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ABSTRACT 

The paper addresses the problem of estimating the pa- 
rameters of a long-term model of voiced speech. The model 
is able to describe slow time-variation (non-station&y) of 
speech and hence enables the analysis of a whole phoneme 
in a single frame. This is of great importance in the separation 
of close pitch harmonics common in speech separation prob 
lems. It also has potential in speech coding and synthesis 
applications. The model considered is an extension of the 
model proposed by Almeida and Tribolet [ 11. Contrary to 
[l], which uses a Taylor series approximation and a fixed 
pitch in the analysis interval, this work presents an efficient 
iterative algorithm for explicit estimation of the model pa- 
rameters - including the time-warping function which de- 
scribes the pitch variation in the analysis frame. 

1. INTRODUCTION 

Most speech analysis-synthesis systems assume short 
term stationarity, and hence use relatively short analysis 
frames in which this assumption is not seriously violated. 
In some applications, however, using longer frames is ben- 
eficial. For example, in the co-channel voiced speech sepa- 
ration problem [ 10 and references therein], separability may 
improve with longer frame lengths, provided that the sta- 
tionarity assumption holds. This is important when the speak- 
ers have close spectral harmonics. 

With real speech, however, using too long frames de- 
grades separability and quality, unless the non-stationarity 
is incorporated into the model. In a companion paper [lo], 
we assume a quasi-periodic model which allows the pitch 
to vary linearly within the analysis frame. In a speech 

separation system based on the model, we were able to use 
60 ms long analysis frames while keeping to a minimum 
the smearing of harmonics due to varying pitch. However, 
the time variation of the spectral envelope and the pitch 
deviations from a linear function, increasingly degraded 
the performance with frame lengths exceeding 60 ms. We 
concluded that for effective separation, we need a long 
term non-stationary model that accounts for variations 
both in the pitch and the spectral envelope, and can accurately 
describe the waveform of voiced speech, in which case it 
may also be useful in speech synthesis and coding. 

Martinelli et al. [6] proposed a long term time-varying 
sinusoidal model, but avoided estimating the time-varying 
frequencies of the harmonics. Consequently, they resorted 
to equally spaced harmonics of a fixed pitch. The harmonic 
coders [2,7], and the prototype waveform interpolator [8], 
can accurately describe non-stationary voiced speech, but 
only for durations under 30 ms. 

In this work we extend a non-stationary spectral model 
for voiced speech presented by Almeida and Tribolet [I], 
and propose an efficient estimation scheme of its parameters. 
Their original model consists of a linear time-varying filter 
excited by a time-warped periodic impulse train. Under 
some reasonable assumptions, this model becomes 

x(t) = s(t) + U(f) (1) 
where x is the voiced speech signal, s is the model output, 
u is a Gaussian noise process representing both additive 
noise and modeling errors, H is the short time Fourier 
transform (STFI) of the time varying impulse response of 
the vocal tract, $(t) is an invertible time-warping function, 
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n(l)h$(r) is the fundamental instantaneous frequency, - Time-varying Fourier coefficients of the linear time- 
and k is the spectral harmonic index. varying transfer function. 

Almeida and Tribolet avoided the difficult problem of 
explicitly estimating the time-warping function by expand- 
ing the model into a low order Taylor series and assuming 
a fmed pitch for the whole analysis frame. Eventually they 
arrived at what is known as the harmonic coder [2,7], which 
unlike their original model (I), cannot describe voiced 
speech for the duration of full phonemes. 

Our approach is to begin with (1) and develop an efficient 
iterative scheme for the explicit estimation of f#~ and H, 
assuming nothing that may compromise the ability of the 
model to describe long voiced phonemes. To this end, the 
model is decomposed so that a strictly periodic signal is 
time-warped and fed into a time-varying all-pole filter. 

INVER 
RIODICi TIBLE TIME 

SIGNAL TIME VARYING 

i(u) = ; CkP 
_ WARP _ LINEAR 

SYSTEM 
k=-p. / u = @V) d, (1) 4 Hz (t.kfl(t)) 

Fig. 1 - Proposed long term model for 
voiced speech 

2. THE MODEL 

We begin by decomposing (1) so that each voiced pho- 
neme is modeled by a double transformation on a strictly 
periodic signal with period 2x (Fig. 1). The first transform 

is the inverse time-warp @-I, the output of which is quasi- 
periodic. The second transform, H,, is a linear time-varying 
(all pole) system. The physical and warped time are t and 

U = e(t) , respectively. The strictly periodic signal S(u) 
has the time-invariant Fourier coefficients c, , where k is 
the harmonic index. The derivative of the time-warping 

function a(t) = i(r) represents the instantaneous pitch. 
The spectral envelope is divided into a time-invariant and 
time-varying parts, represented by {C, ) and H,, respec- 
tively. The resulting time-varying generalized Fourier coef- 
ficients are d,(r) . In Fig. 1, g(r) is a scalar gain function 
representing the speech loudness. 

Clearly, the model (5) is not unique. We will develop later 
a criterion for a unique selection of ( ck} and (d,). The 
dimensions of the parameters become finite when we assume 
a finite analysis bandwidth and use discrete time. 

3. ML PARAMETER ESTIMATION 

With additive Gaussian noise (AGN), Maximum Likeli- 
hood (ML) estimation is equivalent to Weighted Least 
Squares (WLS). We pose the WLS problem using discrete 
time notation. Given a voiced speech signal x(t) and deftig 
&g,d,e and g as the discrete time versions of 

x(t), s( t), d(t) and g(t) , respectively, in the analysis frame, 
the parameter vector is 

(6) 

Let fi, be the spectral envelope of B(u) so that 

ck 4 tj,(k - 2 ‘-age,) = H,(t, kL!(t)) (2) 

where H, a time varying transfer function, sampled at mul- 
tiples of the instantaneous pitch. It is shown in [ 11 that H, 
is the warped version of fi,. Similarly, the time varying 
Fourier coefficients are 

we wish to solve 

(7) 

subject to 

d,(#t;l,b#(t),k) = H2(t,ka(t)) (3) 
In terms of these transfer functions, s(r) is given by 

s(t) = g(t) $ H2(t, kLl(t)) H,(t, k12(t))ejk”“’ (4) 
k=.w 

Finally, the model is 

S(t) = g(t) i d,(t) ck eik’(” 
k=-m 

(5) 

In summary, the model has 3 vector parameters: ct - 
Fourier coefficients of the periodic signal in the warped-time 

domain.: o(t) - Invertible time-warping function; and d, 

0 < a < &nT) < b , n=O,...,N-I (W 
where T is the (uniform) sampling period in the t domain, 
[O,(N-I)7J is the analysis interval, dk are slowly varying, g 
is strictly positive and slowly varying, and Q is the covari- 
ante matrix of the noise. Since (7) is a highly complex 
non-linear optimization problem, we propose a sub-optimal 
iterative approach. First the gain function g is estimated 
and the signal is gain normaked to have a constant loudness, 
thus reducing the variance of (d,). As noted earlier, the 
spectral envelope is determined by both (c,) and Id,}. We 
will now show how to select Id, 1 such that the application 
of Hz-' to the gain normalized signal will facilitate the 
estimation of (c,) and the warping function. Suppose we 
are given 

m = sz(t) + %(d (8) 
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where xy and v2 are the result of passing the input signal x 
and noise v , respectively, through gain and spectral enve- 
lope normalization (i.e. after applying the inverses of g and 
HJ, and 

s2 (t) A 2 c, ej’@(‘) (9) 
ks-oe 

is the quasi-periodic signal model. Defining x2 as the dis- - 
Crete version of x,(r), and Qr as the covariance matrix of 
V, , the WLS estimation problem is 

Wd 

%4 
subject to (7a) and 
so(u)=so(u+27r) (lob) 

The problem in (10) is a complex optimization problem. 
However, assuming for the moment that s, is known and 
QZ is diagonal (we will justify these assumptions later), 
(10) may be rewritten as 

A$? zi w,(nT]x,(nT) - s,(4(nT)]2 (11) 
\ 

e7(4a) 
where w,(nT) =(diag(Qm2’)), . Fortunately, (11) conforms 
to the Bellman optimality principle [9], and consequently 
may be posed as a variational problem, solvable by Dynamic 
Time Warping (DTW) [5,9] - a specialized Dynamic Pro- 
gramming technique - where e* is the local distance and 
the DTW local constraints reflect the constraints of (7a). 
The computational efficiency of the DTW technique moti- 
vates us to select {dir) ) such that the application of HJw’(f) 
to the gain normalized noise will diagonalize the noise 
covariance matrix Q2 . Another requirement is that the 
application of H,-‘(r) to the gain normalized signal will 
result in a time-invariant spectral envelope, to facilitate the 
estimation of the time-invariant { ck}. Provided that the vari- 
ations of the signal and the noise spectra are not too large - 
ensured by the way the phonemes are segmented - the 
above two requirements can be roughly met by using the 
following procedure: 

First, estimation of the spectral envelope evolution of 
the signal by all pole modeling using any of the numerous 
available techniques. We preferred the Discrete All Pole 
algorithm (DAP) [2] since it is more suitable for voiced 
speech and may be used in a multi-speaker environment. 
Next, LPC inverse filtering of the gain normalized signal 
x,(t) to reduce spectral envelope variations, and finally, 
filtering by a time invariant noise whitening filter to diago- 
nalize Q2 as much as possible. In the special case where D 
is white, this filter matches the average spectral envelope 
of the signal. 

Now with Q2 being diagonally dominant, we show 
how (11) may be solved by an iterative application of a 
simple comb filter [4] and DTW. To avoid cumbersome 

indexing, we present the procedure in the continuous time 
domains I and U. Let us rewrite (11) in the u time domain, 

where i?(u, #) 4 w( 9%)) e4 (12b) 

and i,b4 +, 4 x2(4f’b4) WC) 

The following iterative procedure (Fig. 2), is proposed, 
. . . . m - Assume e(t) = 27tp t , where p is the 

average pitch of the segment in Hz. 
w -Given the time-warped signal 

q(n) (u, fp’“‘) 4 x2( P-h4 (134 

and the time-warped window, 

&“‘(u, (p’) 4 w( @“‘-I (u)) tj’“‘-‘(u) (13b) 

find the periodic waveform so(ll) which minimizes (12a) 
with respect to s,. The estimator can be shown [4] to be a 
comb filter in the u domain, 

f G”“‘(u + 2nk) ilfn’(u + 2xk) 
$4 cu) = k=-- (14) 

SteD - Given the best periodic estimate so’“‘(u) , use 
DTW to minimize (11) with respect to the warping function 

t$(t), subject to (7a), over some neighborhood of 

t)(t) = 274 t, andobtain 4’“+“(t) 
We note that step A is best carried out in the u domain 

since s,, in (12a) is independent of $(t) . Conversely, step 
B minimizes (11) in the t domain since only so there 

depends on (b(t) The procedure is guaranteed to converge 
to a stationary point of the error function since both steps 
cannot increase the error. With real voiced speech, conver- 
gence is achieved within 3-4 iterations. 

4. SIMULATIONS 

To demonstrate the capabilities of the model and the 
estimation scheme, we applied it to a 100 ms long segment 
(Fig. 3) of the phoneme ‘u’ having a considerable variation 
in pitch (160 to 200 Hz). Note the smearing of the higher 
harmonics in the spectrum due to the varying pitch (Fig. 
4). Attempting to fit a strictly periodic signal to the given 
segment results in a poor match, primarily because the 
pitch and loudness are varying considerably. Next, the 
long-term model parameters are estimated and Fig. 3 com- 
pares the model to the given segment. The model is evidently 
capable of tracking the pitch and gain variations. The mis- 
matches in signal amplitude, particularly those at the right 
side of the figure, imply that the spectral envelope and 
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gain normalizations need to be further improved. Fig. 5 
shows the spectrum of the time-warped signal (denoted by 
x2 in Fig. 2). Comparing to Fig. 4, we note that the dt) X’“‘(u) 2 

smeared harmonics became sharp and narrow. Furthermore, x2(f) 4 u=p(f) I_) ESTIMATE 
some higher harmonics that were obscured in Fig. 4 become ’ GAIN so) 
apparent in Fig. 5. NORMA- 

1 

LIzATIOh 

5. CONCLUSION I 
SPECTRAL l=(b 

-my u) 

We propose an efficient estimation scheme for the pa- ENVELOPE 
rameters of a long-term model for voiced speech, and dem- NORMAL- 

onstrate some of its capabilities. Preliminary simulations IZATION EST \t-l$TE 

with voiced speech show that the model has potential in f&b) - q n 
S/$9 @I 

accurately describing whole voiced phonemes, even those 
having several hundreds of milliseconds in duration, subject 

HLPC(f,~) x2(f) USING 4 
DTW 

to appropriate segmentation. Fig.2 - Iterative scheme for the estimation of the warping 

Future efforts will focus on improving the spectral enve- function and the periodic excitation 
lope and gain normalizations. A related task is the optimal 
segmentation of phonemes in terms of minimal modeling Fig. 4 - Spectrum of the original voiced segement 

errors vs. analysis frame length. I 
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