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ABS TRA CT 

In this presentation the stable and optimal operation of the 
adaptive line enhancer (ALE) is considered. By improving the esti- 
mate of the steady-state mean square error (MSE), a tighter stabil- 
ity constraint is obtained, as well as more accurate expressions for 
the SNR gain attained by the ALE when filtering sinusoidal signals 
in white noise. Since the LMS algorithm used for adapting the 
ALE weights aims at minimizing the MSE. and not at maximizing 
the output SNR, the proper choice of the algorithm's parameters 
for maximizing the SNR gain is considered. In particular, it is 
shown that for a given step-size parameter r (which satisfies the 
stability constraint) there exists an optimal number of weights 
which maximizes the SNR gain. Computer simulations verify the 
analytical results. 

I. Introduction 

The adaptive line enhancer (ALE) shown in Fig. I, which uses 
the Widrow-Hoff LMS algorithm [1,2] to update the adaptive filter 
weights, is by now well known [2-5]. It provides efficient means 
for filtering narrow-band or periodic signals from wide-band signals 
or noise and is particularly useful for filtering nonstationary signals. 
The ALE is actually a special case of the more general adaptive 
noise canceller [2] in which the reference input xc is a delayed ver- 
sion of the primary input dr as shown in Fig. 1. By properly choos- 
ing the delay duration, the noise components at the two inputs 
become decorrelated, whereas the narrow-band or periodic signal 
components remain correlated. Since the weights of the adaptive 
filter are adapted to minimize the mean square error (MSE), the 
output of the transversal filter, y, is attempting to track the 
narrow-band components of the input signal. The transversal filter 
implements therefore a bandpass filter (for a single narrow-band 
component) or a set of bandpass filters (for multiple narrow-band 
components). The number of weights, L, determines the 
bandwidth of each bandpass filter, and hence the improvement or 
gain in the signal to noise ratio (SNR). However, since the weights 
are adapted according to an estimate of the MSE gradient, through 
the LMS algorithm, the noise in the weight-vector W reduces the 
performance of the ALE. It is the purpose of this paper to present 
a better estimate for the steady-state MSE which enables the 
derivation of more accurate expression for the SNR gain achieved 
by the ALE, as well as a more accurate stability constraint. 
Although the improved steady-state MSE estimate and stability 
constraint coincide with the results obtained by Griffiths [6], they 
are found here in an extremely simple manner and are applied for 
evaluating the ALE performance. 
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Since the LMS algorithm attempts to minimize the MSE, 
whereas the performance of the ALE is usually'measured by the 
output SNR, we address ourselves also to the problem of choosing 
the adaptive filter parameters for maximizing the performance of 
the ALE. Some computer simulations which verify the analytical 
results are included. Additional details and simulation results can 
be found in [71. 

11. Improved Estimates for the Steady-State MSE and Stability Con- 
straint 

The adaptive process according to the LMS algorithm is 
described by [1,2] 

W1 = W,, + 2ce,,X (1) 

where W1, is the weight vector at instant k, X,, is the reference 
input vector given by X5 = [XA,XI, - - Xj,.y+t] , e the error 
output, and u is a Constant parameter which controls the conver- 
gence properties of the algorithm. For sufficiently small p, the 
algorithm can be shown to converge in the mean to the Wiener 
solution [12] 

W = RP (2) 

where R, is the autocorrelation matrix of the vector X and P is 
the cross-correlation vector between he primary input d5 and X5 
(the reference input vector). The usual stability constraint on .c is 

given by [1,2] 

0 < j.c < l/Xmax (3) 

where kmax is the largest eigenvalue of R . It will be shown in 
the sequel that the actual stability range is narrower. 

Since the LMS algorithm uses an estimate of the MSE gradient 
for adapting the weights, the actual instantaneous values of W5 
fluctuate (after convergence) about their mean value E{W} 
('weight-noise") causing a degradation in the performance of the 
adaptive filter. Assuming that the weights have converged (in the 
mean) let 

Wr=W*+Vr. (4) 

Then, the output from the transversal filter, Y, can be described as 
the sum of two terms 

Yr = W/X0 = We 'X5 + V/X Y + Y, (5) 

where y is the output expected from the optimal Wiener filter and 
y2 is a noise component added due to the weights fluctuations. 
With the assumption of no correlation between y and y 
(equivalent to the common assumption of no correlation between 
X5andW [1,2]), 
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E{y) = E[(yfl2} + E{(y)2}. 

Using the results derived in [2] for the covariance of VA, 

EL (Y) 2} (7) 
where is the minimum MSE achieved by the Wiener solution. 
Thus, using (7) the steady-state MSE, ' ,, is given by 

+ E{(y/) ) = (1+trRr,.)rnjn (8) 

and hence the misadjustment M, defined as the ratio of the excess 
MSE to the minimum MSE, is given by 

M = (9) 

The results given in (8) and (9) were derived earlier [2,8,91 but 
were found (in computer simulations that we performed) to be ade- 
quate only for very small values of jz (as is actually assumed in the 
derivations given in the above references). In an attempt to extend 
the above results for larger values of p., as well as to adequately 
predict the divergence of the adaptation process (the upper limit in 
(3) was found to be too high), we replaced in (7) by the actual 
steady-state MSE, . Thus in place of (8) we obtain, 

and hence 

= + (10) 

= (11) 

resulting in a misadjustment of 
= p.trR,./(1—p.trR.) (12) 

Clearly, if p. is sufficiently small (p.trR.<< 1) the results in (11) 
and (12) coincide with those in (8) and (9), respectively. How- 
ever, simulation results, such as those shown in Fig. 2, show that 
indeed, expressions (10)-(12) are adequate for higher values of p., 
even up to divergence - which is predicted from (11) to occur when 
p. reaches l/trR.,.. Thus, the stability constraint on p. which 
replaces (3) is given by 

0 < p. < 1/trR,.. (13) 

It is interesting to note that (13) is usually used as a sufficient con- 
dition for stability [1,8] since trR,.. Xmax and is usually easier to 
evaluate. The above shows that (13) is also a necessary condition. 

The increase in ,, beyond the value predicted by the usual 
expression in (8) can be explained (in view of (10) and (11)) as an 
increase in the MSE through the feedback structure of the adaptive 
filter which was not taken fully in account in (8). That is, an 
increase in the MSE is transferred though the LMS algorithm (1) to 
an increase in the weight-noise causing an additional increase of the 
MSE. This process is controled by p. and divergence occurs at a 
tower value of p. than expected from (3). 

Finally, we note that expressions identical to (11) and (13) were 
found by Griffiths [6[. Here they were found, however, through a 
simple single step of replacing in (7) by , and additional 
insight is gained. 

Ill. ALE Performance Evaluation 

The modified results in (11)-(13) will now be specifically applied 
to the evaluation of the performance of the ALE system shown in 
Fig. 1, when the input dA is consisting of sinusoidal signals in white 
stationary noise. 

Let the total power of the input signal be P,. Then, since the 
reference input signal x5 is a delayed version of the input signal 
and the transversal filter has L taps, 

LP,.. 

Assuming an input signal of the form 

dA 5A + nk = ECr,cos(,rk+&,,) + A (15) 

(6) i.e., N sinusoidal signals with an additive zero-mean white noise 
sequence A, the autocorrelation sequence r(l) (which determines 
R) is given by 

C2 
r,, (1) = 

__1_cos ,l + cr,8 (1) (16) 

where o- is the noise power and 8(1) is the Kronicker 8-function 
(6(0=1 for 1=0; 6(l)=0, otherwise). Assuming that L is 

sufficiently large (L>>2r/(w—wjr) for any r p; r,pc[l,N]) the 
optimal Wiener solution W* can be described by the sum [31 

= (17) 

where W is the Wiener solution for a single sinusoidal signal in 
white noise (at frequency w,r,) given by [2,31 

where 

W = 
-a,,[cosw,,,,cosaI ,,, (+1) cosaj ,,, (r+L— 1)] ' (18) 

= 
(4)pirrI(1+pL/2) (19) 

and p,, is the input SNR for the m-th sinusoidal component, i.e. 
= C,,/2a (20) 

The corresponding sinusoidal component at the output of the 
transversal filter is given by 

5,,,, (k) = a, (C,,,cos (w orh + ,)) (21) 

The total power of the output signal from the transversal filter, 
having the ideal weights W, is therefore given by 

ERy)2) = +Z(a,)2 + E(aC,u)2/2 (22) 

The overall output SNR is given therefore by 

= 

= -- p ,,, (a,,) 2/E (a,,) 2 (23) 

where p,,,, is defined in (20) and a is given in (19). The overall 
input SNR, p,, is given by 

Pr = 

F po/p, = 
+Ep,r,,a)2/pjE(a,,)2 . (24) 

F is the gain in SNR achieved by the ALE which has the Wiener- 
solution weights. 

For the particular case of equal power sinusoids, = p/N, 
m=1,2 N, 

1' = LI(2N) (25) 

The decrease in F' with the increase in N is due, to the 
corresponding larger number of bandpass filters, each passing not 
only the desired signal but also a band of the noise, thus increasing 
the overall output noise. 

We turn now to the performance of the ALE with the actual 
weights W as obtained with the LMS algorithm. From (10), (11) 
and (12), we conclude that in order to find the actual total output 

(14) power one has to add to the right hand side of (22) an additional 
term which is equal to the excess MSE given, by M,,,,,,. Thus 
(23) is replaced by 

po = Ep ',,, (a,) 2/ Z(a) 2+i1 (26) 

and we define, 
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where for the evaluation of (26) one should use (12) and (14) for 
M and the following expression for 

= o- E(a,) 
21 

+ Z (C/2) (l—a,,)2 

For the particular case of equal-power sinusoids so that 
p p/N and a5 a, m = 1,2,..., N, one obtains 

F Pa1P= 

(a*) 2i{ (ak) 2+[Lp/ (1—Lp)] [1+ (a*) 2+p (1— *) 
21j(28) 

With the substitution of (19) for a* in (28) (using p,—p1JN) 

2N p.LP 2N 2 42 1 

F = 1/ —+ [i+—(1+—)+---———(i+———)1 (29) L 1-zLP L p L p, p, 

For the case of a single sinusoidal input, one simply has to substi- 
tute N 1 in the above expression. The result (for N=1) coin- 
cides with the one obtained in [41 if p.LP, << 1 and p, << 1. In 
other cases (29) is more accurate. Fig. 3 shows a comparison 
between the analytical results and computer simulations for N 1. 
The ripple in the simulation results is apparently due to the effect 
of coupling between the positive and negative frequency com- 
ponents of the real sinusoid [31. As the frequency of the input 
sinusoid is fixed and L varies, the coupling is periodically zeroed 
resulting in peaks in the performance curve (see also Eqn. (26) in 
[31). 

According to (13), the stability of the ALE is assured for 

0 < < 1/LP (30) 

For a single sinusoid of amplitude C: LP, L (o-,+C2/2), 
where as Amax can be shown [51 to be given by 
Xmax = a- + (L/2) (C2/2) so that (3) can be significantly different 
from (12). The validity of (30) is verified in Fig. 2 where clearly 
divergence occurs when approaches 1. 

IV. Optimal Choice of ALE Parameters 

As mentioned earlier, since the LMS algorithm attempts to 
minimize the MSE it does not maximize, in general, the output 
SNR as would be desired for the ALE. This can be seen from 

rninE]e,} = E{n,} + rninE{(so—s1)2+n} (31) 

which is clearly not equivalent to maximizing P0, where 

po E[s }/E[n }. (32) 

It is therefore of importance to properly choose the number of 
weights L and the step-size parameter .t in order to optimize the 
performance of the ALE for a given application. 

Due to the difficulty in obtaining general expressions for N 
sinusoidal signals with unequal amplitudes, we will narrow down 
our discussion to the case of N equal power sinusoids (which 
includes the case of a single sinusoid). In the previous section we 
have seen that the Wiener solution results in F' = L/2N. Hence, 
from (28), to approach this result zLP should be made sufficiently 
smaller than 1. To obtain a higher value for F, L should be 
increased and decreased accordingly (the maximum is reached for 
L-=a--' and jz—0). In practice L cannot be increased beyond a cer- 
tain L5 and cannot be decreased below a certain > 0. 
The latter is due to the finite word-length of the digital representa- 
tion of and the arithmatic operations, or due to a given require- 
ment on the adaptation time-constant. Let us consider first the 
case in which is set to = r0 (e.g. p=se5>0). It can be 
shown that in such a case there exist a finite value of L which max- 
imizes the SNR gain F. With the practical assumption that 

<< 1 the optimal value for L is found, by differentiating 
(29) with respect to L, to be 
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L,,, = —— + + !i 1/2 

jioP , p 

(27) If also 2fP. << p2/(p+I) (which is often the case), (33) is 
simplified to 

L,, [2N/(,P)1 /2 (34) 

The maximum SNR gain is then given by 

F515 L01/(4N) (35) 

Note that F = F*/2 for the particular values of r = p. and 
L = 

L,111. Fig. 4 shows the behavior of F as a function of L for 
different values of and p. The existance of an optimal L is 
clearly seen. This behavior is also seen in Fig. 3. The stability con- 
straint in (30) is satisfied, when L is chosen according to (34), if 
L/2 > N. However, according to our assumption above that 
P1.L << 1, the above results are accurate if L001/2 >> N. 

A most important practical consideration is the adaptation time- 
constant T,, of the weights, which determines the convergence-time 
and the ability of the filter to track nonstationary signals. For N 
equal power sinusoids in white noise, r , is given by [5] 

= 1/[2i(cr-{-(L/2N)a-j] (36) 

where a- is the total power of the N sinusoidal signals and i-,, is 
measured in terms of adaptation iterations. Thus, if T,, r0 is 
specified, (36) gives the relation between .e and L and once anyone 
of them is set, the other is determined. An attempt to maximize F 
in (29) subject to the given relation in (36) reveals again that F is 

maximized for the unacceptable values of e — 0 and L — so A 

practical choice appears to be the use of L = L15, the maximum 
possible L, and setting p. to satisfy (36) for the given T, = T0 and 
L = Lniax. - 

Finally, if the N sinusoidal components do not have equal 
power, one can still use the above results as guidelines for choosing 
the ALE parameters. This is based on the facts that the output 
SNR is mainly determined by the stronger components and that the 
weaker ones have longer adaptation time-constants. Thus, the 
given specifications can be modified accordingly and the above 
results can be then used. 

V. Conclusion 

By incorporating the effect of the feedback structure, to its full 
extent, into the analysis of LMS algorithm weight-vector noise and 
its contribution to the steady state MSE, a better estimate of the 
misadjustment and a stricter stability range were derived for the 
adaptive noise-canceller. These results are then applied for study- 
ing the performance of the ALE in filtering sinusoidal signals from 
white noise. The performance measure used is the SNR gain, F, 
achieved by the ALE. Guidelines for the optimal selection of the 
ALE parameters, namely the number of weights L and the adapta- 
tion step-size parameter p., are given. In particular, it is found that 
for a given value of p. there exists a finite optimal value of L which 
maximizes F. The value of F is then half of the value obtained by 
the optimal Wiener solution. 

This study is a part of a broader study relating to the application 
of the ALE structure, in the time and frequency domains, for filter- 
ing speech signals from noise [71. 
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Fig. 2. Comparison of analytical and simulation results for the 
steady state MSE ,, of the ALE with a single sinusoidal 
input signal in white noise. 
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Fig. 4. The dependence of F (in (29)) on L for various values of and p,. 

— THEORETICAL 

• S • MEASURED 

1.5 x IO 

466 378 594 
/1.1LFx'l /22LP,1 

0 

32 

24 

16 

8 

0 -- 
0 

THEORETICAL 

20 40 60 80 100 
L 

Y6Sy6 +flYk —b NARROW—BAND 
OUTPUT 0 

C- 

Fig. 1. Block diagram of the ALE. 

to) 
0—2 

OiII 
12 

Ib) 
P1 '10 


