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ABSTRACT

An algebraic representation of the discrete short-
time Fourier transform (DSTFT) is presented for the
case in which the analysis window length N equals the
transform block size N. This representation allows the
apphcation of algebraic tools for determining an optimal
synthesis system which minimizes the mean square error
between a given modified DSTFT (which is not necessarily
a valid DSTFT sequence) and the DSTFT of the syn-
thesized signal. If no modification is applied, the result
is a unity analysis-synthesis system for any given time
update R of the sliding analysis window (provided that
R�M). It is shown that the optimal synthesis system can
be implemented by the well known weighted overlap-add
(WOLA) method using an optimal synthesis window. The
algebraic approach enables the extension of some
recent results and the relaxation of a constraiot on the
analysis window. The proposed approach is found also to
have a potential for solving the synthesis problem for
the more general case of N>M.

I. INTRODUCTION

In recent years the discrete short-time Fourier
transform (DSTFT) has proved to be a useful tool for the
analysis, modification, and synthesis of nonstationary
signals, such as speech [1-7]. Portooff [4] has extended
the earlier mathematical models and introduced the
explicit use of a synthesis window. Crochiere [5]
developed the weighted overlap-add (WOLA) method for
efficient reconstruction of a signal from a given DSTFT
sequence by weighting each inverse-transformed block
by the synthesis window and overlap-adding the
weighted blocks. Typically, the analysis window is
selected to satisfy specifications given on the perfor-
mance of the analysis filter-bank. However, the problem
of finding the appropriate synthesis window is yet not
fully solved. A necessary and sufficient condition for
exact reconstruction (if no modification of the input
signal DSTFT is performed) was derived by Portnoff [4]
but did not lead to an explicit design method. The first
step in this direction was taken by Griffin and Lim [8],
who considered the synthesis of a signal from a modified
STFT (which differs from the DSTFT considered here in
that the frequency variable is continuous), under the
criterion of minimizing the mean square error between
the given modified STFT (which may not be a valid STFT)
and the STFT of the synthesized signal. If no
modification is performed a unity system is obtained.
However, not only is their result proved for the STFT and
not the DSTFT, but it is also derived under the assump-
tion that the analysis window h(n) is not zero in the
range of its definition, i.e. n0,1 ..,N—1, where N is the
analysis window length.

Since in any computer implementation of an
analysis-synthesis system the frequency variable must
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also be discretized, we attempted to extend the results
obtained in [a] also for the DSTFT. Using an algebraic
representation of the DSTFT analysis and synthesis
operations, we show in this paper that if the number of
discrete frequencies N equal the window length N, the
results obtained in [8] are also valid here. Furthermore,
we show that the result in [8] can be put in the form of
WOLA synthesis, and that the assumption that the
analysis window has no zero values in its range of
definition can be greatly relaxed. The algebraic
approach used in this paper can be applied also when
the analysis window length N>fJ. Such windows are
needed if the amount of overlap of adjacent analysis
filters in the frequency domain is to be reduced [6,7]. In
this paper we consider only the case NM, since if N>M
the problem is more difficult. Preliminary results
obtained for N>M are reported in [9].

Similar to [8], we also consider here the situation of
synthesizing a signal from a given modified DSTFT
(MDSTFT). The DSTFT of a signal x (n) is defined by:

X(zR,Ie All) A x(TIt )h(SR—sn)exp(--jkdO7n)

The optimal synthesis system is defined to be the one
minimizes the mean square error

s A E 2sR,kAO)—Y(zR,kA[2)! (1)

where A02rr/N. N is the time-update (in samples) of
the sliding analysis wi.ndo X(sR.KAG) is the DSTYF of
the reconstructed signal z(m), and Y(sR,kAO) is the
given MDSTFT sequence.

The outline of the paper is as follows: In the next
section the algebraic representation of DSTFT analysis
and WOLA synthesis are formulated. In Section Ill the
optimal synthesis system is found using algebraic tools,
and in Section TV we summarize the results and present
conclusions.

H. Algebraic Representation of DSTfl' Analysis and Synthesis
The algebraic representation to be presented in this

section is directly based on the implementation scheme
of DSTFT analysis and weighted overlap-add (WOLA) syn-
thesis developed in [5]. To conserve space, we describe
this implementation scheme only briefly. According to
this scheme an input segment is weighted by the
analysis window of length N and is then transformed
using a DET of length N (via the FF1'). The short-time
transform obtained this way is referenced to the begin-
ning of the sliding analysis window (sliding time refer-
ence) and hence must be aligned with the fixed time ori-
gin. This can be accomplished either in the time domain- before the transformation - by circularly rotating the
windowed data, or in the frequency domain by applying a
linear phase shift. The fixed time reference DSTFT can
now be modified (if necessary). The synthesis (or recon-
struction) is performed by first returning to the sliding
time reference and then applying an inverse PIT (IDFT).
The resulting signal block is weighted by the synthesis
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window 3nd overlapped-added to the output buffer. The
proczsing is continued block-by-block with a time-
update of R samples (typically 1<R<N).

The above block-by-block iniplementation can be
represented in a matrix form as followS. Let x denote
the input signal vector, having as its elements the sam-
pies of the input sequence z(n). Let S denote the fixed
time reference DSTFT vector whief results by con-
catenating transform blocks. Then, the relation between
b andz can be written in matrix form as

(2)
where the matrix C performs the earlier described pro-
g et.epv on the taput vector. Ti F <N.. the matrix C
is not square but rectangular, with dimensions 771X1, with
m>l. The matrix 6' can be decomposed into three factor
matrices in two ways, according to the time reference
alignment used, i.e.,

if the time reference alignment is dolie in the time
domain (by the matrix F), or

C=QF4 (4)
if this is done in the frequency domain (by the matrix
Q), by jtroducing the needed linear phase shift. The
matrix A which appears in (3) and (4) iS a rectangular
matrix qhich performs the windowing of consecutive
input signal segments (each of length N and overlapping
the tnput ecment h N—F potr,.Le). The twitrl,y,
F is a square matrix which implements the DFT of the
consecutive blocks, and hence is a block-diagonal
matrix. Flack block W in F is of dimension NXN and is the
usual DFT matrix with elements w given by

w=sxp(-yk) , (5)

Returning to the time reference alignment matrices P
and Q above; both are square matrices. Tile matrix P is a
block-diagonal permutation matrix which performs the
circular rotation of each windowed input segment.
Denoting the NXN s-tb block by [PS], its elements are
given by

if ((k—i)) = ((—SR—N/2))N =0.i N—i /6)
= otha'ruise ,.,.,

where (( )) denotes modulo N operation. The matrix Q
is a diagonal matrix which provides the linear phase
shift which is equivalent to the circular rotation pro-
vided by P. The diagonal of Q is composed of con-
catenated vectors Q5 of length N each, where the k-th
element of the s-th vector is given by

= (—i)5exp(—j sRk) , krsO,l N—i (7)

Fig. 1 illustrates the algebraic representation in (2) for
an input vector x of length 1=6, an analysis window h (ii)
of length N4 n=O,i,2,3), and a time update step-size
of R=2 samples. The dimension of A is here
[(.+l)NJx[L)12X8, and each of the square matrices
P,F, and Q are 12x12. TNote that as the input vector gets
longer the matrix C expands.

Similar to the above description of the analysis pro-
cess, the synthesis process, according to the WOLA
approach takes the form

Db =x
whereb is a given DSTF'T vector (possibly modified ver-
sion of the DSTFT of an input signal), . is the syn-
thesized signal vector, and P is a matrix which performs
the WOLA synthesis process described earlier. If R<N, D
is a rectangular matrix of dimension lxm, m.>1. As in the
analysis stage, P can be factored into a product of three

or as
(9)

D=S (10)
Equation (9) is the counterpart of (3J,and (10) is the
counterpart of (4). The matrices P,F,Q are square
matrices which perform the inverse operations of those
performed by P,F,Q, respectively, in the analysis stage.
Hence, js a block diagonal oatrix with each NXN
block [F] performing the IDFT. F' is a block diagonal
matrix which performs the reverse circular rotation
performed by P. and cancels the linear phase shift
in'iroSucefihy Q.Thus, we have

Pp=i (11)

QQ=I (12)

F=I (13)
The matrix S is a rectangular matrix (if RN) which per-
forms the multiplication of consecutive signal blocks by
the synthesis window f(n), and the overlap-add opera-
tion. Fig. 2 illustrates the synthesis stage by the above
matrix operations, for the example described in Fig. i. It
is noted from the example that S is identical to the
transpose of A (i.e. AT), if the samples of the analysis
window h(rs) are replaced by the samples of the syn-
thesis window! (a).

Ill. Optimal Synthesis
As discussed earlier, the analysis window shape and

its parameters (namely, N and N) are typically dictated
by the application at hand. The problem then is to deter-
mine the synthesis system which minimizes the mean
square error s defined in (1). With lhi.s error criterion,
if the modified DSTFT sequence is a vailt PSIFI', the
optimal synthesis system should give s2=0. A particular
case of thiS situation is when no DSTFT modification is
epplied and therefore the optimal analysis-synthesis
system is a unity system.

Since the algebraic representation of the analysis
stage takes the form of a set of linear equations, i.e.,

.t', 'the yn'Cnests pro'Xem is to soTve Icr z, given C
and,,,b. The general solution we ,eek is of the form
x Dt. The problem is how to find P when ('is rectangu-
lar and of very large dimensions (tending to infinity),
such that r2 in (1) be minimum. Observing that X in (1)
is given by Czwe obtain that miniirdzing is equivalent
to minimizing s defined below:

(14)
where denotes the norm of the vector u. It should
be notedtbat although the algebraic representation of
the WOLA synthesis described in the previous section has
the formx Db, (ee (6)), the operation of the optimal
synthesis matrix P is not ncessarily implementable by
the WOLA approach. unless B can be factored into a pro-
duct of three matrices as defined in (9) and (10). It will
he seen in the sequel 'Jhat br the problem under discus-
sion (i.e., the window length N is equal to the tlansform
block siSe), the solution to be forwarded for P can be
put in a WOLA form with an appropriate (optimal) syn-
thesis window.

The solution for D depends on the form of the
analysis matrix C which is determined by the analysis
stage pararsieters N and F and the shape of analysis win-
dow. Let us consider first the simplest situation of R=N.
In this case the analysis is done block by block, without
overlap. C js nov a square matrix, A a square-diagonal
matrix and P the identity matrix P'I (see (6)). The diag-
onal of A is periodic with period N and its elements ar

matrices, either as

C=FPA (3) and
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given by the samples of the analysis window. Thus,
assuming that C is invertible, which is the case if the
analysis window h(n) satisfies n=0,1 N—i, we
get D=C and hence, using (3) and P—J. we obtain

ii = c'o = (FPA)-15 = A'F'b (15)
Comparing this solution with (2) we have S=A' (which is
also diagonal), P=P=I, and FF' is indeed the I]IIFT
matrix. The optimal synthesis takes therefore the form
of WOLA synthesis with a synthesis window f(n) given by
f(rt)i/h(n),n=O,1 N—i.

We turn now to the more general case for which
Rc\T. Since C has now more rows than columns (m>l),
there are infinitely many possible solutions. If 6
represents a valid DSTFT sequence (i.e. there exists a
tector y such that Q,q =6), any solution which gives
DCI (lxi) is acceptable. However, if 6 does not
represent a valid DST'T sequence we need to find a solu-
tion which minimizes r in (14). Such a solution is given
by the generalized inverse [to] of C. denoted by Ct
Thus, the optimal synthesis is described by

;. =b

= C = (C'C)'C
where C denotes the conjugate transpose of C ( C is
defined over the complex field and is assumed here to
have a rank which is eq,9al to the number of its
columns). It is noted that Cl Cr1 and hence this solution
is also acceptable if 6 represents a valid DSTFT as dis-
cussed above. It also coincides with (is) if R=N.

Our work is yet incomplete since we have to find a
way for computing Ct, which has dimensions which tend
to infinity, and relate the solution to the WOLA synthesis
method (or else give a physical interpretation to the
synthesis process). Let us examine first the process of
computing Ct: Using (3) and (17) we get

Ct (ATPTF*FPAY1ATPTF*
But, p?=p—i. FFNJ (or FNr1), and hence

Ct = (ATA)iATPTF' (19)
and thus

S = Cb =[C4TAY1AflPTro (20)
The interpretation of (20) is that the Fiven DSTFT vector
6 is first inverse transformed by F (IDFT), then it is
circularly rotated to return ko the sliding time ref er-
ence, and finally multiplied by 5, where

4 (AA)1Ar (21)
The first two operations are identical to those described
in the previous section for the WOLA synthesis (seli (9)),
so that we can identify pT with P and F' with F and
hence the intermediate signal vector v defined below is
the same for both synthesis methods.

4 pTr'b = (22)
We describe now two ways for completing the synthesis
process. The first approach is to initially generate a sig-
nal vectorx' defined by

Av
This is equivalent to a WOLA operation onv with a syn-
thesis window which is identical to the given analysis
window (recall that S in (e) has the form of AT). The out-
put signal vector x is now found by weighting z' wsth
the matrix (ATA)_IT It turns out that because of the spe-
cial form of A (as illustrated in Fig. i). ATA is a diagonal
matrix with a diagonal which is periodic with period R,
except for the first and last N—R terms which relate to
the transient phenomena for any given finite input sig-
nal vector z. Since the dimensions of A are very large
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with

(tend to infinity) this transient phenomena is of no con-
cern. The i-th term in each period on the diagonal is
given by

A Eh2(i-InR) 1=0,1 P—i (24)

Hence, the matrix (ATA)', needed to compute 2 from
x', is also diagonal with the i-th element in each period
given by ,,,1/X. The final result is that the output
sequencex (n) is given by

2(n) =
Eh2(n—mR) (2s)

The P values of A in (24) (which also appear in the
denominator of (25)) can be precomputed from the
known values of the given analysis window A (n) (which
has only a finite length of N), and hence the reconstruc-
tion of x (n) from x'(n) can be done on a sample by sam-
ple basis.

The second approach for completing the synthesis is
(16) to apply S of (21) directly toy. Because AT has the form

of a synthfisis matrix for the WOLA method and (ATA)' is
diagonal, S has also the form of a synthesis matrix for

(17) the WOLA method, with the optimal synthesis window
given by

f(n)=
Eh2(n—mR) (26)

The WOLA synthesis is described in scalar form by [sB]:

z(n)=E f(n—xR)y(n—sR.s) (27)

where y(n—sR,s) is given from the elements of v in (22)
by

y(n—sR,s) =v[ ((n—sR))N+SN] (28)

(16) Substituting (26) in (27) and introducing a change of
variables: r=x+sn, we obtain the alternative form

(n) = [Eh (n —sR)y (n—SR ,S)]/Eh2 (n —sR) (29)

This is the result (with some change of notation)
obtained by Griffin and Lim in [8].

Finally, we would like to discuss the assumption
made earlier that the rank of the rnxl matrix C is equal
to I. From (3). C is given by the product of P,F and A.
But, the matrices P and F are square (lnxln) nonsingu-
lar matrices, and hence the rank of C equals to the rank
of the rectangular (mxf) matrix A. Because A has only
one single term in each row (a sample of the analysis
window), a necessary and sufficient condition for A to
have rank 1 is that none of its colu.mn vectors be identi-
cally zero. Because of the special form of A (see illustra-
tion in Fig. 1). each column is a polyphase filter [7] of
the given analysis window (which is the impulse response
of the lowpass prototype filter of the analysis filter-
bank). Hence, the condition assumed in [8] that the
analysis window must be nonzero in the range
n0,1 ,...,N—i can actually be relaxed and replaced by
the condition that no polyphase filter of the analysis

(23) window be identically zero.

W. Conclusions
An algebraic representation of DSTFT analysis and

synthesis was presented in this paper for the particular
case in which the analysis window length N equals the
transform block size M. Based on this representation
and with the help of algebraic tools an optimal synthesis
system under a minimum mean error criterion was
derived. If no modification is applied to the input signal
DSTFT the resulting analysis-synthesis system is shown



to be a unity system for any given value of the time
update step-size R, ReM, of the sliding analysis window.
The resulting synthesis formulation is found to coincide
witb the result forwarded by Griffio and Elm in [8] which
considered the simpler case of a continuous frequency
variable. We show that the assumed constraint in [8]
that the window has no zero value ifl its range of
definition can be greatly relaxed, and it is sufficient that
no polyphase filter of the given analysis window is identi-
cally zero. The relation of the optimal synthesis system
to the well known WOLA synthesis method developed by
Crochiere is studied and it is shown that the optimal
synthesis system can be formulated also as a WOLA sys-
tern with. an. açproprte.t.e o9ttto.e.t syathasts wtnftow. This
shows that the synthesis method obtained in [8] is also a
WOLA technique a fact which was not noticed by the
authors of [Si.

The use of the algebraic approach is not limited to
tbe case considered in this paper, and the synthesis win-
dow which assures a unity analysis-synthesis system
(when no modification is applied to the iiiput DSTFT) was
already found in [9] for the case in which the analysis
window is longer than tbe transform block size (i.e.
N>M). The problem of finding the optimol syntbesis sys-
tem under a minimum mean square error criterion when
I'J>M is now under study.
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