frac{d_i(j)}{2\sigma_n^2} = \frac{1}{p^2} \frac{\left\|Y(A_i) - Y(A_j)\right\|_2^2}{2\sigma_n^2} = \frac{1}{p^2} \sum_{\substack{m \in A_i \\ l \in A_j}} \left( \frac{C_j + N_m - N_l}{\sqrt{2}\sigma_n} \right)^2 \sim \chi_{p^2}^2 \left(\lambda_j\right)$$
$$\leftarrow \left[\frac{d_i(j)}{2\sigma_n^2}\right] = 1 + \frac{\lambda_j}{p^2}, \quad Var\left[\frac{d_i(j)}{2\sigma_n^2}\right] = \frac{2}{p^2} + \frac{4\lambda_j}{p^4} \frac{C_j}{\sqrt{2}\sigma_n}, 1\right)$$



### **Distribution Approximation**

For p<sup>2</sup> ≫1, the Chi-Square distribution converges to a Normal distribution.



### **Difference Between Distributions**



- The difference between the distributions of the two sets can serve as a classification measure.
- Since  $\lambda_j$  is unknown, we use a one-side hypothesis based on the dissimilarity variance:

Pixels included in  $S_i^s$  are characterized by a normalized dissimilarity variance  $\leq 2/p^2$ 

### **Classification Via Accumulated Variance**



### **Variance Estimation Error**

- Estimated variance is based on number of accumulated elements (L)
- Small L values result in a bigger variance estimation error:

$$\hat{V} = Var\left\{\frac{d_i(k)}{2\sigma_n^2}\right\}_{k \in S_i} \rightarrow Std\left[\hat{V}\right] = \frac{2}{p^2}\sqrt{\frac{2}{L-1}}, \ L \in [2, M^2]$$

Variance threshold correction term is suggested:



### **Variance Threshold Validation**

 The denoising performance, given the model-based scheme, was explored using different variance threshold values for various noise levels, and averaged over 10 natural images.



- The blue curve corresponds to different variance thresholds
- The red dot corresponds to the global maximum

### Examples of Adaptive Search Region of Different Local Structures



### **NLM with Patch–Kernel**

2 types of patch (dissimilarity)-kernels are used frequently in NLM denoising:

$$d_{i}(k) = \|Y(A_{i}) - Y(A_{k})\|_{2,a}^{2} = \sum_{\substack{m \in A_{i}, l \in A_{k} \\ s \in [1, p^{2}]}} \alpha_{s} (Y_{m} - Y_{l})^{2}$$







# **Proposed Modification II: Patch–Kernel Type Adaptation**

The Adaptive Model-Based Search Region output provides an  $\,S_{*}^{\,s}$ set per pixel, computed using the Uniform patch-kernel.  $\frac{\left|S_{i}^{S}\right|}{M^{2}}$ 

Normalized Cardinality map





**Patch–Kernel Type Adaptation** 

### **Cluster Cardinality Map Data**

- Classify the data of the normalized cardinality map using K-Means with K=2.
- The classification results in 2 centroids:



### Patch-Kernel Type Adaptation (Cont'd)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 $\frac{\left|S_{i}^{S}\right|}{M^{2}}$ 

Cardinality map clustered data

\* For  $\sigma_n = 20, M = 11$ 





### **NLM Experimental Results**

Original vs. Noisy

|           | Noisy           |
|-----------|-----------------|
| PSNR [dB] | 22.15           |
| SSIM      | 0.67            |
| * For     | $\sigma_n = 20$ |



### **Uniform NLM**

Uniform NLM vs.
 Adaptive NLM

|                                | Uniform | Adaptive |  |
|--------------------------------|---------|----------|--|
| PSNR [dB]                      | 24.78   | 25.62    |  |
| SSIM                           | 0.689   | 0.75     |  |
| * For $\sigma_n = 20/22.5  dB$ |         |          |  |



### **Adaptive NLM**

Uniform NLM vs.
 Adaptive NLM

|                                | Uniform | Adaptive |  |  |
|--------------------------------|---------|----------|--|--|
| PSNR [dB]                      | 24.78   | 25.62    |  |  |
| SSIM                           | 0.689   | 0.75     |  |  |
| * For $\sigma_n = 20/22.5  dB$ |         |          |  |  |
| p=5                            |         |          |  |  |

$$p = 5$$
$$M = 11$$



#### **Box NLM**

# Box NLM vs. Adaptive NLM

|           | Вох   | Adaptive |
|-----------|-------|----------|
| PSNR [dB] | 25.54 | 25.62    |
| SSIM      | 0.74  | 0.75     |

\* For  $\sigma_n = 20/22.5 \, dB$ 

$$p = 5$$
  

$$M = 11$$
Box NLM

\* After contrast enhancement



#### **Adaptive NLM**

# Box NLM vs. Adaptive NLM

|           | Вох   | Adaptive |
|-----------|-------|----------|
| PSNR [dB] | 25.54 | 25.62    |
| SSIM      | 0.74  | 0.75     |

\* For  $\sigma_n = 20/22.5 \, dB$ 

$$p=5$$
  
 $M=11$  Adaptive NLM

\* After contrast enhancement



| Image   | Noise Level/<br>PSNR [dB] | NLM with<br>Uniform Kernel<br>PSNR [dB] /SSIM | NLM with Box<br>Kernel<br>PSNR [dB]<br>/SSIM | Proposed Adaptive<br>Approach<br>PSNR [dB] /SSIM |
|---------|---------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------|
| Lena    | 20/22.13                  | 30.11/0.87                                    | 30.27/0.86                                   | 30.48/0.88                                       |
| Baboon  | 20/22.15                  | 24.78/0.69                                    | 25.54/0.74                                   | 25.62/0.75                                       |
| Barbara | 20/22.18                  | 29.11/0.87                                    | 29.19/0.87                                   | 29.33/0.88                                       |
| Lena    | 30/18.71                  | 28.03/0.81                                    | 28.03/0.78                                   | 28.32/0.82                                       |
| Peppers | 30/18.77                  | 28.03/0.83                                    | 28.06/0.81                                   | 28.39/0.84                                       |

Denoising results are improved, however computation time is increased by 14% on average

- So far, no correlation between dissimilarity elements was assumed
- 3 sources of correlation are introduced based on patches relative location, from the simplest to the most complicated:
  - Case 1: Patches do not overlap

     Correlation due to same reference patch

$$A_{k} \cap A_{j} = \emptyset, \ A_{k} \cap A_{i} = \emptyset, \ A_{j} \cap A_{i} = \emptyset$$
$$\forall k \in S_{i}^{S} \setminus \{i\} : \ \frac{d_{i}(k)}{2\sigma_{n}^{2}} = \frac{1}{p^{2}} \sum_{\substack{m \in A_{i} \\ l \in A_{k}}} \left(\frac{N_{m} - N_{l}}{\sqrt{2}\sigma_{n}}\right)^{2}$$
$$\forall j \in S_{i}^{S} \setminus \{i\} : \ \frac{d_{i}(j)}{2\sigma_{n}^{2}} = \frac{1}{p^{2}} \sum_{\substack{m \in A_{i} \\ l \in A_{j}}} \left(\frac{N_{m} - N_{l}}{\sqrt{2}\sigma_{n}}\right)^{2}$$



3 sources of correlation are introduced based on on patches relative location:

• Case 2: Patches overlap each other

 $\rightarrow$  Correlation due to overlap of patch elements

$$A_{k} \cap A_{j} \neq \emptyset, A_{k} \cap A_{i} = \emptyset, A_{j} \cap A_{i} = \emptyset$$
$$\forall k \in S_{i}^{S} \setminus \{i\}: \frac{d_{i}(k)}{2\sigma_{n}^{2}} = \frac{1}{p^{2}} \sum_{\substack{m \in A_{i} \\ l \in A_{k}}} \left(\frac{N_{m} - N_{l}}{\sqrt{2}\sigma_{n}}\right)^{2}$$
$$\forall j \in S_{i}^{S} \setminus \{i\}: \frac{d_{i}(j)}{2\sigma_{n}^{2}} = \frac{1}{p^{2}} \sum_{\substack{m \in A_{i} \\ l \in A_{j}}} \left(\frac{N_{m} - N_{l}}{\sqrt{2}\sigma_{n}}\right)^{2}$$



3 sources of correlation are introduced based on patches relative location:

• Case 3: Patches overlap with reference

 $\rightarrow$  Correlation due to overlap with reference and with each other

$$A_{k} \cap A_{j} \neq \emptyset, A_{k} \cap A_{i} \neq \emptyset, A_{j} \cap A_{i} \neq \emptyset$$
$$\forall k \in S_{i}^{S} \setminus \{i\} : \frac{d_{i}(k)}{2\sigma_{n}^{2}} = \frac{1}{p^{2}} \sum_{\substack{m \in A_{i} \\ l \in A_{i}}} \left(\frac{N_{m} - N_{l}}{\sqrt{2}\sigma_{n}}\right)^{2}$$
$$\forall j \in S_{i}^{S} \setminus \{i\} : \frac{d_{i}(j)}{2\sigma_{n}^{2}} = \frac{1}{p^{2}} \sum_{\substack{m \in A_{i} \\ l \in A_{j}}} \left(\frac{N_{m} - N_{l}}{\sqrt{2}\sigma_{n}}\right)^{2}$$



3 sources of correlation are introduced based on patches relative
 Simple

- Case 1: Patches do not overlap
- Case 2: Patches overlap each other
- Case 3: Patches overlap with reference

Complicated

### **Correlation reduces empirical variance** $\implies$ affects the threshold used to set $S_i^s$



### **Case 1 Analysis**

- Case 1: Correlation between dissimilarities of patches that do not overlap each other, nor the reference patch
- The covariance matrix for a vector of  $L(L \le M^2)$  explored dissimilarities :

$$C_{d} = p^{-2} \begin{bmatrix} 2 & 0.5 & \dots & 0.5 \\ 0.5 & 2 & \dots & 0.5 \\ | & | & | & | \\ 0.5 & \dots & \dots & 2 \end{bmatrix}_{L \times L}$$

• The statistical characteristics of the empirical variance:

$$\mathbf{E}\left[\hat{V}\right] = \frac{3}{2p^2}, \quad Var\left[\hat{V}\right] = \frac{9}{2p^4} \frac{1}{L-1}$$

### Case 1 Analysis (Cont'd)

Reminder: the no-correlation variance threshold:

$$TH^{G} = \mathbb{E}\left[\hat{V}\right] + f \cdot Std\left[\hat{V}\right] = \frac{2}{p^{2}} \left(1 + f\sqrt{\frac{2}{L-1}}\right), \ L \in \left[2, M^{2}\right]$$

• The factor *f* is selected empirically: *f*=0

### The correlation-based variance threshold:

$$TH^{G} = \mathbf{E}\left[\hat{V}\right] + f \cdot Std\left[\hat{V}\right] = \frac{3}{2p^{2}} \left(1 + f\sqrt{\frac{2}{L-1}}\right), \ L \in \left[2, M^{2}\right]$$

• The factor *f* is selected empirically: *f*=2

### **Case 2 Analysis**

- Case 2: Correlation between dissimilarities of patches that overlap each other, but not the reference patch
- The covariance matrix for  $L(L \le M^2)$  explored dissimilarities:



where  $\Psi_i$  is the set of L sorted dissimilarities and  $\Psi_i(j)$  refers to the  $j^{th}$  element of the set .  $O_{\Psi_i(m)\Psi_i(l)}$  is the set of indices in the region of overlap between the patches that correspond to the  $m^{th}$  and  $l^{th}$  elements of the set  $\Psi_i$ .



### Case 2 Analysis (Cont'd)

• The expectation of the empirical variance:

$$E\left[\hat{V}\right] = \frac{3}{2p^2} - \frac{1}{2p^4L(L-1)} \sum_{l=1}^{L} \sum_{k=1,k\neq l}^{L} \left|O_{\psi_i(l)\psi_i(k)}\right|$$
  
As in Case 1

- Complicated terms (overlap matrices) that have to be computed for every set of accumulated dissimilarities and for every pixel in the image
- Right-hand term is smaller by 2 orders of magnitude w.r.t. case 1 term

No practical effect on variance threshold
 Impractical computation

### **Case 3 Analysis**

- Case 3: Correlation between dissimilarities of patches that overlap each other, and the reference patch
- In this case, the variance of the dissimilarity measure (diagonal terms of the covariance matrix) is changed:

$$\forall k \in S_i^s : Var\left[\frac{d_i(k)}{2\sigma_n^2}\right] = \frac{2}{p^2} + \frac{|O_{i,k}|}{p^4}$$
 Variance is increased

- where  $|O_{i,k}|$  refers to the cardinality of the overlap set between pixels *i* and *k*
- The cross-variance (**off-diagonal** terms) is complicated:

$$\forall j,k \in S_i^S, j \neq k: Cov(d_i(j),d_i(k)) = \begin{bmatrix} 1\\ 2p^2 \end{bmatrix} + \begin{bmatrix} 1\\ 2p^4 (|O_{i,j}| + |O_{i,k}| + |O_{j,k}|) + \begin{cases} |O_{i,j}| \\ 2p^4 & \text{if } |O_{i,j}| = |O_{i,k}| \\ 0 & Otherwise \end{cases}$$
  
As in Case 1 Supplements that stem from patches overlap 34

### Case 3 Analysis (Cont'd)

The expectation of the empirical variance:

$$\mathbf{E}\left[\hat{V}\right] = \frac{3}{2p^{2}} + \frac{1}{p^{4}L} \sum_{l=1}^{L} |O_{i,\psi_{i}(l)}| - \frac{1}{2p^{4}L(L-1)} \sum_{l=1}^{L} \sum_{k=1,k\neq l}^{L} \left( |O_{i,\psi_{i}(l)}| + |O_{i,\psi_{i}(k)}| + |O_{\psi_{i}(l),\psi_{i}(k)}| \right) - \frac{1}{p^{4}L(L-1)} \sum_{l=1}^{L} \sum_{k=1,k\neq l}^{L} \mathbf{1}\left( |O_{i,\psi_{i}(l)}| = |O_{i,\psi_{i}(k)}| \right) |O_{i,\psi_{i}(l)}|$$

- Similarly to Case 2:
  - Complicated terms that have to be computed for every set of accumulated dissimilarities and for every pixel in the image
  - Right-hand terms are smaller in 2 orders of magnitude w.r.t. case 1 term

No practical effect on variance threshold
 Impractical computation

### **Experimental Results**

 Correlation-based scheme (Case 1) was compared to nocorrelation scheme

| Image   | Noise<br>Level/<br>PSNR [dB] | Proposed Adaptive<br>Approach – no correlation<br>PSNR [dB] /SSIM             | Proposed Adaptive<br>Approach – w. correlation<br>PSNR [dB] /SSIM          |
|---------|------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|         |                              | $TH^{G} = \frac{2}{p^{2}} \left( 1 + f \sqrt{\frac{2}{L-1}} \right), \ f = 0$ | $TH^G = \frac{3}{2p^2} \left( 1 + f \sqrt{\frac{2}{L-1}} \right), \ f = 2$ |
| Lena    | 20/22.13                     | 30.48/0.88                                                                    | <b>30.51</b> /0.88                                                         |
| Baboon  | 20/22.15                     | 25.62/0.75                                                                    | <b>25.64</b> /0.75                                                         |
| Barbara | 30/22.18                     | 27.16/0.81                                                                    | <b>27.18</b> /0.81                                                         |
| Pirate  | 15/24.63                     | 31.08/0.85                                                                    | <b>31.12</b> /0.85                                                         |

 Comparison between the schemes with and without correlation consideration, and the standard NLM, averaged over 10 natural images



- No significant quantitative difference between the 2 schemes
- No significant visual difference

 BM3D is considered as the state-of-the-art image denoising approach



### **Model-Based Scheme**

- In Phase 1  $\rightarrow$  Noise model is assumed to be known
- In Phase 2  $\rightarrow$  Noise model is based on Phase 1 denoising
- We focus on **Phase 1 Grouping** step



### **Model-Based Scheme**

| BM3D Original Phase 1 Grouping                                  | BM3D Model-Based Phase 1 Grouping                                   |
|-----------------------------------------------------------------|---------------------------------------------------------------------|
| Transform patches                                               | -                                                                   |
| Apply hard-thresholding operator on transformed patches         | -                                                                   |
| Compute dissimilarities in transform domain                     | Compute normalized dissimilarities in image domain                  |
| Sort dissimilarities in an ascending order                      | Sort dissimilarities in an ascending order                          |
| Apply hard-thresholding operator on<br>computed dissimilarities | Accumulated variance computation and variance threshold application |
| Choose at most <b>B</b> most similar patches                    | Choose at most <b>B</b> most similar patches                        |

#### **Save Computations:**

- \* 11% improvement in grouping running time
- 4.5% improvement in overall running time

### **Model-Based Scheme – Experimental Results**

 Both Phase 1 output and the final output of the standard BM3D were compared to the corresponding outputs of the Model-Based BM3D

|         |                              | Phase 1 Output                         |                                               | Final (                                | Dutput                                        |
|---------|------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|
| Image   | Noise<br>Level/PS<br>NR [dB] | BM3D<br>Grouping<br>PSNR [dB]<br>/SSIM | Model-Based<br>Grouping<br>PSNR [dB]<br>/SSIM | BM3D<br>Grouping<br>PSNR [dB]<br>/SSIM | Model-Based<br>Grouping<br>PSNR [dB]<br>/SSIM |
| Baboon  | 20/22.15                     | 25.83/0.77                             | 25.86/0.77                                    | 26.2/0.79                              | 26.2/0.79                                     |
| Peppers | 20/22.22                     | 30.89/0.9                              | 30.99/0.9                                     | 31.46/0.92                             | 31.5/0.92                                     |
| Peppers | 30/18.77                     | 28.56/0.85                             | 28.6/0.85                                     | 29.29/0.88                             | 29.32/0.88                                    |

• The no correlation scheme results are displayed

### **Model-Based Scheme – Experimental Results**

 Phase 2 output based on BM3D grouping in Phase 1

• For  $\sigma_n = 20/22.22 \ dB$ 



### **Model-Based Scheme – Experimental Results**

 Phase 2 output based on Model-Based grouping in Phase 1

• For 
$$\sigma_n = 20/22.22 \ dB$$



**Comparable results** 

- Output of a digital camera sensor
- Signal dependent
- Statistical characteristics

$$Y_i = \text{noisy pixel}, \ X_i = \text{noise-free pixel}$$
$$E[Y_i | X_i] = Var[Y_i | X_i] = X_i$$

SNR decreases with decreasing signal intensity

$$SNR = \frac{Signal \ Power}{Noise \ Power} = \frac{X_i^2}{X_i} = X_i$$

## Variance Stabilizing Transform (VST)

- Variance Stabilizing Transform (VST) eliminates the dependency of the data variance on data mean
- Most image denoising algorithms are applicable for Gaussian noise
- Anscombe transform: non-linear

$$f\left(Y_{i}\right) = 2\sqrt{Y_{i} + \frac{3}{8}}$$

 Transformed data is characterized with Gaussian distribution with 0 mean and variance 1



### **NLM Experimental Results**

Original vs. Noisy

|           | Noisy |
|-----------|-------|
| PSNR [dB] | 22.57 |
| SSIM      | 0.693 |



## **NLM Experimental Results**

#### **Uniform NLM**

# Uniform NLM vs.Adaptive NLM

|                   | Uniform | Adaptive –<br>No<br>correlation |
|-------------------|---------|---------------------------------|
| PSNR [dB]         | 25.29   | 26.17                           |
| SSIM              | 0.72    | 0.78                            |
| * For: <i>p</i> = | = 5     |                                 |

$$M = 11$$
  
Initial PSNR = 22.57 dB



## NLM Experimental Results (Cont'd)

### **Adaptive NLM**

# Uniform NLM vs. Adaptive NLM

|                   | Uniform | Adaptive –<br>No<br>correlation |
|-------------------|---------|---------------------------------|
| PSNR [dB]         | 25.29   | 26.17                           |
| SSIM              | 0.72    | 0.78                            |
| * For: <i>p</i> = | = 5     |                                 |

$$M = 11$$
  
Initial PSNR = 22.57 dB



### NLM Experimental Results (Cont'd)

#### **Box NLM**

# Box NLM vs. Adaptive NLM

|                     | Вох   | Adaptive –<br>No<br>correlation |
|---------------------|-------|---------------------------------|
| PSNR [dB]           | 26.09 | 26.17                           |
| SSIM                | 0.77  | 0.78                            |
| * For: <i>p</i> = 5 |       |                                 |

$$M = 11$$
  
Initial PSNR = 22.57 dB



### NLM Experimental Results (Cont'd)

#### **Adaptive NLM**

# Box NLM vs. Adaptive NLM

|                     | Вох   | Adaptive –<br>No<br>correlation |
|---------------------|-------|---------------------------------|
| PSNR [dB]           | 26.09 | 26.17                           |
| SSIM                | 0.77  | 0.78                            |
| * For: <i>p</i> = 5 |       |                                 |

$$M = 11$$
  
Initial PSNR = 22.57 dB



## NLM Experimental Results (Cont'd)

### Adaptive NLM – With Correlation

 Adaptive NLM with and without correlation consideration

|                | Adaptive – W.<br>correlation | Adaptive –<br>No<br>correlation |
|----------------|------------------------------|---------------------------------|
| PSNR<br>[dB]   | 26.19                        | 26.17                           |
| SSIM           | 0.78                         | 0.78                            |
| * For: $p = 5$ |                              |                                 |

Initial PSNR = 22.57 dB



### NLM Experimental Results (Cont'd)

| Image   | Initial<br>PSNR<br>[dB] | NLM with<br>Uniform Kernel<br>PSNR [dB]<br>/SSIM | NLM with Box<br>Kernel<br>PSNR [dB]<br>/SSIM | Proposed<br>Adaptive<br>Approach –<br>No correlation<br>PSNR [dB] /SSIM | Proposed<br>Adaptive<br>Approach –<br>With correlation<br>PSNR [dB] /SSIM |
|---------|-------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Lena    | 22.58                   | 30.62/0.88                                       | 30.73/0.87                                   | 30.9/0.89                                                               | 30.96/0.89                                                                |
| Lena    | 18.8                    | 28.52/0.82                                       | 28.44/0.79                                   | 28.82/0.83                                                              | 28.84/0.83                                                                |
| Barbara | 22.27                   | 29.17/0.87                                       | 29.25/0.87                                   | 29.35/0.88                                                              | 29.41/0.88                                                                |
| Peppers | 19.2                    | 28.74/0.85                                       | 28.63/0.82                                   | 28.92/0.85                                                              | 28.95/0.85                                                                |

Better performance of adaptive scheme

### **BM3D Experimental Results**

| Image   | Initial<br>PSNR<br>[dB] | Standard BM3D<br>PSNR [dB] /SSIM | Model-Based<br>BM3D – No<br>Correlation<br>PSNR [dB] /SSIM | Model-Based BM3D –<br>With Correlation<br>PSNR [dB] /SSIM |
|---------|-------------------------|----------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Lena    | 22.46                   | 31.47/0.9                        | 31.43/0.9                                                  | 31.4/0.9                                                  |
| Barbara | 22.23                   | 29.8/0.89                        | 29.83/0.89                                                 | 29.81/0.89                                                |
| Barbara | 18.93                   | 27.67/0.83                       | 27.7/0.83                                                  | 27.7/0.83                                                 |
| Baboon  | 19.72                   | 24.57/0.69                       | 24.59/0.69                                                 | 24.59/0.69                                                |



# BM3D Experimental Results (Cont'd)



|           | Standard<br>BM3D | Model-Based<br>BM3D (No<br>Correlation) |
|-----------|------------------|-----------------------------------------|
| PSNR [dB] | 31.47            | 31.43                                   |
| SSIM      | 0.9              | 0.9                                     |

Initial PSNR: 22.46 dB

### BM3D Experimental Results (Cont'd)

### Model-Based BM3D – No Correlation



|           | Standard<br>BM3D | Model-Based<br>BM3D (No<br>Correlation) |
|-----------|------------------|-----------------------------------------|
| PSNR [dB] | 31.47            | 31.43                                   |
| SSIM      | 0.9              | 0.9                                     |

Initial PSNR: 22.46 dB

### **Summary**



- Two modifications of the NLM algorithm were introduced:
  - Model-based adaptive search region
    - Parameter-free, assuming correlation is not considered
    - Not restricted to be contiguous
  - Content-based patch-kernel type
    - Matched to local structure → smooth regions are less granular while texture and edges are preserved.
- These modifications improve denoising results both visually and quantitatively compared to standard NLM.
- Running time is increased by 14% on average, w.r.t. standard NLM.





- Correlation between dissimilarities was explored and was found to be insignificant to denoising results using the proposed scheme.
- The adaptive model-based search region was integrated into the Phase 1 grouping of the BM3D image denoising scheme, such that computational time is decreased by 11% for the Phase 1 grouping step, while denoising results remain comparable.
- The proposed scheme was explored for Poisson noise using both NLM and BM3D, and found to preserve the same tendency that characterizes the AWGN denoising.





- NLM Video denoising using the adaptive model-based scheme
- Poisson noise explore other VST (besides Anscombe)
- Color information explore dissimilarities computed using the color components, not only the gray channel





