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A B S T R A C T

Mobile devices are widely used around the world, frequently by people speaking local languages or dialects that
are not well documented. For these languages, it might not be beneficial for commercial companies to develop
Automatic Speech Recognition (ASR) systems, so users of these languages cannot utilize voice activation features
(often using Keyword Spotting, KWS) of their devices. Standard KWS methods aim to statistically model the
generation process of the speech signal, requiring hours of recorded and transcribed speech for training, and
therefore are not adequate for limited-data scenarios. In this paper we propose a new KWS method, suitable for
limited-data scenarios, which can be easily applied by developers. The proposed method uses a new histogram
representation for words, obtained with respect to a pre-trained Gaussian Mixture Model (GMM). Sentences are
represented by fixed-length global feature vectors, extracted from the response curves obtained by a word
classifier. Word and sentence classifiers are trained using a discriminative approach, which is typically robust to
training-set size. The dataset for training the GMM is easy to obtain, since no annotation is required. We
compared the proposed system to a Hidden Markov Model (HMM) based system, trained using the same low
data-resources conditions as ours, and to a state-of-the-art ASR system, trained using either the limited data
scenario, or using many hours of recorded speech. In the limited data situation, our system performs better then
both benchmarks in all experiments except for clean speech of children (CSLU dataset), where it performs as
good as the HMM. Since the ASR benchmark performs poorly without enough training data, we also trained it
without limiting the available data. In this case the ASR benchmark performs better when tested on speech of
adults (TED-LIUM dataset of TED lectures) for all noise conditions, and our system performs better when tested
on speech of children with low to moderate SNR values. The results demonstrate the advantages of the proposed
system, and the conditions under which it performs better.

1. Introduction

Keyword Spotting (KWS) is a task of detecting whether a specific
keyword was uttered in a given speech signal. It is used, for example, in
mobile applications, smart homes and security purposes. In cases where
the query is given in the form of text, KWS can be viewed as a sub-task
of automatic speech recognition (ASR). Some ASR systems aim at re-
cognizing whole word terms, by using Large Vocabulary Continuous
Speech Recognition (LVCSR) to generate word level transcription of the
given speech signal. Other KWS systems addressing this task are based
on phonetic recognizers used for ASR, thus eliminating the need for a
detailed word-based language model. Still, these systems require a great
amount of phonetically labeled recordings.

To illustrate a practical need for developing a low-resource KWS
system, we consider the following scenario. Many smartphone users
around the globe cannot utilize the voice activation properties of a
device using their local language or dialect, since it is not profitable for

big commercial companies to invest time and resources to obtain a
labelled medium-large dataset for training an ASR system. Mobile ap-
plication developers, however, may have financial interest in applying
KWS for under-documented languages. In these cases, only few positive
examples may be available for training. In addition, limited device
computational power may also dictate low resource scenario.

In recent years developing KWS systems for under-documented
languages has become a main interest in the research community. The
IARPA Babel project1 aim to foster this research: “to rapidly develop
speech recognition capability for keyword search in a previously un-
studied language, working with speech recorded in a variety of condi-
tions with limited amounts of transcription.” This project has motivated
many researches to examine existing and new methods for KWS onto
newly collected datasets related to various, under-documented lan-
guages, such as Cantonese by Kingsbury et al. (2013), Vietnamese by
Tsakalidis et al. (2014) and Chen et al. (2014), Assamese, Bengali,
Haitian Creole, Lao, Zulu by Gales et al. (2014). Still, each of these
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systems rely on several hours of recorded speech, along with tran-
scription. A different approach for multilingual representation for
speech recognition and KWS was also proposed in this project, but even
there, at least 3 hours of transcribed recordings of the target language of
interest are required (Cui et al., 2015). Although a notable effort is
invested by the IARPA Babel for collecting datasets and developing
recognition and spotting technologies for all spoken languages nowa-
days, this mission is still not completed. Many other under-documented
languages and dialects spoken by millions of people (for example:
Dhundari, Kinyarwanda, Ilocano, Sylheti, Chewa) are still unexplored
and transcribed recordings are not available yet.

Detection of keywords for children is more challenging than for
adults since their speech signals are characterized with higher varia-
bility in terms of formants location and phoneme duration as described
in Gerosa et al. (2009). Existing datasets related to speech of children
are very few, even for well documented languages, as they are much
harder to obtain, due to privacy and parental rights. Therefore, ex-
ploring speech of children and designing recognition or KWS systems to
be used by them is almost impossible for many languages, using existing
methods.

Background noise and reverberations present an additional chal-
lenge for recognition and spotting systems. ASpIRE - Automatic Speech
recognition In Reverberant Environments - challenge, also proposed by
IARPA, is a project addressing these conditions, Harper (2015). In this
project, recordings were collected by English speakers in several rooms,
using one or few microphones, providing various reverberant en-
vironments. The training data consisted of about 2000 hours of tran-
scribed speech, so systems proposed for this project were not examined
in low resource environments.

In this work we present a novel discriminative method for Keyword
Spotting in a limited-data environment, without the need for word- or
phone-level transcription. Our method is based on two classifiers: an
isolated word classifier trained using samples of the keyword and
samples of non-keywords speech, and a sentence classifier trained using
positive sentences (including the keyword) and negative sentences (not
including it). For training the word classifier we propose a new re-
presentation for isolated words, based on a pre-trained GMM which
captures the structure of the spectral feature vectors. Training a GMM
requires a relatively large dataset (several hours of recorded speech, at
least) to achieve sufficient statistical validity. However, GMM is typi-
cally trained using an unsupervised method - Expectation Maximization
(EM), as presented by Dempster et al. (1977), and does not require any
annotation. Therefore any speech recordings, relevant to the Keyword
Spotting task in terms of language and/or speakers’ identity or age, can
be used for training the GMM.

We propose a histogram representation for keywords, based on the
posterior probabilities given the pre-trained GMM. We train a dis-
criminative binary classifier using examples of the keyword and non-
keywords. We further propose a novel representation for sentences,
based on the isolated keyword classifier, which produces a fixed length
representation for each sentence. Using this representation we train a
discriminative binary classifier for sentences.

In this paper we specifically consider the limited-data setups such as
mobile applications described above, where users can be asked to re-
cord themselves only a small number of times, resulting in a very small
positive dataset available for training. In such setups, where the posi-
tive training set is much smaller than the negative one, the training
process may result in a classifier that is biased towards the negative
class. To avoid this situation, while still exploiting the diversity of the
negative training set, we use bootstrap aggregating, also referred to as
bagging predictors proposed by Breiman (1996), for training the iso-
lated word classifier, as well as for training the global classifier for
sentences. According to this approach we use the majority decision of
several classifiers (or predictors), each trained using the smaller posi-
tive set, and an equally sized and uniformly sampled subset of the larger
negative set.

To evaluate the performance of our approach, we performed an
experimental study using speech of both adults and children. We con-
sidered several challenging setups, including noisy speech signals at test
time, cross-age training and testing, and various values of training set
size. We used two benchmarks for comparison. The first is a Hidden
Markov Model (HMM) based system which is trained using the same
resources as our system, and the second is a state-of-the-art Automatic
Speech Recognition (ASR) system which is trained on a large dataset of
recorded speech, as well as a pronunciation dictionary and a large text
corpora for language modeling. We also experimented with a low re-
source setup for the ASR, that is trained on a small subset of the re-
cordings.

This paper is organized as follows. Section 2 describes previous
works related to the KWS task. In Section 3, we describe our proposed
approach for isolated word recognition and Keyword Spotting. Ex-
perimental results, evaluating the performance of the proposed ap-
proach compared to HMM and ASR system, are presented in Section 4.
Conclusions and further research suggestions are given in Section 5.

2. Related work

Keyword Spotting using ASR was done, for example, by
Garofolo et al. (2000). However, ASR systems require an enormous
amount of annotated data, which is not always available for under-
documented languages or speech of children, for example,
Boves et al. (2009). KWS systems based on phone level recognition
usually use HMM to statistically model sub-word units such as phonetic
n-grams or multigrams, as presented by James and Young (1994),
Thambiratnam and Sridharan (2005), Vergyri et al. (2007) and
Mamou et al. (2007).

In cases where the query is given as a speech signal, Query-by-
Example (QbyE) approaches are applied. These methods usually do not
use language models so they require much smaller training sets and
considerably less annotated data, if any. Some QbyE approaches are
based on lattice representation of sub-word units, similarly to text-
based systems. These supervised methods train the lattices using pho-
netically labelled recordings as proposed by Shen et al. (2009) and
Parada et al. (2009). Unsupervised QbyE methods do not require any
kind of labelled resource. Instead, they use a template representation of
the keyword and compare it against a similar representation of a given
speech utterance. Several methods based on a posterior representation
of speech data have been proposed using various approaches: a pho-
netic division where the posterior values are obtained using the lattice
output of a phonetic recognizer performed by Shen et al. (2009), the
output of a Multi Layer perceptron (MLP) by Fousek and
Hermansky (2006), statistical modeling of the speech signal using
Gaussian Mixture Model (GMM) by Zhang and Glass (2009), or alter-
natively, using HMM as presented by Wang et al. (2011). The natural
rate of speech varies with speakers and context so the posterior re-
presentation of the template and test signals usually do not match in
length. Therefore most of these methods use Dynamic Time Warping
(DTW). An efficient implementation for DTW has been proposed in
Zhang and Glass (2011), however, using DTW still imposes a challen-
ging computational load. In recent years Deep Neural Network (DNN)
and Long Short-Term Memory Networks (LSTM) have emerged as a
promising tool for signal processing and learning as proposed by
Deng et al. (2013) and Hochreiter and Schmidhuber (1997).
Chen et al. (2015) present a state-of-the-art QbyE method for KWS,
which is robust to noise while requiring small memory footprint and
low computational cost. However, it requires thousands of hours of
transcribed speech and therefore cannot be used in cases of under-
documented languages.

The main concern with KWS methods presented above is that they
use statistical models or phonetic segmentation for classification,
trained to maximize a likelihood function rather than directly max-
imizing the keyword detection rate. To address this issue, in recent
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years several KWS methods have been proposed based on dis-
criminative classification. Discriminative methods use machine
learning techniques for training optimal (in terms of detection rate)
binary classifiers to distinguish speech signals including a keyword
from signals not including it. Keshet et al. (2009) proposed a new
feature representation for speech utterances based on the estimated
duration of phonemes and transition times. A linear classifier is trained
using positive sentences (including the keyword) and negative sen-
tences (not including it). This method is trained using phonetically la-
beled data of a medium size such as TIMIT, Garofolo et al. (1993),
which consists of approximately 4 hours of recorded speech.

Two methods dealing with the case of small training set (several
minutes long) have been proposed. Both methods use features extracted
from the time-frequency representation of speech signals: spectro-
temporal patches proposed by Ezzat and Poggio (2008) or patterns of
high-energy tracks proposed by Barnwal et al. (2012). These methods
use isolated utterances of the keyword, as opposed to using positive
sentences as used by Keshet et al. (2009), and negative utterances in-
cluding other words to train a binary classifier. Given a test sentence, a
sequence of feature vectors is extracted using a sliding window. A
binary classifier is then used to produce a response curve, and a final
decision is taken by applying a threshold to the response curve.

3. Proposed approach

In this section we propose a new discriminative method for
Keyword Spotting. This method is based on a histogram representation
for classification of isolated words as described in Section 3.1, followed
by global feature representation for classification of sentences, as de-
scribed in Section 3.2. In Section 3.3 we describe how bagging pre-
dictors are utilized for training robust and unbiased word and sentence
classifiers. An overall description of our proposed inference procedure,
based on the above, is presented in Section 3.4.

3.1. Histogram representation for isolated words

Let M be a Gaussian Mixture Model (GMM), trained using spectral
features extracted from all available training data:

= = …λ μ m M{ , , Σ ; 1, , },m m mM (1)

where λm∈ R, μm∈ RP and Σm∈ RP× P are the weight, mean vector and
covariance matrix of the mth component (out of M components in the
mixture), respectively, and P is the dimension of the spectral feature

vectors. GMM is an unsupervised model, not requiring any labelling or
other metadata, so even in cases of limited data resources such as
under-documented languages, a sufficiently large amount of training
data can be easily collected.
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For each vector = …t Tz , 1, , ,t w we set the maximal element to 1 and the
rest to zero to obtain an indicator vector ut∈ RM such that:

=
⎧
⎨
⎩

=
=u m

m z n
( )

1 argmax ( )

0 otherwise
t n M

t
1,..,

(4)

This means that ut is an M×1 indicator of the specific Gaussian
component in M that has the highest conditional probability, for a
given spectral vector xt. Finally, we obtain the word histogram re-
presentation, v∈ RM, by averaging the indicator vectors, u ,T1: w over t:

∑=
=T

v u1 .
w t

T

t
1

w

(5)

Therefore, each element of v counts the fraction of times a certain
Gaussian component led to the highest probability. Note that regardless
of the value of Tw, the proposed histogram representation always results
in an M dimensional vector (depending on the number of GMM com-
ponents), thus enabling training of discriminative classification
methods with fixed input dimension such as Support Vector Machine
(SVM). Fig. 1 presents a toy example summarizing how to obtain a
histogram representation, given a sequence of frames.

Given a positive set of histograms extracted from utterances of the
keyword and a negative set extracted from utterances of non keywords,
we train a binary classifier for isolated words. In the following section
we use this classifier to obtain a response curve for a given sentence,
which is further used for extracting a global feature vector representing
the entire sentence.

Fig. 1. A toy example: (a) The posterior probability for 10 frames and 3 mixture components, that is the probability of each component conditioned on the frame’s spectral feature vector.
(b) The histogram feature vector is calculated by counting the number of frames each component attains the maximal posterior, and normalizing by the total number of counts. For
example, component 2 has maximal posterior in 4 out of 10 frames (frames index 2, 3, 5 and 8).
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3.2. Global feature representation of sentences

Given a sequence of spectral features extracted from a certain sen-
tence (positive or negative), …x{ , ,1 x },Ts we apply a sliding window of
length αT ,w with a βTw hop, whereTw is the mean length of the keyword,
evaluated using the keyword utterances used for training the word
classifier, and α>1 and β<1 are parameters. This way, in case of a
positive sentence, most of the spectral feature vectors related to the
keyword would fit into at least one of the windows. For each window,
we extract a histogram with respect to the GMM, M . The sequence of
histograms, v ,τ1: s represents the sentence, where its length τs depends on
the length of the spectral feature sequence Ts extracted from the sen-
tence, the mean length of the keyword T ,w and the sliding window hop
size.

Discriminative binary classifiers usually produce a score value on
which a threshold operation is applied to produce the predicted label.
In case of a linear classifier this score would be the distance of the test
vector from the classifying hyperplane. In case of a non-linear classifier,
the score is computed through the kernel function K( · , · ):

∑=
=

S α K x x( , ),
i

M

i i
1 (6)

where x is the test vector, …x x, , M1 are the support vectors and …α α, , M1

are their coefficients, calculated during training. Inspired by previous
work of Ezzat and Poggio (2008) and Barnwal et al. (2012), we apply
the word classifier trained as described in Section 3.1, to each element
in the sequence of histograms. We then use the score values to form a
response curve, = …S SS ( , , ),τ τ1: 1s s where St is the score produced by the
word classifier given the tth histogram. Therefore a positive sentence is
expected to yield a response curve having a distinct maximal value
corresponding to the location of the keyword in the spoken sentence,
while a negative sentence is expected to lead to random-like response.
Fig. 2(a) and (b) present the waveform, the spectrogram and the re-
sponse curve extracted from the sentences “help me unroll the new rug”
and “you didn’t arrive too late”, respectively, for the keyword unroll.
Note that the response curve related to the positive sentence, Fig. 2(a),
has a distinct-positive valued maximum point, as opposed to the re-
sponse curve related to the negative sentence, Fig. 2(b), which is quite

random and mostly below zero.
A simple approach for classifying a response curve is to apply a

threshold, as performed elsewhere by Ezzat and Poggio (2008) and
Barnwal et al. (2012). In this paper we generalize this operation by
training a binary classifier based on global features extracted from the
response curve S τ1: s. Define σ as the standard deviation of the response
curve,

∑ ∑⎜ ⎟= ⎛
⎝

− ⎞
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τ
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The global feature vector is =ϕ M m a DN( , , , ),x n where

• Normalized maximal value - =M σSmax{ }/x τ1: s

• Normalized minimal value - =m σSmin{ }/n τ1: s

• Normalized mean value - = ∑ =a σS{ }/t
τ

t1
s

• Normalized dynamic range - = −DN M mx n

Given response curves extracted from positive and negative training
sentences, we obtain their global feature vectors and train a binary
sentence classifier.

3.3. Bagging predictors

In practice, labeled samples are harder to acquire than unlabeled
ones. Therefore, we address the case where the amount of positive
examples +N is very small, compared to the amount of negative ex-
amples −N . It is preferable to use all available labelled data when
training a discriminative classifier, to increase robustness. However, an
extremely unbalanced training set will lead to a biased classifier, clas-
sifying almost everything as negative. To avoid this bias while still
utilizing the variety of the negative set, we use bagging predictors as
proposed by Breiman (1996). When training an isolated word classifier
we randomly select negative examples from the negative set, at the
same amount as the number of available positive examples, +N . We
repeat this sampling to obtain L1 negative subsets. Each negative
subset along with the positive set is used to train a binary classifier, so
we end up having L1 isolated word classifiers. We use the same strategy
for training the sentence classifiers by randomly selecting L2 negative

Fig. 2. Detection of the keyword unroll from two sentences, “help me unroll the new rug” (a) and “you didn’t arrive too late” (b). Shown are the waveform (top), spectrogram (middle),
and response curve and zero response (bottom, solid blue and dashed black, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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sets, each containing negative sentences at the same amount as the size
of the positive set. At the end of the training process, we have L1 iso-
lated word classifiers and L2 sentence classifiers.

3.4. Inference

Given a sequence of spectral feature vectors, …x x( , , ),T1 s related to a
test sentence, inference is made as depicted in Fig. 3. We first obtain the
sequence of histograms representing the sentence, v ,τ1: s with respect to
the GMM ,M using a sliding window and Eqs. (2)–(5). L1 isolated word
classifiers are applied producing L1 response curves = …l LS , 1, ,τ

l
1: 1s .

The global feature vectors, = …ϕ l L, 1, , ,l
1 are extracted from each

response curve as described in Section 3.2. Then L2 sentence classifiers
are applied to the global feature vectors, producing L1 · L2 predictions. A
final decision is made by taking a majority decision.

Note that this inference process is assumed to get a sentence or a
short utterance as an input. In the next section we evaluate the per-
formance of the proposed method, along with several other benchmark
systems, using datasets segmented into sentences. In case of very long
utterances, or when used in an online system, an additional module is
needed for slicing the speech signal into segments of about 5 s each,
preferably using a speech activity detector for avoiding segments which
start or end in the middle of a word.

4. Experimental study

We examined our approach in several challenging setups, using
training set sizes of 5, 10 and 50 positive examples, and test sets in-
cluding both clean and noisy speech signals. We used two noise types,
“car” and “babble”, with SNR values ranging from 0 dB to 20 dB. To
create the noisy test signals we used an available toolkit, software and
noise signals, called “FaNT – Filtering and Noise Adding Tool” provided
by Hirsch (2005). For clean test signals, we followed an experimental
protocol similar to the one used by Ezzat and Poggio (2008) and
Barnwal et al. (2012). However, we used a different dataset for reasons
explained below. The features we used are Mel Frequency Cepstral
Coefficients (MFCCs) along with their first and second derivatives.
Features were extracted using a 25 ms window duration and 10 ms hop
between frames, using Kaldi, an open source speech recognition fra-
mework described in Povey et al. (2011). For classification, we used the
LIBSVM toolkit by Chang and Lin (2011), for training our proposed
system for isolated word and sentence classification. Unless stated
otherwise, performance was averaged over 10 random samples of the
associated training set, to which we refer as ‘folds’.

4.1. Datasets

We used two datasets in our experiments. For speech of adults, we

used the TED-LIUM dataset2 of transcribed TED lectures in English,
described in Rousseau et al. (2012, 2014). This dataset contains 1495
TED lectures with total duration of approximately 210 hours of re-
corded speech and transcripts. The dataset is split into training, de-
velopment, and test sets with approximately 93,000, 500, and 1100
utterances, respectively. In addition to the recordings, the TED-LIUM
corpus also includes a pronunciation dictionary and a large mono-
lingual text corpus for language modeling, as described in
Rousseau et al. (2014); Williams et al. (2015). We refer to this dataset
simply as TED. For speech of children, we used recordings from CSLU,
as described by Shobaki et al. (2000). This dataset consists of ap-
proximately 100 hours of recorded speech of children, aged from kin-
dergarten to 10th grade, all American English native speakers. The
recordings include isolated words, complete sentences, and sponta-
neous speech.

As a side note, we consider the TIMIT dataset which is commonly
used in evaluation of speech algorithms and specifically in Keyword
Spotting tasks. Typically, frequent words are selected to enable as large
as possible dataset, as was done by Ezzat and Poggio (2008) and later
by Barnwal et al. (2012). In the TIMIT dataset these keywords are
greasy, dark, wash, and oily, each of which appear in approxi-
mately 640 utterances. However, each of these keywords appears in a
single sentence, which is uttered by different speakers. This makes the
TIMIT dataset not suitable for evaluating the performance of our al-
gorithm. The reason is that our sentence classifier is based on features
derived from a complete sentence, so the algorithm may correctly
identify a keyword based on the specific sentence rather than the
keyword, if this sentence appears in both training and test steps. We
therefore do not report results on TIMIT.

4.2. Benchmarks

We compared our system to two benchmark systems. The first is an
Automatic Speech Recognition based KWS, which is a state-of-the-
art Automatic Speech Recognizer (ASR), using a DNN-HMM type of
model, trained using the Kaldi framework and described by Veselỳ
et al. (2013). Inference is done by inspection of the decoding lattice,
that is a keyword is detected if the lattice contains it. We created a ROC
curve by changing the size of the decoding lattice, thus controlling the
tradeoff between false positives and false negatives. We trained the ASR
system using different training sets, depending on the experimental
context, using an existing Kaldi recipe. Training of all ASR models used
the pronunciation dictionary and language model included with the
TED-LIUM release. One dataset was the training set of TED. We refer to
this system as TED-ASR. Another dataset was the scripted part of the
CSLU training set, consisting approximately 70 hours of recorded
speech. We refer to the resulting model as CSLU-ASR. Yet another da-
taset was a small subset of CSLU, which we considered for the low-
resource scenario described in Section 1. We used approximately 25
minutes of recorded speech, equivalent to 50 positive and 100 negative
sentences, which comprises the maximal training set used to train our
proposed system. We refer to this system as Partial CSLU-ASR.

The second benchmark we considered is a HMM-based KWS. We
use a similar benchmark to the one used by Keshet et al. (2009). In this
approach, two HMMs are trained: a garbage+keyword model, trained
using the positive sentences, and a garbage model, trained using the
negative sentences. Inference is done by thresholding the likelihood
ratio of the models given a sentence, and a ROC curve is created by
changing the threshold value. Unlike Keshet et al. (2009) who used
phonetic labeling for training their benchmark system, we used a HMM-
based keyword spotter without any phone-level labeling, to allow a fair
comparison with our system. A second HMM-based benchmark we used

Fig. 3. Inference using the proposed approach for Keyword Spotting.

2 We used version 2 of the TED-LIUM corpus, which is freely available from http://
www-lium.univ-lemans.fr/en/content/ted-lium-corpus.
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is a GMM-HMM classifier for isolated words. In this system, all utter-
ances of a specific word are used to train a word-level HMM. Similarly
to the sentence-level HMM, no phone-level transcription was used for
training. Inference is done according to the HMM with the highest
likelihood score given a test word (using Viterbi decoding). Where it is
not clear from context, we refer to these two benchmarks as word-level
or sentence-level HMM, occasionally referring to the latter as Keyword
Spotting HMM. Otherwise, we simply refer to both as HMM. The two
HMM systems were trained using an available toolkit3.

4.3. Parameter tuning

Unless stated otherwise, parameters were chosen separately for each
fold, according to performance on a validation set which was randomly
selected, comprising 10% of the training set size.

For the proposed system, we need to set the number of components
for the GMM. We considered values from several dozens to several
thousand components. In our experiments we found that the accuracy
rate does not substantially improve over 500 components so this is the
amount used in all the experiments. In addition, we need to set the
number of word and sentence bagging predictors, L1 and L2. We tuned
these parameters using the validation set, as follows. First, note that
when we sample N sets of negative samples and train the associated N
bagging models, any subset of size M≤N of the models can be used for
evaluating our system using M bagging models, for every 1≤M≤N.
This enables us to evaluate the average performance of many subsets of
size M without the need for training more models, thus reducing the
bias resulting from using a single subset. Therefore, we train 2N word
models and 2N sentence models. For each candidate combination of L1
word models and L2 sentence models, we evaluate performance by re-
peated sampling of subsets of size L1× L2 classifiers and averaging the
accuracy of the sentence prediction. For each keyword, we select the L1
and L2 with highest validation accuracy. In our experiments each subset
was sampled 20 times, and =N 51, that is ∈ …L L, [1, 3, 5, ,51]1 2 .

For the HMM benchmark, a wide range of emitting states and
mixture components was examined, 1–20 and 1–2, respectively, for
each training set size and fold. The parameters range was chosen ac-
cording to training set size, to avoid over-fitting. In general, as more
positive examples are available for training, the tuning process results
in selecting HMMs with a larger number of both emitting states and
mixture components.

For the SVM classifier we considered several kernels, including the
standard linear and RBF kernels, and a Chi-Square kernel defined by:
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where γ is a parameter determined by cross validation during the
training stage, and x(n) is the nth coordinate of the vector x. In all our
experiments, the Chi-Square kernel of Eq. (8) led to the best results for
isolated word classification and a linear kernel was found best for
sentence classification (this combination was typically better by 10% as
compared to alternatives combinations, when trained and tested using
the same cross-validation process). Therefore, all results presented here
were obtained accordingly.

4.4. Results

As described in Section 3, the proposed Keyword Spotting system
consists of a word-level and a sentence-level classifier. To demonstrate
the advantages of our approach we begin with an evaluation of the
word-level classifier which we compare to a HMM-based word classi-
fier, using the CSLU children dataset. We proceed with a Keyword

Spotting task, comparing the proposed system to a HMM-based Key-
word Spotting algorithm, and to a state-of-the-art ASR system using
speech of adults. We conclude by studying the performance of these
three systems using speech of children. All the evaluated systems were
trained using clean speech, and noisy signals were used only for testing.

4.4.1. Isolated word classification - speech of children (CSLU)
We first evaluate the performance of the proposed isolated word

classifier, used in our overall Keyword Spotting system. In a Keyword
Spotting task, this classifier is trained for binary classification between
keyword and non-keyword speech. However, here we evaluate perfor-
mance on a more challenging task of multi-class classification from a
given dictionary.

For training and evaluation, we used recordings of children uttering
isolated words, taken from the CSLU dataset. We examined three dif-
ferent vocabularies, each consisting 10 words, defining three different
multiclass classification tasks.4 All parameters (number of states and
components for the HMM and the SVM constant C in our approach)
were tuned using 10-fold cross validation, where in each fold, 8/10 of
the dataset were used for training, 1/10 for setting the parameters and
1/10 for testing. The values for number of emitting states and mixture
components of the HMM were set between 6–12 and 1–2, respectively.

The spectral features of speech of children varies with age: young
kids (6–10 years old) have higher variability in terms of the shape and
location of formants. Towards their teens, the speech characteristics
become more stable and more similar to those of adults, as described by
Gerosa et al. (2009). To examine the robustness of our system and the
HMM classifier to this variability, we divided the data into three age
groups: “low” - kindergarten–5th grade, “high” - 6th–10th grade, and
“all” - kindergarten–10th grade. We trained three classifiers using these
age groups and tested each one on its corresponding group and on the
other two. In order to eliminate the effect of the training set size, the
“all” group was sub-sampled to match its size to the “low” and “high”
groups.

The results are shown in Table 1 as the accuracy rates, mean and
STD, achieved by each method and averaged over the three tasks, in-
cluding all combinations of training and test sets among age groups. In
general, higher accuracy is achieved when training and testing are
performed using the same age group, where the “low” age group was
harder for both methods due to the high variability in speech signals of
young children. Nevertheless, the proposed method leads to higher
accuracy rates than HMM in all cases: 4–9% higher for training and
testing on the same age group and 3–13% higher for cross-age training
and testing. Also note that the STD of the HMM classifier is between 1.3
and 3.4 for the “low” and “high” age groups while the STD of the
proposed system is lower than 1 in both cases. For the “all” age group
both methods lead to similar and low STD values. This indicates that
the proposed classifier is more robust to training set size and variability
than the HMM classifier, as it leads to more consistent accuracy rates.

4.4.2. Keyword Spotting - speech of adults (TED lectures)
We now evaluate performance of the proposed KWS system and

benchmarks for clean and noisy speech of adults using the TED dataset.
We chose 62 words which appear at least 40 times in the test set,5

3 http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html.

4 The three vocabularies used for the isolated word classification experiments are: (1)
background, bathe, behind, beyond, bigfoot, biology, birthmark,

boomerang, breath, bronco. (2) earthquake, easier, eight, employees,

endure, engrave, ethnic, explosion, faithful, fancy. (3) gumshoe,

handshake, hardship, hawthorne, herbalist, homemaking, hoof, hopeful,

hourly, humor.
5 The chosen keywords are: about, actually, because, been, by, don’t,

from, get, go, going, good, had, has, he, here, how, i’m, into, just,

know, like, make, me, more, much, my, no, now, one, out, people, really,

right, say, see, self, some, something, than, that’s, them, then,

there, these, thing, things, think, time, two, up, us, very, want, way,

we’re, well, when, who, will, world, would, years.
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omitting common words that appear too frequently.6

To demonstrate the influence of the amount of positive examples
available to the algorithm, we trained the examined systems using
several sets of different sizes, consisting of 5, 10 and 50 positive ex-
amples, where for each set 90% of samples were taken from the training
set and used for training, and 10% taken from the development set and
were used for validation, that is for tuning the parameters of the ex-
amined methods. All test set samples containing keywords were used
for testing, with an average of 64 utterances per keyword. In all the
experiments, a single negative set was used, consisting of 100 sentences
which do not include any of the keywords.

For training our system, single keywords were extracted using the
available TED-LIUM transcription and automatic alignment using Kaldi.
Note, however, that single keywords can be recorded in isolation so that
in principle sentence-level transcription is not needed for our system.

As described in Section 3.3, in order to increase the robustness of
the system and deal with highly unbalanced training sets (in terms of
the number of positive and negative samples), especially in the case of 5
and 10 positive examples, we use bagging predictors for word and
sentence classification, and take their average vote as the overall clas-
sification result. The number of bagging predictors for the word and
sentence classifiers, L1 and L2, was set using the validation set, as de-
scribed in Section 4.3.

Clean and noisy speech. We compared the performance of the
proposed approach and the benchmark systems under clean and noisy
conditions. We trained each system using a training set consisting clean
speech and applied them to clean and noisy versions of the test set.
Results in this section were averaged over detection of the 62 keywords
listed in the beginning of this section. For our system and the HMM
benchmark, performance was averaged over 10 random draws of the
training set, for each keyword and training set size. The TED-ASR
system was trained once on the full TED-LIUM training set (in
Section 4.4.3 we also consider training of the ASR system on smaller
datasets).

Figs. 4 and 5 present the AUC obtained by the proposed system and
the two benchmarks, averaged over all keywords, where two types of
noise were added to the speech signals. The two noise types were
“babble” and “car”, at several SNR values, ranging from 0 dB to 20 dB.
For the HMM benchmark and the proposed system, 95% confidence
interval for the mean was obtained considering a multi-sample average
of random variables, one for each keyword, with different means and
unknown variances, since we expect each keyword to have different
mean performance. For the TED-ASR benchmark system, the perfor-
mance of each keyword is based on a size-one sample (single training
set). Therefore, we do not show confidence interval for the TED-ASR
mean performance. As expected, the TED-ASR system leads to the best
results, as it uses more extensive resources for training, compared to the

other two examined systems. Compared to the HMM benchmark system
(both using the same resources), the proposed system has a distinct
advantage for clean and noisy speech, at all SNR values and for both
noise types.

Sensitivity to bagging parameters. In addition, in order to examine the
sensitivity of our algorithm to a specific choice of the bagging
parameters, we calculated for each keyword the validation accuracy
for each L1, L2 combination, relative to the maximal validation accuracy
for that keyword, and averaged over keywords. Formally, if rijk is the
validation accuracy for keyword k with =L i1 and =L j,2 then the
relative average accuracy is given by

∑=
=

r
K

r
r

1
max

,ij
k

K
ijk

i j
ijk1 ,

where K is the number of keywords. Ideally, rjk should be close to 1 and
should depend on j, k only weakly, at least for some subset of values.
Fig. 6 shows rjk for a training set of size 5. It can be seen that as long as
L1 and L2 are not too small, the average validation accuracy is within
98% or more of the accuracy achieved by the best choice of L1 and L2.
This demonstrates that our system is not very sensitive to the specific
choice of the bagging parameters. Similar results were achieved for
training sets of size 10 and 50. Nevertheless, in the following
experiments we did tune L1 and L2 in order to allow for a fair
comparison with the HMM benchmark, and considering that the
computational overhead is not high, as explained in Section 4.3.

4.4.3. Keyword Spotting - speech of children (CSLU)
We evaluated the performance of our proposed approach also for

speech of children taken from the CSLU dataset. In this experiment we
used unified training and test sets consisting of all age groups together.
As before, training was repeated 10 times using randomly sampled
training sets. At each repetition, 8/10 of the set were used for training,
1/10 of the set for parameters tuning, and 1/10 for testing in noisy
conditions. The bagging parameters L1 and L2 were tuned as described
in Section 4.3. We chose words which appear at least 50 times, which is
the maximal positive set we used for training. This resulted in only four
words: bathe, one, two and unroll, used as keywords in this sec-
tion.

Comparison with HMM on clean speech. Table 2 presents the AUC
(mean and confidence interval) obtained by the HMM benchmark and
the proposed system for all age groups (kindergarten–tenth grade). The
AUC was averaged over detection of the four keywords and over 10
repetitions of each experiment, using randomly selected training sets.
The proposed method has a distinct advantage for 5 and 10 positive
training examples, whereas for 50 the benchmark system is better.

Choosing the ASR training set. As described in Section 4.2, we
considered three options for the ASR training set. In order to choose
the most appropriate one, we evaluated the performance of the ASR
system on KWS for speech of children, using these three training sets,
which we termed TED-ASR, CSLU-ASR, and Partial CSLU-ASR. For
clean speech, The TED-ASR benchmark leads to AUC = 0.73 ± 0.01,
and the CSLU-ASR leads to AUC = 0.93 ± 0.001. Both system were
trained using many hours of speech, and used the same language
resources (pronunciation dictionary and language model), so this
deterioration is apparently caused by the domain difference, that is
training and testing on different domains (adults and children in the
case of TED-ASR), compared to a single domain used both for training
and testing (children in the case of CSLU-ASR. When using Partial
CSLU-ASR, the accuracy rates were close to random prediction,
indicating that the training set size is too small. We next evaluated
the performance of the three ASR benchmark variants on noisy speech
signals of children. Fig. 7 shows the AUC values obtained by the ASR

Table 1
Isolated word classification of speech of children (CSLU dataset): classification accuracy
rates, mean and STD values, averaged over three different 10-words vocabularies.

Train data Test data

“Low” [%] “High” [%] “All” [%]

“Low” HMM 89.0 ± 1.3 85.0 ± 2.9 86.0 ± 1.3
proposed 94.6 ± 0.5 91.1 ± 0.2 93.2 ± 0.3

“High” HMM 75.0 ± 2.7 91.0 ± 3.4 79.0 ± 4.2
proposed 86.1 ± 0.8 97.2 ± 0.6 90.5 ± 0.7

“All” HMM 81.7 ± 0.2 85.7 ± 0.3 83 ± 0.1
proposed 94.0 ± 0.1 95.9 ± 0.2 94.0 ± 0.1

6 The omitted frequent words are: the, and, to, of, a, that, in, is, you, I,

this, it, we, so, for, but, have, on, are, was, with, what, they, it’s,

can, be, all, at, not, as, do, if, an, or, our.
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benchmark system, trained using the three datasets and tested on noisy
versions of CSLU using “car” and “babble” noise types. Also shown are
results for clean speech, as given in Table 2. Firstly, it is clear that 25
minutes of recorded speech are not sufficient for proper training of the
ASR system as its performance is equivalent to random prediction.
Secondly, the differences between speech of adults and children is again
well demonstrated, as training the system on speech of adults
deteriorates performance. Therefore, for the rest of this section we
use CSLU-ASR as a benchmark, bearing in mind that it requires much
more resources compared to the proposed system and the HMM-based
benchmark.

Figs. 8 and 9 show the AUC, averaged over detection of the four
keywords, obtained by the HMM benchmark, the CSLU-ASR bench-
mark, and the proposed system. When testing on clean signals, our
system leads to higher AUC values than the HMM benchmark when 5 or
10 positive examples are available for training whereas for 50 positive
examples, both systems perform the same. When testing on noisy sig-
nals, our proposed system is more robust: it outperforms the HMM-
benchmark system at all SNR values, for both noise types and for all
training set sizes. Comparing to the CSLU-ASR benchmark, below some
SNR threshold the proposed system is more robust to noise and per-
forms better. This threshold is higher as more training samples are
available: for 5 and 10 training samples, this threshold is 10db and
15db, respectively, while for 50 training examples, only on clean speech
does the CSLU-ASR performs better.

4.5. Limitations of the proposed approach

So far we have demonstrated the advantages of the proposed
method, which enables training of a KWS system even at extreme

Fig. 4. AUC averaged over detection of 62 keywords taken from TED lectures speech of adults, tested on clean and noisy speech (babble noise). The systems are TED-ASR (blue circle),
HMM (black square), and proposed approach (red X). The HMM and the proposed system were trained using 5, 10 and 50 positive training sentences, (a), (b), and (c), respectively, each
repeated 10 times on randomly selected training sets. The TED-ASR system was trained on the complete training set of TED-LIUM corpus. For the HMM and proposed system we also show
95% confidence intervals for the mean, magnified ×20 for better visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 5. AUC averaged over detection of 62 keywords taken from TED lectures speech of adults, tested on clean and noisy speech (car noise). The systems are TED-ASR (blue circle), HMM
(black square), and proposed approach (red X). The HMM and proposed system were trained using 5, 10 and 50 positive training sentences, (a), (b), and (c), respectively, each repeated 10
times on randomly selected training sets. The TED-ASR system was trained on the complete training set of TED-LIUM corpus. For the HMM and for the proposed system we also show 95%
confidence intervals for the mean, magnified ×20 for better visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Relative validation accuracy as a function of bagging parameters L1 and L2,
measured relatively to the maximal accuracy per keyword, and averaged over all key-
words. Dataset is TED speech of adults, and training set size is 5 positive examples.
Relative accuracy below 98% is shown in hues of gray, above 98% shown in hues of
green. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

H. Benisty et al. Speech Communication 99 (2018) 1–11

8



situations of limited-data resources. In this section, we discuss the
limitations of the proposed method, and compare its performance to the
state-of-the-art TED-ASR system. Surely, in cases of under-documented
languages and/or speech of children, when dozens of hours of tran-
scribed recordings are unavailable, proper training of a state-of-the-art
ASR system is impossible. Still, we use it as a skyline for this section to
discuss several important issues. The results in this section relate to
clean speech of adults from the TED-LIUM dataset. The proposed system
was trained using 50 positive and 100 negative examples, and the ASR
system was trained using the complete dataset, both as presented in
Section 4.4.2. The main limitations of the proposed system are:

• New Keywords – the proposed system is based on discriminative
classifiers, each trained for a specific keyword. Therefore, to add a
new keyword, additional training is needed, as opposed to an ASR
system, which does not require additional training.

• Left/Right Context – In some applications, the left/right context of
the keyword might be important, for example “Google OK” vs. “OK
Google”. Using the proposed approach would lead to similar re-
presentation of the two phrases, which may lead to detection errors.
An ASR system, however, would probably manage to distinguish
between the two.

• Substrings – a keyword which is a substring of a non-keyword, for
example out and about. In these cases, the histograms of the
substring (keyword) could be very similar to the histogram obtained
by sliding over the uttered sentence including the longer string (non-
keyword). The ASR system, however, is more robust to these si-
tuations since it is trained for recognizing sub-word units and also
relies on a full language model. A closely related case is when a non-
keyword is a substring of a keyword. Table 3 presents four examples
of substrings, their appearances in the test set, and the false positive
rates of both systems. The ASR has a distinct advantage as its false

positive rates are much lower than the ones obtained by the pro-
posed method.

• Acoustically Confusable Words – two different words which are
pronounced similarly can lead to false detections. Table 4 presents
the false positive rates of two examples. The proposed method fal-
sely detected the keyword in all the examined cases, whereas the
ASR system did not.

To conclude, when having many hours of transcribed recordings of
speech for training, it is best to use a state-of-the-art ASR system, except
for speech of children at low to moderate SNR values. For limited
training resources, the proposed system is preferable, also compared to
the HMM benchmark system tested, under both clean and noisy speech
conditions.

5. Conclusion

In this paper we propose a novel approach for Keyword Spotting,
specifically adequate for limited-data setups, such as mobile applica-
tions, under-documented languages, and speech signals of children. We
propose fixed-length representations for words and for sentences, en-
abling the training of discriminative classification methods such as
Support Vector Machine (SVM). We avoid bias in training by using
bootstrap aggregating, also referred to as bagging predictors, where a
series of classifiers are trained using randomly sampled subsets of the
larger training set. Experimental study demonstrated the advantages of
the proposed method on speech of both adults and children, in several
challenging setups, considering small training-set sizes and different
background noises - “car” and “babble”. We compared the performance
of the proposed system to two benchmark systems: a HMM Keyword
Spotting system, and a state-of-the-art ASR system based on the Kaldi
framework.

In the situation of having about two hundred hours of transcribed
recorded speech for training, the ASR system leads to the best results for
adults. However, the accuracy rates significantly deteriorate when
training on speech of adults and testing on speech of children; training
the ASR system on speech of children leads to a significant improve-
ment (provided that enough data is available for training).
Nevertheless, for speech of children, on all but clean speech and using
just 50 positive examples, the proposed system leads to as good as or
higher accuracy rates than the ASR system, trained using the complete
corpus. Compared to the HMM benchmark, our system is significantly
better when tested on speech of adults for all training set sizes and noise

Table 2
Mean AUC results obtained by the HMM-based KWS and the proposed system applied to
speech of children (CSLU). An average was taken over detection of four words: bathe,
one, two and unroll, and over 10 repetitions of the experiment per word, using ran-
domly selected training sets.

# Positive examples

Method 5 10 50
Mean AUC HMM 0.5 ± 0.1 0.6 ± 0.1 0.9 ± 0.1

Proposed 0.6 ± 0.05 0.7 ± 0.05 0.8 ± 0.1

Fig. 7. Performance of the ASR system, tested on children and trained using adults TED dataset (black squares), the full CSLU dataset, consisting approximately 70 hours of speech (blue
circles), and partial CSLU dataset, approximately 25 minutes of speech, or 50 positive and 100 negative sentences (red asterisk). AUC was averaged over four keywords, bathe, one,

two, and unroll. Test sentences were taken from the “All” age group (kindergarten to tenth grade) of CSLU. Noise types are “car” (a) and “babble” (b). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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levels. For speech of children, our system performs better than the
HMM for all noise levels when using small training sets (of size 5 or 10),
while for a set size of 50, it is better for all noise levels, but for clean
speech, for which our system and the HMM benchmark show compar-
able performance.

As for further research: since the histogram representation of key-
words presented in this paper is obtained with respect to a GMM, the
temporal correspondence of the spectral feature vectors is ignored. An
alternative model, considering the temporal context of spectral feature
vectors, such as DNN, could provide better modeling of keywords, and
as a result, improve the detection rate. In this work we proposed a set of
global features for representing sentences. These features were selected
since they characterise the differences between positive and negative
response curves. Still, exploring other features may lead to improved
representation and classification of positive and negative response
curves and therefore to improved detection rate.

The proposed approach relies on a histogram representation which
leads to robust classifier, even in low data-resource conditions.
However, this representation also causes some limitations such as
training of new keywords, left/right context, substrings, and confusable
words. A simple solution for some of these issues, based on the pro-
posed system, could be to expand the histogram representation to two
histograms - one to the first half of the keyword, and another to the
second half, so the final representation for the keyword would be a

Fig. 8. AUC averaged over detection of four keywords, bathe, one, two, and unroll, taken from the “All” age group (kindergarten to tenth grade) of CSLU, tested on clean and noisy
speech (babble noise). The systems are CSLU-ASR (blue circles), HMM (black squares), and proposed approach (red X). The HMM and proposed system were trained using 5, 10 and 50
positive training sentences, (a), (b), and (c), respectively, each repeated 10 times on randomly selected training sets. The CSLU-ASR system was trained on the complete training set of
CSLU corpus. For the HMM and for the proposed system we also show 95% confidence intervals for the mean (not magnified). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. AUC averaged over detection of four keywords, bathe, one, two, and unroll, taken from the “All” age group (kindergarten to tenth grade) of CSLU, tested on clean and noisy
speech (car noise). The systems are CSLU-ASR (blue circles), HMM (black squares), and proposed approach (red X). The HMM and proposed system were trained using 5, 10 and 50
positive training sentences, (a), (b), and (c), respectively, each repeated 10 times on randomly selected training sets. The CSLU-ASR system was trained on the complete training set of
CSLU corpus. For the HMM and for the proposed system we also show 95% confidence intervals for the mean (not magnified). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 3
False positive rate of substrings for the proposed system and the ASR system, using the
TED-LIUM dataset. The ‘Appearances’ field is the number of non-keyword sentences in the
test set.

Keyword, other string Appearances ASR Proposed method

out, about 125 0.4 0.83
about, out 78 0.18 0.63
some, something 55 0.36 0.95
something, some 49 0.14 0.9

Table 4
False positive rate of acoustically confusable words for the proposed system and the
ASR system, using the TED-LIUM dataset. The ‘Appearances’ field is the number of non-
keyword sentences in the test set.

Keyword, other string Appearances ASR Proposed method

thing, think 72 0.32 0.81
them, then 52 0.4 0.62
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concatenation of the two histograms. More research is needed to ex-
plore this solution and examine its performance.
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