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Abstract
In statistical TTS systems (STTS), speech features dynamics
is modeled by first- and second-order feature frame differ-
ences, which, typically, do not satisfactorily represent frame
to frame feature dynamics present in natural speech. The re-
duced dynamics results in over smoothing of speech features,
often sounding as muffled synthesized speech. To improve fea-
ture dynamics a Global Variance approach has been suggested.
However, it is computationally complex. We propose a dif-
ferent approach for modeling feature dynamics based on ap-
plying the DFT to the whole set of feature frames represent-
ing a phoneme. In the transform domain the inter-frame fea-
ture dynamics is then expressed in terms of inter-harmonic con-
tent, which can be modified to statistically match the dynam-
ics of natural speech. To synthesize a whole utterance we pro-
pose a method for smoothly combining the enhanced-dynamics
phonemes, which improves synthesized speech quality of STTS
with similar complexity to conventional STTS.

Index Terms: text-to-speech synthesis (TTS), statistical speech
modeling, speech features dynamics, global variance.

1. Introduction
Concatenative (sample-based) synthesis and statistical synthe-
sis are the two main approaches to text-to-speech synthesis. A
concatenative TTS system [1], [2]. directly uses natural seg-
ments, selected from a recorded speech database. Consequently,
concatenative TTS (CTTS) systems enable speech synthesis
with natural quality. However, when trying to reduce the foot-
print of the system, segments that match the required charac-
teristics are not always available, so that other segments having
closer characteristics are used instead, resulting sometimes in
audible discontinuities. Consequently, the smaller the footprint
size of the CTTS system is, the lower is the quality of generated
speech that is achieved.

On the other hand, a statistical TTS (STTS) system, al-
though having a smaller footprint, generates speech that is free
of such discontinuities, but in general, is of lower quality than
CTTS, in terms of naturalness [4], [5], and often sounds muf-
fled and buzzy. To improve speech features dynamics, the
Global Variance (GV) approach was proposed in [3], by which
a penalty is introduced for decreased variance of speech fea-
tures. The Global Variance approach improves naturalness but
involves a computationally complex iterative procedure.

In this paper we propose an alternative technique to GV
for alleviating the over-smoothing effect in speech generated
by a STTS system, but with a much lower computational com-
plexity. We found that speech features in contiguous frames,
as generated by a STTS system, do not vary much, while those

in natural speech vary much more and thus are more dynamic.
We propose to represent speech features dynamics in the trans-
form domain and not directly in terms of frame to frame varia-
tion. In the transform domain, the insufficient dynamics is char-
acterized explicitly by a marked attenuation in inter-harmonic
components. We found that the quality of speech generated
by a STTS system is improved by enhancing these attenuated
components, making the synthesized speech sound less buzzy
and less muffled. We also propose to differently treat inter-
and intra-phoneme (or sub-phoneme) frames, where the dynam-
ics of intra-phoneme frames is improved by enhancing inter-
harmonic amplitude components, while inter-phoneme transi-
tions are smoothed by constraining phonemes boundary differ-
ences.

The paper is organized as follows: In Section 2 we briefly
describe the speech representation scheme used in our research,
according to [6]. In Section 3 we provide a short description
of the conventional statistical speech generation algorithm, de-
tailed in [5]. In Section 4 we demonstrate the proposed ap-
proach to modeling speech features dynamics in the transform
domain. In Section 5 we show how to combine enhancement of
intra-phoneme dynamics with inter-phoneme transition smooth-
ing, deriving an optimal solution for the speech features of an
utterance. In section 6 we provide preliminary experimental re-
sults, and, finally, we summarize the paper in Section 7.

2. Speech Representation
In this research, as in [6], each speech frame is represented by a
complex spectral envelope, expressed in polar form as: S(f) =

A(f) expjϕ(f), where f denotes frequency. The spectrum
amplitude A(f) is analyzed on a logarithmic scale and mod-
eled by a linear combination of basis function: log(A(f)) =∑L

n=1 cnBn(f), where Bn are functions of f in a mel-
frequency scale. Statistical models are based on the coefficients
(”bins” ) cn, n = 1, . . . , 32. Examining the appropriateness
of these coefficients to statistical text-to speech modeling was
one of the first aims of our research on STTS. This representa-
tion is successfully used in IBM’s state-of-the-art CTTS system
having a reduced footprint [6]. In this work the prosody and
context analysis of a synthesized utterance is done by means of
the front end of IBM’s TTS system [1], [2].

3. Conventional Statistical Speech
Generation Algorithm

We briefly describe here the conventional approach for deriv-
ing the entire utterance feature vector in statistical TTS as de-
tailed in [6]. An entire utterance over N frames is represented
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the vector o, over an entire utterance, can be obtained from c by
a linear transformation:

o3d·N×1=W3d·N×d·Ncd·N×1, (1)

where the matrix W is constructed according to the first and 2nd

difference vectors � and �2. A detailed description of the in-
corporation of dynamic features into statistical speech synthesis
is described in [3], [4], [5]. Every phoneme pi, i = 1, 2, . . . , L,
included in a given utterance is modeled by a Gaussian mix-
ture GMpi(o) ∼

∑
i ωiN (o; mpi

, Upi), where mpi
and Upi

are the pi-th model mean and covariance matrices of dimension
3d× 1 and 3d× 3d , respectively. To find the optimal vector c,
over an entire utterance, the following cost function (into which
(1) is substituted for o) is maximized with respect to c (in our
work, as in [3], we used just a single Gaussian with a diago-
nal covariance matrix, instead of a Gaussian mixture with full
covariance matrix):

ln(P (o))=ln(P (Wc))=1
2
(Wc−m)T U−1(Wc−m), (2)

where m = [mT
p1,T1

, mT
p2,T2

, . . . , mT
pL,TL

]Td·N×1,
U = diag[Up1,T1 , Up2,T2 , . . . , UpL,TL

]d·N×d·N are the
utterance model mean vector and covariance matrix,
respectively. The sub-indexes pi, Ti denote here that
the model for pi is replicated Ti times, which is the
length of pi, dictated by the phonetic-analyzer at the
front end. Consequently, the optimal vector is given by
copt=argmincln(P (Wc))=(W T U−1W )−1W T U−1m, as
detailed in [3]. We can see in the top plot in Fig.1 that the
optimal solution is over-smoothed and has much less dynamics
(inter-frame variations) as compared to the natural segment.
Thus �1,2 do not appear to sufficiently model the features
dynamics, as also indicated by listening.

Figure 1: Demonstrating features over-smoothing. Top plot:
variation in time of cnatural

8 (dashed line) and of copt
8 (solid

line). Bottom plot: variation in time of copt∗
8 , as defined in

Section 5.4, (dashed line) and of copt
8 (solid line).

4. Modeling Feature Dynamics in the
Transform Domain

4.1. Features representation in the transform domain

To analyze the inter-frame speech features dynamics we pro-
pose to consider a phoneme of Ti frames as a quasi-periodic

sequence with a period of d samples, where a phoneme of
Ti frames is represented as a one-dimensional coefficients se-
quence of length dTi, as in Fig.2. In that figure we can see
that the statistically generated one-dimensional sequence is al-
most periodic, with a repeating pattern every d samples, while
the natural one-dimensional sequence varies much more from
frame to frame. In Fig.3, the inter-frame dynamics of the statis-
tically generated frames (middle plot) is compared to the inter-
frame dynamics of the natural phoneme (top plot), and it is
clearly seen that the statistical features have a much lower dy-
namics.

To investigate the inter-frame dynamics of each phoneme
we apply a DFT of length dTi to the whole set of Ti fea-
ture frames representing pi (i-th phoneme), i = 1, 2, . . . , L.
Obviously, in the transform domain the inter-frame dynam-
ics in pi is expressed by the inter-harmonic frequencies:
k + 1, k + 2, . . . , k + Ti − 1, where k = 1, Ti, 2Ti, . . . , (d −
1)Ti.

Comparing the variation from frame to frame of statisti-
cally generated and natural phonemes in the transform domain,
one observes an essential difference between the two. The
spectrum of the statistically generated phoneme features, repre-
sented as one-dimensional sequence, has spectral components
that are mostly located at the harmonic frequencies k = lTi,
l = 1, 2 . . . , d, while the transformed natural phoneme coeffi-
cients sequence occupies inter-harmonic frequencies as well, as
seen in Fig.4. It is seen in this figure that the inter-harmonic
content of the statistical phoneme (dot-dashed line) is much
lower (by ∼ 20 − 30dB) than in the natural phoneme (solid
line). This inter-harmonic content describes the variation from
frame to frame within a particular phoneme. This confirms our
assumption that inter-frames dynamics of statistical phonemes
is too low.

Figure 2: Features frames of a natural sequence, Ti = 4,
d = 32, (4 frames on the same plot) at the top; statistical se-
quence at the bottom. The frame-to-frame variations between
circled regions demonstrate the low dynamics in the statistical
sequence as compared to the natural sequence.

Consequently, we propose to improve the inter-frame dy-
namics by enhancing in each phoneme the transform compo-
nents at the inter-harmonic frequencies. Thus, the inter-frame
dynamics can be better modeled by the non-harmonic compo-
nents instead of by�1,2.

4.2. Improving speech features dynamics

We propose to enhance the amplitude of the inter-harmonic fre-
quencies in the transformed features sequence by learning the
statistics of the inter-harmonic content in a training stage for ev-
ery phoneme and, afterwards, to match the inter-harmonic con-
tent at the synthesis stage to the acquired statistics, as described
below.



Figure 3: Features frames of natural phoneme (4 frames on
the same plot) at the top; Conventional statistically gener-
ated phoneme in the middle; Proposed statistically generated
phoneme at the bottom.

Figure 4: Magnitude of transformed natural sequence (3
frames) in thin solid line; Magnitude of transformed conven-
tional statistical sequence in dashed line; Magnitude of trans-
formed statistical sequence with enhanced inter-harmonic con-
tent in dot-dashed line. Because of symmetry of the magni-
tude sequence, only the 48 (=32 · 3/2) positive frequencies are
shown.

4.2.1. Learning inter-harmonic content

For all natural segments pertaining to a particular phoneme pi,
where a segment consists of the features of contiguous natu-
ral frames from the database assigned to pi, we learn inter-
harmonic amplitude statistics as follows. We apply a DFT of a
corresponding length, being equal to a particular segment length
dTi, to the sequence of coefficients of every one of these natural
segments. The transformed sequences have d harmonic compo-
nents and d(Ti− 1) inter-harmonic components (that is, Ti− 1
components between every two harmonic components). The
mean and variance of the inter-harmonic amplitudes located
between every two harmonic component are computed. Thus
each element m̃k, k = 1, 2, . . . , d, of the inter-harmonic con-
tent mean vector m̃d×1, is the mean value of the amplitudes of
the inter-harmonic component located between k-th and (k+1)-
th harmonic components. The static features statistics, namely,
the first d component of mpi

in Section 3, are computed, as in
the conventional model [4].

4.2.2. Phoneme-level synthesis with inter-harmonic content

In the synthesis stage of a segment (representing pi) of Ti

frames, the mean of the static features of its model is repeated Ti

times in order to get a one-dimensional sequence of length dTi.

This one dimensional sequence is transformed by a DFT. The
phase of the transformed sequence is stored. Clearly, the inter-
harmonic components of the transformed sequence are exactly
zero because no dynamics is present in the one dimensional se-
quence due to its construction by replication. We propose to
compute the components within the k-th inter-harmonic inter-
val by a least squares approximation by a polynomial of order 2
of the points Hk, m̃{k,replicated (Ti−1) times}, Hk+1, where
Hk is the k-th harmonic component and m̃k is mean of the k-
th interval inter-harmonic amplitudes obtained in the training
stage. The dot-dashed line in Fig.4 depicts the enhanced am-
plitudes, which are very close to that of the natural amplitudes.
A gain factor of of Ti is applied to inter-harmonic component
amplitudes to match their level to the number of frames Ti. Fi-
nally, the inter-harmonic and harmonic components are com-
bined appropriately and inverse-transformed by means of the
IDFT, using the original phase stored earlier. As a result, we get
a segment (representing phoneme) with the required static fea-
tures and enhanced inter-frame dynamics, as seen in the bottom
plot of Fig.3.

5. Utterance-Level Synthesis
5.1. Problem setting

In conventional statistically generated speech features, the inter-
frame transitions are smoothed both within phonemes (intra-
phoneme) and at the inter-phoneme boundaries. Obviously,
intra-phoneme frames transitions should not be smoothed but
rather be synthesized according to their dynamics, as modeled
above by inter-harmonic components. On the other hand, inter-
phoneme boundaries transitions should indeed be smoothed in
order to avoid discontinuities. Consequently, these two types
of frames should be subject to different treatment, which is not
possible in the conventional statistical speech synthesis (Sec-
tion 2). In order to derive an optimal solution over an entire
utterance with intra- and inter-phoneme frames being treated
differently, we propose to modify the linear transformation W
of (1).

5.2. Modified linear transformation

For a particular sequence of phonemes (p1, p2, . . . , pL) of
lengths (T1, T2, . . . , TL), respectively,we propose to model the
intra-phoneme frames in the transform domain, as proposed in
Section 4, while modeling inter-phoneme transitions by the con-
ventional differences,�1,2, and to combine them by applying a

modified linear transformation Ŵ(4·d·(L−1))×d·N instead of W
in (1):

Ŵ=(ω1; β1; ω2; β2 . . . ; βi−1; ωi; βi+1 . . . ; βL−1; ωL), (3)
(; denotes vertical concatenation)

where ωi = [0
d·Ti×d·∑ i−1

k=1
Tk

Id·Ti×d·Ti 0d·Ti×d·∑L
k=i+1 Tk

]

is constructed to preserve the dynamics of intra-phoneme
frames modeled in the transform domain, and βi, shown in (4),
smoothes the transitions between pi−1 and pi by applying�1,2:

βi =

⎡
⎢⎢⎣

0ρ −1
2 ξ

0ξ +1
2 ξ

0ξ 0η

0ρ −1ξ 2ξ −1ξ 0ξ 0η

0ρ 0ξ −1
2 ξ

0ξ +1
2 ξ

0η

0ρ 0ξ −1ξ 2ξ −1ξ 0η

⎤
⎥⎥⎦ ,

(4)



where ρ = d × (d · ∑i−1
k=1 Tk − 2 · d), ξ = d × d, η =

d× (d ·∑L
k=i+1 Tk − 2 · d) and (·)y denotes a block of size y

of stated dimensions.

5.3. Utterance-level optimal solution

In Sections 5.1 and 5.2 Ŵ is derived to enable different treat-
ments of intra-phoneme frames and inter-phoneme transitions.
In order to derive the optimal solution copt∗ over an entire utter-
ance, we rearrange the model mean and the covariance matrix to
be compatible with Ŵ . The intra-phoneme frames are modeled
in the transform domain, while, to satisfy smooth transitions
at the phoneme boundaries, �1,2 are constrained at boundary
frames. Consequently, for a particular sequence of phonemes
(p1, p2, . . . , pL) of lengths (T1, T2, . . . , TL), respectively, the
utterance model mean vector and covariance matrix are:

m̂ = [m̂p1
l1

,�∗
q
, m̂p2

l3
,�∗

q
, . . . ,�∗

q
, m̂pL

lL
]T , (5)

li=d·Ti×1, q=4·d×1;

Û = diag[sÛp1
l̃1

,�
1
Ûp1

q̃ ,�
2
Ûp1

q̃ ,�
1
Ûp2

q̃ ,�
2
Ûp2

q̃ , sÛp2
l̃2

,

�1
Ûp2

q̃ ,�
2
Ûp2

q̃ ,�
1
Ûp3

q̃ ,�
2
Ûp3

q̃ , . . . ,�
1
Û

pL−1
q̃ ,

�2
Û

pL−1
q̃ , sÛpL

l̃L
], l̃i=d·Ti×d·Ti, q̃=d×d. (6)

where m̂pi
1×d·Ti

is the mean vector of phoneme pi in the features
domain, with the dynamics that was enhanced in the transform
domain; �∗

1×4·d constrains the values of �1,2 at phonemes

boundaries; sÛpi
d·Ti×D·Ti

is the covariance matrix of the static

features for pi; �
1
Ûpi

d×d and �
2
Ûpi

d×d; are the covariance ma-
trices of the differences �1,2 at boundary frames, respectively.
m̂ is column vector, Û is a block diagonal square matrix.

Consequently, using (3), (5) and (6) in (2), the optimal
solution is copt∗=(Ŵ T Û−1Ŵ )−1Ŵ T Û−1m̂, where the intra-
phoneme frames with enhanced dynamics are optimally com-
bined with smoothed inter-phoneme transitions.

6. Experimental Results
To evaluate the proposed approach we checked: a) Whether the
inter-frame variations in copt∗ are consistently higher, as com-
pared to those of cnat. b) Whether the naturalness of speech
generated from copt∗ is improved, in comparison to speech gen-
erated by the conventional approach from copt. This aspect was
evaluated by a subjective listening test.

To obtain an objective evaluation for the inter-frame vari-
ations of speech features, we computed the measure Λ =
mean(

∑N−1
i=1 ‖ci+1 − ci‖ for 30 sentences generated from

cnat, copt∗ and copt. The averaged Λ value over these sentences
was 4.81, 4.37, and 1.5 for cnat, copt∗ , and copt, respectively.
In the bottom plot of Fig.1 we see that the copt∗ has much more
dynamics than copt does. This provides an objective support to
the proposed dynamics enhancement method.

As stated above, we also performed an informal listening
test to evaluate subjectively the improvement in the naturalness
of the proposed approach in comparison to conventional statis-
tically generated sentences. The test includes 20 entries, where
each entry is a triplet with the same sentence appearing three
times, in an order related to cnat, copt∗ , copt. The same sen-
tence appears in another entry but in an different order related
to cnat, copt, copt∗ . The listeners were asked to compare the
naturalness of speech generated from copt∗ and copt to the same

sentence generated from cnat in a CTTS system, and indicate
which of the two sounds closer to the CTTS sentence. The to-
tal preference score given to copt∗ was 81.7%, while for copt

it was just 18.3%. This provides a subjective support to the
proposed synthesis method. Notwithstanding the promising re-
sults, the naturalness of copt∗ is still worse than that of cnat, so
more work is needed to improve the naturalness of STTS with
a small footprint to the naturalness of CTTS having a bigger
footprint.

Notwithstanding the improvement in the overall naturalness
of generated speech, the proposed statistical enhancement of
speech dynamics may seldom cause increased variations in the
low-band components as well. This issue should be investigated
further to improve more the generated speech quality.

7. Conclusions
In this paper we have presented a method for enhancing intra-
phoneme speech features dynamics in the transform domain
and for smoothly combining phonemes into an utterance while
maintaining the enhanced dynamics. The improvement in com-
parison to conventional STTS is supported by preliminary sub-
jective tests results, without increasing much the computational
complexity. The spectral representation coefficients cn used in
this study have been found appropriate for STTS modeling, as
in the case in IBM’s CTTS [6].
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