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| Introduction to Image Denoising

= Image denoising is used to estimate the original image
given its noisy version.

m Common noise model:
| Y=x+N, N~w(0,0?) |
Y =noisy image
X = original image (unknown)
N = additive white noise
It is assumed that X and Nare independent

s Patch-based denoising methods have drawn much
attention.



| Standard Non-Local Means (NLM)

= Introduced by Buades et. al
(2005).

s Exploits image redundancy.

= Pixel restoration: Weighted
average of all gray values
within the defined search
region.
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Standard Non-Local Means (NLM)

Weights Definition

1

s The weights are based on similarity between pixel neighborhoods

( N
W, :éexp( K e@ | is the Pixel of Interest (POI)

1 2
—1IY -Y (A )
QORI )
dissimilarity measure between neighboorhoods of pixels i and k

(A, A > similarity patches of size px p centered at pixels i, k respectively
@ rectangular search region of size M xM

(h)= weight smoothing parameter

@: normalization factor (Z Wi’kj

kESi




Standard Non-Local Means (NLM) SIPL
| The Parameter h

s The NLM algorithm is sensitive to the selection of the parameter h
di(J)
1 - :
V\/i’j :We @1 JESi

= Itis usually set to be proportional to o,.

= In addition, simulations suggest that h should match local structure:
S\ ’

o EEN I .y,
- e - .. ... .-
O N N N Ny,
- e . .-

s There are NLM modifications that suggest to use an adaptive h,
matched to local structure (e.g., Duval et al. 2010, Dinesh et al. 2009)

=) High computational complexity 6



Adaptive Search Region As An
| Alternative to Local h

F

s Method: use an anisotropic adaptive region, which includes only
pixels with similar neighborhoods to that of the POI.

m Prior art:

> Gradient-based classification (Mahmoudi et al. 2005) — sensitive to noise
~ Similarity patch correlation (Dinesh et al. 2009) — a threshold is required

> Local Polynomial Approximation combined with the Intersection of
Confidence Intervals (LPA-ICI) (Sun et al. 2009) — complex and enforces
contiguity of search region
LPA-ICI
u ]

||

~ Creates wide
o edge > causes

~ = over-smoothing
o
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Proposed Modification I: 2
| Adaptive Model-Based Search Region

-

S, S* Compared
Set of/ A / oatch in s°
similar ‘ "
pixels @OL/ Reference patc
o (centered at the POI)

Set of
dissimilar Compared
pixels patch in sP

Assumptions:

vkeST X(A)=X(A)—>Y(A)-Y(A)=N(A)-N(A)
VieSP: X(A)=C;+X(A)—>Y(A)-Y(A)=C,;+N(A)-N(A)

8




Adaptive Model-Based Search Region

‘l Distribution of Dissimilarity Measure
= For a compared patch included in S?:
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= For a compared patch included in S": Non-Central

| , Re s Chi-Square
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D (c,)

VjeSP:
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Adaptive Model-Based Search Region

= Distribution Approximation
= For p°>1 the Chi-Square distribution converges to a
Normal distribution.

x10"
6

For p° =25 ﬁ\ +x2(p2)
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Adaptive Model-Based Search Region

‘|- Difference Between Distributions
Vk ESiS \{I} d|(k2) "'W(l,izj } - /\ S, distribution
— A
! i D . dI(J) A, 2 4. J 0.005 //_\\
e b)) NN
L 20, pP°p° P / \

*For p® =25 \

0 ———

0 05 1 15 2 2.5 3 35 4
Normalized d

m The difference between the distributions of the two sets can serve as a
classification measure.

Probability

= Since /1j is unknown, we use a one-side hypothesis based on the
dissimilarity variance:

Pixels included in S° are characterized by a J
normalized dissimilarity variance <2/ p’ 11




Adaptive Model-Based Search Region

cation Via Accumulated Variance

Y o e
‘m..i:! i i,r Ly e eLs o
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Adaptive Model-Based Search Region

| Variance Estimation Error

F-

= Estimated variance is based on number of accumulated elements(L)

= Small L values result in a bigger variance estimation error:

= Variance threshéid correcuon term IS’ suggGSt-d:

: d, (k 1 2 [2
V :Var{ ng)}kes S CIME p2 ,/L_l, Le[2,M?]

H | | | i | |
10 20 30 40 50 60 70 a0 80 100
#Elements
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Adaptive Model-Based Search Region

xl Variance Threshold Validation

1

= The denoising performance, given the model-based scheme, was
explored using different variance threshold values for various noise
levels, and averaged over 10 natural images.

IZ6E4

[

P2
o
-

Awverage PSNR [dB]
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Wariance thres hold G 2 )
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The blue curve corresponds to different variance thresholds

The red dot corresponds to the global maximum
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Adaptive Model-Based Search Region

Examples of Adaptive Search Region of
' uctures

LPA-ICI

LPA-ICI
.

n
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I‘E |
g PR
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NLM with Patch—Kernel

-

m 2 types of patch (dissimilarity)-kernels are used frequently in NLM

denoising: ; 2
[di<k>=vm>—v(mn= > asm-v.)J

mehA ,le A
SG(L p2—|

|Uniform patch-kernell [“Box” patch-kernel

Smooth regions Textured regions / Edges 16



Proposed Modification II:
| Patch—Kernel Type Adaptation

L.

s The Adaptive Model-Based Search Region output provides an SiS
set per pixel, computed using the Uniform patch-kernel.

s>

:

Normalized Cardinality map

1
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Patch—Kernel Type Adaptation

| Cluster Cardinality Map Data

m Classify the data of the normalized cardinality map using K-
Means with K=2.

m The classification results in 2 centroids:

Large centroid Small centroid
value value
Weights are Weights are
computed based on computed based on

Uniform patch-kernel Box patch-kernel

18



Patch—Kernel Type Adaptation (Cont’d)

i J B 1

N
_ ‘Sis‘

m Cardinality map clustered data IVE
* For o, =20, M =11




| NLM Experimental Results

m Original vs. Noisy

Noisy
PSNR [dB] 22.15
SSIM 0.67

*For o =20




| NLM Experimental Results (cont’d)

‘ Uniform NLM

s Uniform NLM vs.
Adaptive NLM

Uniform  Adaptive

PSNR [dB]  24.78 25.62
SSIM 0.689 0.75
* For o, =20/22.5dB
p=>

M =11




| NLM Experimental Results (cont’d)

‘ Adaptive NLM

s Uniform NLM vs.
Adaptive NLM

Uniform  Adaptive

PSNR [dB]  24.78 25.62
SSIM 0.689 0.75
* For o, =20/22.5dB
p=>

M =11

22



| NLM Experimental Results (cont’d)

‘ Box NLM

= Box NLM vs.
Adaptive NLM

Box Adaptive

PSNR [dB]  25.54 25.62
SSIM 0.74 0.75
* For o, =20/22.5dB
p=>

* After contrast
enhancement

23



| NLM Experimental Results (cont’d)

‘ Adaptive NLM

= Box NLM vs.
Adaptive NLM

Box Adaptive
PSNR [dB] 25.54 25.62
SSIM 0.74 0.75

* For o, =20/22.5dB

Adaptive NLM

* After contrast
enhancement

24



,I_

Image Noise Level/ NLM with NLM with Box
PSNR [dB] Uniform Kernel Kernel
PSNR [dB] /SSIM PSNR [dB]
/SSIM
Lena 20/22.13 30.11/0.87 30.27/0.86
Baboon 20/22.15 24.78/0.69 25.54/0.74
Barbara 20/22.18 29.11/0.87 29.19/0.87
Lena 30/18.71 28.03/0.81 28.03/0.78
Peppers 30/18.77 28.03/0.83 28.06/0.81

NLM Experimental Results (cont’d)

Approach

PSNR [dB] /SSIM

30.48/0.88
25.62/0.75
29.33/0.88
28.32/0.82
28.39/0.84

Denoising results are improved, however
computation time is increased by 14% on average

v

Proposed Adaptive

25



Correlation Between Dissimilarities

|

= So far, no correlation between dissimilarity elements was assumed

m 3 sources of correlation are introduced based on patches relative
location, from the simplest to the most complicated:

= Case 1: Patches do not overlap
— Correlation due to same reference patch

ANA =G, ANnA=0, AnA=0
Cdik) _ 1

2
. N_ —N
vk €S>\ = —m___!
sty 401 %( e
d(j 2 4
‘v’jeSiS\{i}; i(J) 1 I\Im_l\hj ‘ J

20‘5 - p2 “ \/Eo-n
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Correlation Between Dissimilarities

= 3 sources of correlation are introduced based on on patches
relative location:

= Case 2: Patches overlap each other

— Correlation due to overlap of patch elements

BOAZTANA=D, ANA=2

d(k) 1

2
. N, — N
vk e S\ (i} - N, =N
S pzr%( annj
|
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| Correlation Between Dissimilarities

= 3 sources of correlation are introduced based on patches relative
location:

= Case 3: Patches overlap with reference

— Correlation due to overlap with reference and with each other
TANA#P ANAZD, ANAZDD

2
Lodi(k) 1 N, —N
vk e SP\(i}: 2c()'2):p2%l ZO'IJ
2
. Lodi(j) 1 N —N
VieS’\{i}: === m 'J E:I
2 7
O-n p \/Eo-n |
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| Correlation Between Dissimilarities

= 3 sources of correlation are introduced based on patches relative

location:

Simple

= Case 1: Patches do not overlap

= Case 2: Patches overlap each other

= Case 3: Patches overlap with reference

Complicated

Correlation reduces empirical variance
== affects the threshold used to set S°

29



Correlation Between Dissimilarities

Case 1 Analysis

Case 1: Correlation between dissimilarities of patches that do
not overlap each other, nor the reference patch

The covariance matrix for a vector of L (L<M?) explored

dissimilarities : T
2 05 .. 05
i ,/05 2 . 05 i
C,=p |
; [ N ;
i _05 2 JLxL i

_________________________________________________
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Correlation Between Dissimilarities

Case 1 Analysis (Cont’d)

,I_.

Reminder: the no-correlation variance threshold:

= The factor fis selected empirically: f=2

31



Correlation Between Dissimilarities

Case 2 Analysis

m Case 2: Correlation between dissimilarities of patches that overlap
each other, but not the reference patch

= The covariance matrix for L (L<M?) explored dissimilarities:

ittt ittt o _ _ |

(2 05 . 05] | 0 Ovimta Owiv) |

c,4p7| %% 2 - 03 Ligsp|[Pnewel O uamwl |

e | N T

- los 2 |, i

P = i__________E?li/i_(_l'_)z/i_(_l)___________________________O________|=X_|___i
As in Case 1 Overlap matrix

where ¥; isthe set of L sorted dissimilarities and v, (J) refers to the jth element of the
set. Owi(m)wi(l) is the set of indices in the region of overlap between the patches that
correspond to the m™ and | elements of the set ;.
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Correlation Between Dissimilarities

| Case 2 Analysis (Cont’d)

= The expectation of the empirical variance:

1 3 1 SIRN
"V e w22, el
As in Case 1

s Complicated terms (overlap matrices) that have to be computed for
every set of accumulated dissimilarities and for every pixel in the image

m Right-hand term is smaller by 2 orders of magnitude w.r.t. case 1 term

> No practical effect on variance threshold J
» Impractical computation 33




Correlation Between Dissimilarities

| Case 3 Analysis
=

m Case 3: Correlation between dissimilarities of patches that overlap
each other, and the reference patch

= In this case, the variance of the dissimilarity measure (diagonal
terms of the covariance matrix) is changed:

20 P

d. (k 2 |0 . .
vkeS/ :Va{ '(2)} = 0 +‘ f‘ Variance is increased
= where ‘Oi,k‘ refers to the cardinality of the overlap set between pixels i and k

m The cross-variance (off-dlagonal terms) is complicated:

al (‘Oi,j‘

Vi keSS, j=k: Cov(di(j),di(k)):iztz Hz; (045 +101] +[054]) +1 2p 0, =[Ou
T 0 Otherwise
asin T Sipplements that stem from

Case 1 patches overlap 34



Correlation Between Dissimilarities

| Case 3 Analysis (Cont’d)

m The expectation of the empirical variance:

AT i: L L L
E[V]:EZ?JZ? p%L .21:‘ "”'(')‘_2p“LtL—1).Z_1“k_12k“¢.(‘o' O R ST e
L----JE 1 L L |
ji_p4|_(|__1)|2=1:k§¢|1(‘ 'W'(I)‘Z‘O' "”'(k)‘)‘ 'w.(l)‘

= Similarly to Case 2:

= Complicated terms that have to be computed for every set of accumulated

dissimilarities and for every pixel in the image

= Right-hand terms are smaller in 2 orders of magnitude w.r.t. case 1 term

> No practical effect on variance threshold
» Impractical computation

v
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Correlation Between Dissimilarities

Experimental Results

=]

|

s Correlation-based scheme (Case 1) was compared to no-
correlation scheme

Image Noise Proposed Adaptive Proposed Adaptive
Level/ Approach — no correlation Approach — w. correlation
PSNR [dB] PSNR [dB] /SSIM PSNR [dB] /SSIM
c_2 /L _ 6__3 fi _

THE® = 2 [1+f L_J, f=0 TH _2p2[1+f L_J, f=2
Lena 20/22.13 30.48/0.88 30.51/0.88
Baboon 20/22.15 25.62/0.75 25.64/0.75
Barbara 30/22.18 27.16/0.81 27.18/0.81
Pirate 15/24.63 31.08/0.85 31.12/0.85

36



Correlation Between Dissimilarities

| Experimental Results (cont’d)

s Comparison between the schemes with and without correlation
consideration, and the standard NLM, averaged over 10 natural images

33

—— With correlation + f=2

w
N

) rercermrmeeeeeeeeme-a=o —* No correlation

w
=

w
o
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+— NLM with Box
—©— NLM with Uniform

M ean PSMR [dB)
Mean PSNR [dB]
N
(o]

>
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~
~
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10 15 20 25

(o)
n

30

* No significant quantitative difference between the 2 schemes

* No significant visual difference
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| Block Matching 3D (Bm3D)

m BM3D is considered as the state-of-the-art image denoising
approach

Phase 1 Phase 2

—————————— 1----L-I M ———————————I- ---‘-I
block-wise estimates=gaggregationim block-wise csuma(cs?pqqreoaboq
M Iy ' 1
[ i (sl [ Wiy Sy
| 4 . ’ 1 ' .
- 1 T B
. .
: inverse 3D transform : ' ' inverse 3D transform : ' :
_ = ] N (I |y P I v final
s 9rouping by 1 I : \ grouping by | 1 1 ' wiener
s block-matching I I o block-matching I R )
' : I +)rd thresholding ~=-=dee===t 3 . i 1 wieger filtering === }---- s€Stimate
4 | wapght ' H | | '
1 I ' ’ i I '
1l I ' ITh I I :
> 30 transform | _ J Cpe— =30l transtorm_ _ _ ] '
' IR —— - .
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Block Matching 3D (BM3D)

,I_ModeI-Based Scheme

s In Phase 1 2 Noise model is assumed to be known

= In Phase 2 2 Noise model is based on Phase 1 denoising

s We focus on Phase 1 Grouping step

Phase 1

- block-wise cﬂnmatcs-’aoqf'eoatlon-.

inverse 3D transform

: grouping by |
image | block-matching | :

: hdrd thresholding --------- -
’ weight

l ‘
: '
w— 3D transform -
1 L]

O
B
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Block Matching 3D (BM3D)

| Model-Based Scheme

BM3D Original Phase 1 Grouping

BM3D Model-Based Phase 1 Grouping

Transform patches

Apply hard-thresholding operator on
transformed patches

Compute dissimilarities in transform
domain

Compute normalized dissimilarities in
image domain

Sort dissimilarities in an ascending order

Sort dissimilarities in an ascending order

Choose at most B most similar patches

Choose at most B most similar patches

Save Computations:

/

% 11% improvement in grouping running time J
% 4.5% improvement in overall running time

40



Block Matching 3D (BM3D)

F-

| Model-Based Scheme — Experimental Results

m Both Phase 1 output and the final output of the standard BM3D were
compared to the corresponding outputs of the Model-Based BM3D

Image Noise
Level/PS
NR [dB]

Baboon 20/22.15

Peppers 20/22.22

Peppers 30/18.77

= The no correlation scheme results are displayed

BM3D
Grouping

PSNR [dB]
/SSIM

25.83/0.77

30.89/0.9

28.56/0.85

Phase 1 Output

Model-Based
Grouping

PSNR [dB]
/SSIM

25.86/0.77
30.99/0.9
28.6/0.85

BM3D
Grouping

PSNR [dB]
/SSIM

26.2/0.79
31.46/0.92
29.29/0.88

Final Out

put
Model-Based
Grouping

PSNR [dB]
/SSIM

26.2/0.79
31.5/0.92

29.32/0.88

41



Block Matching 3D (BM3D)
| Model-Based Scheme — Experimental Results

o

s Phase 2 output based
on BM3D grouping in
Phase 1

m For o,=20/22.22 dB

42



Block Matching 3D (BM3D)
| Model-Based Scheme — Experimental Results

o

s Phase 2 output based
on Model-Based
grouping in Phase 1

m For o,=20/22.22 dB

Comparable results /
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Poisson Image Denoising

_

s Output of a digital camera sensor
= Signal dependent

m Statistical characteristics
Y; = noisy pixel, X; =noise-free pixel
[E[Yi | X;]=Var[Y; | X;]= xi]

= SNR decreases with decreasing signal intensity

. 2 h
[ SNR — Signal Power _ Xi~ X

Noise Power X, )

44



Poisson Image Denoising

Variance Stabilizing Transform (VST)

,I_

Variance Stabilizing Transform (VST) — eliminates
the dependency of the data variance on data
mean

Most image denoising algorithms are applicable
for Gaussian noise

Anscombe transform: non-linear

=

Transformed data is characterized with Gaussian
distribution with 0 mean and variance 1

45



Poisson Image Deniosing

Denoising Flow

Noisy image with
Poisson noise

Anscombe

Transform

l Transformed noisy
image with AWGN, o, =1

NLM/ BM3D
Image Denoising

Denoised
transformed image

Inverse Anscombe
Transform

4P Denoised image

46



Poisson Image Denoising

| NLM Experimental Results

m Original vs. Noisy

Noisy
PSNR [dB] 22.57
SSIM 0.693

S

;- . SR -':‘ 3 A »
VAN ), TR T
B - Y e e -



Poisson Image Denoising

| NLM Experimental Results

Uniform NLM

K

s Uniform NLM vs.
Adaptive NLM

Uniform Adaptive -

No
correlation
PSNR [dB] 25.29 26.17
SSIM 0.72 0.78
*For:p=5
M =11

Initial PSNR =22.57dB




Poisson Image Denoising

| NLM Experimental Results (cont’d)

‘ Adaptive NLM

s Uniform NLM vs.
Adaptive NLM

Uniform Adaptive -

No
correlation
PSNR [dB] 25.29 26.17
SSIM 0.72 0.78
*For:p=5
M =11

Initial PSNR =22.57dB
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Poisson Image Denoising

| NLM Experimental Results (cont’d)

‘ Box NLM

m Box NLM vs.
Adaptive NLM
Box Adaptive -
No
correlation
PSNR [dB] 26.09 26.17
SSIM 0.77 0.78
*For:p=5
M =11

Initial PSNR =22.57dB




Poisson Image Denoising

| NLM Experimental Results (cont’d)

‘ Adaptive NLM

m Box NLM vs.
Adaptive NLM
Box Adaptive -
No
correlation
PSNR [dB] 26.09 26.17
SSIM 0.77 0.78
*For:p=5
M =11

Initial PSNR =22.57dB

52



Poisson Image Denoising

| NLM Experimental Results (cont’d)

‘ _Adaptive NLM — With Correlation

= Adaptive NLM
with and
without
correlation
consideration

Adaptive - W. Adaptive -

correlation No
correlation
PSNR 26.19 26.17
[dB]
SSIM 0.78 0.78
* For: p=5
M =11

Initial PSNR =22.57 dB

53



Poisson Image Denoising

,I_

Image

Lena
Lena
Barbara

Peppers

Initial NLM with NLM with Box Proposed
PSNR Uniform Kernel Kernel Adaptive
[dB] PSNR [dB] PSNR [dB] Approach -
/SSIM /SSIM No correlation
PSNR [dB] /SSIM
22.58 30.62/0.88 30.73/0.87 30.9/0.89
18.8 28.52/0.82 28.44/0.79 28.82/0.83
22.27 29.17/0.87 29.25/0.87 29.35/0.88
19.2 28.74/0.85 28.63/0.82 28.92/0.85

Better performance of adaptive scheme

NLM Experimental Results (cont’d)

Proposed
Adaptive

Approach -
With correlation
PSNR [dB] /SSIM

30.96/0.89
28.84/0.83
29.41/0.88

28.95/0.85

4
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Poisson Image Denoising

F

Image

Lena
Barbara
Barbara

Baboon

Initial
PSNR
[dB]

22.46
22.23
18.93

19.72

Standard BM3D Model-Based
PSNR [dB] /SSIM BM3D - No
Correlation

PSNR [dB] /SSIM

31.47/0.9 31.43/0.9
29.8/0.89 29.83/0.89
27.67/0.83 27.7/0.83
24.57/0.69 24.59/0.69

Comparable performance

| BM3D Experimental Results

Model-Based BM3D —
With Correlation
PSNR [dB] /SSIM

31.4/0.9
29.81/0.89
27.7/0.83

24.59/0.69
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Poisson Image Denoising

| BM3D Experimental Results (Cont’d)

Standard BM3D

Standard Model-Based
BM3D BM3D (No
Correlation)

PSNR [dB] 31.47 31.43
SSIM 0.9 0.9

il

';

Initial PSNR : 22.46dB

e L AT

F_'—’_"
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Poisson Image Denoising

| BM3D Experimental Results (Cont’d)
Model-Based BM3D — No Correlation

Standard Model-Based

BM3D BM3D (No
Correlation)
PSNR [dB] 31.47 31.43
SSIM 0.9 0.9

Initial PSNR : 22.46dB

Y



I Summary

[

s Two modifications of the NLM algorithm were introduced:

» Model-based adaptive search region
» Parameter-free, assuming correlation is not considered
> Not restricted to be contiguous

~ Content-based patch-kernel type

> Matched to local structure = smooth regions are less
granular while texture and edges are preserved.

s These modifications improve denoising results both visually and
guantitatively compared to standard NLM.

= Running time is increased by 14% on average, w.r.t. standard NLM.

59



S
_| Summary (Cont’d) - LA
‘- Correlation between dissimilarities was explored and was found

to be insignificant to denoising results using the proposed
scheme.

= The adaptive model-based search region was integrated into
the Phase 1 grouping of the BM3D image denoising scheme,
such that computational time is decreased by 11% for the
Phase 1 grouping step, while denoising results remain
comparable.

= The proposed scheme was explored for Poisson noise using
both NLM and BM3D, and found to preserve the same tendency
that characterizes the AWGN denoising. 60



2| Future work —
= NLM Video denoising using the adaptive model-based
scheme

= Poisson noise — explore other VST (besides Anscombe)

m Color information — explore dissimilarities computed using
the color components, not only the gray channel

61






