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ABSTRACT

In this paper we present a nethod f or comput-
ing the synthesis filter (window) needed in a
weighted overlap—add (WOLA) scheme for the recon-
struction of signals in analysis/synthesis systems
used to implement the discrete short time Fourier
transform (DSTFT). The method is based on an alge-
braic representation of the analysis synthesis pro-
cess and assume that the analysis filter (window)
is known, that its length N is larger than or
equal to the transform size (i.e. the numbe± of
frequency bands) M, that no modification of the
DSTFT is performed, and that exact signal recon-
struction (unity system) is to be achieved. The
last condition can be achieved only if the shift R
of the sliding analysis window satisfies 1 < R < H.
The solution presented in this paper extends an
earlier result obtained for N = H, and is of prac-
tical importance, since using N > H results in ana-
lysis filter banke with improved frequency band
separation. The algebraic method presented is
simple and efficient as it reduces the large dimen—
sionality of the problem into a solution of R sets
of linear equations of reduced dimensions. The
solutions of these equations are the individual
synthesis polyphase filters from which the
synthesis filter is comstructed.

I. INTRODUCTION

There has been growing interest in recent
years in the applicatiom of the discrete short—
time Fourier transform (DSTFT) for the analysis
and synthesis of nonstationary signals such as
speech [1—71. In applications where the DSTFT
is not modified, the main design goal is to

achieve a unity analysis/synthesis system. Typic-
ally, the analysis filter (or window), and the
number of frequency bands (i.e. the transform
size —H) are selected to meet desired specifica-
tions on the analysis filter bank. Thus, the
remaining issues are the selection of the decima-
tion factor R (i.e. the sliding window shift)
and the design of the synthesis filter (window).
Although a necessary and sufficient condition for
obtaining exact reconstruction (i.e. a umity sys-
tem) by am amalysis/synthesis window pair is
known 11], it did not lead to an explicit design
method. However, progress has been made recently
with respect to this problem and the following
results have been reported.
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Ci) If the length of the anslysis window (N) is
equal to the transform size (i.e. N = H), a
closed form expression for the synthesis win-
dow (given the analysis window) was found
[5,7], and is applicable for all values of R
in the range 1 < H < M, with a mild con-
straint on the amalysis window. The con-
straint is that no analysis polyphase filter

impulse response is identically zero [71.
This constraint is milder than the "no zero
value" constraint assumed in [5]. Further
more, this solution is also optimal in the
HMSE sense, if the signal is reconstructed
from a modified DSTFT sequemce (i.e., the
mean square absolute error between the given
modified DSTFT sequence and the DSTFT of the

reconstructed signal is minimized) [5,7].

(ii) If N > M the design method presented in [6]
appears to be applicable to this problem as
well. However, not only does this method
require the solution of an eigenvalue—eigen—
vector problem of large dimensions (in
general), it is also a singular problem. The
singularity stems from the fact that we deal
here with a unity system for which the mini-
mum error is zero, and therefore infinitely
many solutions exist.

Because the use of N > H is of great practic-
al importance, as it allows the design of improved
analysis filter banks by reducing the transition
bandwidth of the individual filters, we aim in
this paper to solve for a synthesis filter which
results in a unity analysis/synthesis system, in a

simpler way than in [6], by using the algebraic
approach presented in [7]. Our solution is ob-
tained for values of R satisfying 1 < H < H and
is shown to coincide with the solutiOn obtained in
[7] if N = H. It is also shown, by algebraic
means, that if N > H and R = H, no finite length
(FIR) synthesis filter can satisfy the unity
system condition. In this case the design ap-
proach in [6] can provide an approximate solution.

The paper is organized as follows: In the
next section we briefly review DSTFT analysis and
synthesis and its algebraic representation. In
Section III we present the algebraic solution to
the synthesis filter design problem and in Sec-
tion IV we present a design example and summarize
the paper.
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operations that are performed by P and F in
(4),one obtains Jfl

PP= I, FF=I . (7)

(1) Hence, if no modification of the DSTFT is performed,
the input—output relation of the overall analysis/

synthesis systea is given by

DCx = SAx = x . CS)

Thus, a unity system is obtained if the rectangular
matrices A and S satisfy

SA= I . (9)

Before we proceed the following should be noted:

(i) The dimensions of the matrices A and S
increase with input signal duration.

(ii) The structures of A and S here are not
the same as in (7] , since if N > N, A in-
cludes the time aliasing operation and S

includes the periodic repetition operation
which are not needed if N = N, as assumed
in [7].

in the following section we present a solution
for S which corresponds to WOLA synthesis and
hence allows a relatively simple determination of
the synthesis filter f(n).

(3) III. SYNTHESIS FILTER DESIGN

In principle, one could attempt to solve for

S in (9) (given A) by using the generalized in-
verse of A as was done in [7] for N = N. However,
because A has a more complicated structure than
in 17],we found it difficult to solve for S using

(4) this approach, especially considering the fact that
the dimensions of S grow with the increase in in-

put aignal duration.

The approach taken was to construct S from
partial solutions used for the reconstruction of
individual elements of x. We explain and illu-
strate the method via the design example described
in Fig.l. The design parameters in this example
are: Filter length of N = 8 samples, transform size
of H = 4, and a decimation factor (window shift) of
H = 2. As seen in this figure, the matrix A has
the following special properties and structure:

(5) Ci) The first and last N—H columns are connected
with the transient phenomena at the beginning
and end due to the finite length input vector
and are disregarded in the general solution.

(ii) The remaining columns appear in groups of R
columns each, which repeat periodically but
with a linearly progressing down shift (three

(6) such groups are noted in Fig. 1).

(iii) The non—zero elements in each column i of a
group, i = D,l,2,.. . ,R—l are the i—tb poly—
phsse of the analysis filter. This property
is also illustrated in Fig. 1, where the
analysis window samples are denoted by
{h(D),h(1),. ..,h(N—l)}, N = 8.
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II, THE DSTFT AND ITS ALGEBRAIC REPRESENTATION

The DSTFT of a signal x(n) is defined by [1]

X(sR,kAD) x(n)h(aH-m)exp(-jkA)

k = 0,1 M—l

where h(n) is the analysis window sequence (proto-
type analysis filter), of length N, AD = 2r/H is

the frequency resolution, and H is the sliding win-
dow shift (in samples) or equivalently the decimation
ratio in each channel of the analysis filter bank (if
a filter bank interpretation of the DSTFT is used

(1,2,4]). The synthesis, or reconstruction, is per-
formed by using the syntheais filter f(n) to inter-
polate the decimated DSTFT sequence and inverse
transformation (1) i.e.

= 1
Hl f(n-sR)X(sH,kAQ)exp(jkA) . (2)
heo a=—°

The realization of the above analysis and synthesis

operations, is simplified by formulating (1) and (2)
io terms of OFT's of size N on properly defined con-
secutive blocks of data (1—3]. The analysis can be

represented in matrix form [7], as follows. Let x
denote the input signal vector and b the fixed time

reference DSTFT vector coosisting of concatenated
transform blocks. Then, the relation between b
and x can be written in matrix fora as [7],

Cx = b

where C is a nonsquare matrix with dimensions mxi,
with n > f (if N >N and R <N). From the above
description of the analysis steps, C can be decom-
posed iotn three factor matrioes:

C = FPA

where P is a block diagonal permutation matrix
(each block is NxM) which performs the necessary
circular rotation [2] on each aliased data block
of length N, F is a block diagonal matrix with
identical MXM blocks W which perform the DFT,
and A is a rectangular matrix performing the
windowing and time aiiaaing of consecutive input
segments — each of length N with shifts of H
samples at a time [2].

The matrix representation of the WOLA blook—by—

blook synthesis operations [2] is given by [7]

Oh =

where D is a non—square matrix with dinensions
iXm, m>i (if N>N and R<M). According to the
above synthesis procedure 0 can be decomposed into
three factor matrices:

O = SPP

where P performs the lOFT in the synthesis proce-

dure, P performs the reverse circular rotation
and S is a matrix describing the weighting of
the periodically repeated sequence and the over-
lap—add operation needed to obtain the ontput
signal. Since P and F perform tha Lmyerse
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Now, we examine how a given element xr in
the input vector x participates in the window-
ing and tine aliasing process described by

Axy.
We observe that the element Xr appears only in
[N/RI equations which can be rewritten as a re-

duced system of [N/RI equations expressed by

Ax =y
r—r —r

where Ar is the reduced system matrix, correspond-
ing to element Xr, of dimensions [N/RI x12(N/M)—l],
and the vector 5r contains xr as its cencer ele-
ment.

Because of the periodic structure of A, noted
in property (ii) above, the number of distinct
matrices Ar is only R. That is, (11) can be re-
written as

Ax =y, i=rnodR
i—r —r

synthesis polyphase filter (in reversed order of
elements) without going through the construction of
the matrix S.

(10) It should be noted that if N = M the above
approach for finding the synthesis filter results
in the solution obtained earlier in 17]. That this
is the case can easily be seen by noting that with
N = N, the reduced matrix Ar becomes a column
vector whose elements are the analysis polyphase

(11) filter terms. Thus (ATA)l is a scalar and the
synthesis polyphase filter becomes the analysis
polyphase weighted by this scalar, which is the
result in 171.

If N>M and R = N, it is known [1] that no
unity system exists. This is pronounced in the

algebraic approach presented above by the singu-
larity of the problem, as the number of columns of
A is now larger than the number of rows.

IV. DESIGN EXAMPLE AND SUMMARY
(12)

For the example in Fig. 1, there are therefore R=2
distinct matrices, A0 and A1, which are shown in
Fig. 2 and are demonstrating (12), for r = 6 (which
gives 1 = 0) and r = 7 (which gives I = 1).

The problem we pose now is how to solve for the
single center element xr from the set of equations
in (12). The solution we consider is to find the

generalized inverse Al of A1, i.e.,

At = (ATA)_1AT

and finding xr by using

T
x ayr —i—r

where a1 is the center row vector of At, and, as
explained earlier, I = r mod R.

A matrix S which yields a unity systems
must satisfy:

Sy=x

Therefore, we can construct such a matrix by proper-
ly arranging the partial solutions (for individual
elements) of the form given in (14). This is done

by first putting 4 in all the rows that have in-
dex i which satisfies i mod R = I. Now zeroes
are inserted in the required location so that if the
r—tfr row of S is multiplied by y the result is
xr. The structure of the matrix 5 which results
from the above process, for the example in Fig. 1,
is illustrated in Fig. 3. It can be verified that
the resulting synthesis matrix S corresponds to
the WOLA synthesis process described in Section II
if the length of the synthesis filter f(n) equals
to the length (N) of the analysis filter h(m).

Furthermore, since the i—th row of S is the
I—th (I = i mod R) synthesis polyphase filter (in
reversed order of elements), the synthesis filter
f(n) can be easily constructed. This result shows
that actually one cam use 4 in (14) as the I—he

An example of the results obtained using the
design method described in the previous section is
shown in Fig. 4. In this example, the analysis win-
dow (Fig. 4a) is a sin(x)/x window of length
N = 1024, the transform size is M = 128, and the
decimation factor is R = 32. The resulting synthe-
sis window is shown in Fig. 4b. This pair of
analysis/synthesis filters was used in an analysis/
synthesis system and indeed was found to yield a

unity system.

(13) In summary, a simple and efficient method for
the construction of a synthesis filter which assures
a unity analysis/synthesis system (if the DSTFT is
not modified) for a given analysis filter having

(14) length N which is larger than the transform size
N was presented. The solution is applicable for
1 < R < M since for R = N no finite length syn-
thesis filter can satisfy the unity system condition
if N > M. The solution involves the inversion
(generalized inverse) of R matrices of reduced
dimensions ([N/RI x[2(N/M)—l]), from the center
row of which the synthesis polyphase filters are

'15
formed and used to construct the synthesis filter

' ' (window).

We conclude by noting that if the DSTFT is
modified, the above synthesis filter is not neces-

sarily optimal (in the MMSE sense). However, if
N = N the above result coincides with the result
in [71 which is optimal. The problem of solving
for a synthesis filter, which satisfies the unity
system condition for N > H, and is optimal if
the DSTFT is modified, is mow under study.
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[A] Fig. 4: Design example — (a) analysis window;
Fig. 1: DSTFT analysis — windowing and aliasing. (b) synthesis window (H = 128, R = 32).
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