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Abstract 
 

 

In the context of evolving multimedia applications new demands for very low bit rate 

audio coding arise. Coping with limited resources such as the bandwidth of 

transmission channels and memory for storage applications requires high coding 

efficiency.  

 

In the last two decades, there has been a wide use of MPEG standards for audio 

compression, such as MP3 (MPEG-1 layer 3), AAC (Advanced Audio Coding), 

Twin-VQ (Transform domain Weighted Interleaved Vector Quantization), and HILN 

(Harmonic Individual Lines and Noise). The later standards have produced coding 

techniques for audio signal compression at very low bit rates (16 kbps and below), at 

the price of reduced audio quality. 

All standards are designed to extensively exploit the properties of signal perception by 

the human auditory system, and therefore prevent redundant coding of information 

which will not be heard, anyway, by the human ear. 

The reason that high compression is feasible is the limited sensitivity of the human 

ear. This is reflected for example in the fact that some sounds are masked by the 

certain louder sounds. This means that masked sounds do not have to be coded, 

reducing the amount of information needed to represent the audio signal. 

Consequently, the masking property is one of the most important factors in attaining 

good audio compression. 

 

This work focuses on improving the HILN parametric model for audio signals (speech 

and music) sampled at 16 KHz and coded at a low bit rate of 16 kbps (one bit per 

sample) and below.  

The HILN coder is a version of MPEG-4 Audio for coding audio signals at very low 

bit rates. This model is based on the decomposition of the input signal into audio 

objects, which are described by appropriate source models and are represented by 

model parameters.  Those audio objects are individual sinusoids, Harmonic tones and 

Noise. 
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An individual sinusoid object is described by its frequency, amplitude and phase 

parameters. 

Because of the low phase sensitivity of the human ear, phase information for 

sinusoids is not transmitted, on the other hand it is essential to provide phase 

continuity of sinusoidal tracks.  

A harmonic tone object is characterized by its fundamental frequency (pitch) and the 

amplitudes of all harmonic partials. A noise object is described by its power spectral 

density and therefore is represented by parameters relating to intensity and spectral 

shape. 

Due to the very low target bit rate, only the parameters for a small number of 

components can be transmitted. Therefore a perception model is employed to select 

those components which are most important for the perceptual quality of the signal.  

 

The first stage of the parametric model analysis divides the signal into frames. This is 

based on the assumption that most audio signals are quasi-stationary i.e., their 

properties change slowly with time. For each time frame a set of model parameters is 

computed which describe the input signal in this frame. The frames are transformed to 

the frequency domain, where the decomposition into audio objects is done.  

The sinusoid components are extracted iteratively, using an analysis by synthesis 

loop, which exploits the properties of signal perception by the human auditory system. 

In each iteration, the sinusoid which is most prominent above the masking threshold is 

found, thus those components that are most important for sound perception are 

extracted first. This allows a measure of control over the total number of sinusoids 

which will be extracted, according to the desired bit rate.  

The production of the sinusoids is followed by a step of fundamental frequency 

extraction, which describes the frequencies of many harmonics as multiples of the 

fundamental frequency. The rest of the sinusoids which do not match an integer 

multiple of the fundamental frequency create a set of individual sinusoids. The 

remaining residual signal (removing all the extracted sinusoids from the input signal) 

is considered a noise-like signal. 

 

The HILN model has several disadvantages, as follows: 

Firstly a limited number of sinusoids are extracted in the analysis by synthesis loop, 

due to the lack of transmission bits. The improved model presented in this work 
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overcomes this limitation and extracts all the sinusoidal components from the input 

signal. 

In addition two closely spaced sinusoids will be detected as one sinusoid by HILN, 

because of frequency resolution limitation. In the improved model, a new technique 

for identifying closely spaced components is presented. The technique is based on 

maximizing the correlation between the sinusoidal representation of the estimated 

components and the input signal, in a reduced frequency band. 

The HILN calculates in each iteration a masking threshold evoked by the sinusoids 

extracted in the previous iterations. The improved model makes better use of the 

masking characteristics by calculating the masking threshold evoked by all signal 

components at once. The sinusoids whose amplitudes are below the masking 

threshold are removed, since they won't be heard by the human ear. 

The HILN uses a single pitch, which gives poor representation for complex audio 

signals such as multi-pitch ones. Usually, there are very few harmonic components 

which are represented by a single pitch, leaving out many individual sinusoids. 

Therefore, many sinusoids won't be coded, due to the lack of transmission bits.  The 

improved model uses a new technique for multi-pitch estimation, based on searching 

of fundamental frequencies that maximally cover a given set of frequencies. 

The HILN represents the harmonic amplitudes by a coarse spectral envelope.  

The spectral envelope is represented by a set of LPC coefficients. Usually, the 

envelope gives high deviation from the real amplitudes, which causes a significant 

degradation in sound quality. 

The improved model better represents the amplitudes of the harmonic partials by a 

modified spectral envelope, using an iterative method for calculating the LPC 

coefficients, which adjusts the harmonic amplitudes to the model amplitudes (sampled 

from the envelope), in addition to reducing the amplitudes dynamic range and the 

inclusion of the perceptual properties of the human auditory system in the 

calculations. While conventional LPC modeling accuracy depends on the spectral 

shape, it may be more appropriate to increase the accuracy for perceptually more 

important frequencies.  This can be achieved by warping the frequency scale to devote 

a larger portion of the total spectrum modeling accuracy to the perceptually more 

important frequencies. In addition, we added the optional using two spectral 

envelopes, where the bit rate permits this.  
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The components’ parameters are finally quantized and multiplexed to form a bit-

stream, which is transmitted to the decoder. This work is mainly involve in the model 

improvements and less with the quantization process, thus a commonly used 

quantization scheme is employed at the final coding stage. 

The spectral shape of the noise object and the harmonic amplitudes are represented by 

spectral envelopes, via the LPC coefficients. The coefficients are transformed to LSF 

parameters, which are quantized by vector quantization. 

The frequency and amplitude parameters of individual sinusoid objects and the 

fundamental frequencies of harmonic objects are quantized using a logarithmic law. 

For a sinusoid which is continued from the previous frame only the frequency and 

amplitude changes are transmitted since this requires fewer bits. Each harmonic object 

requires an additional parameter that indicates the harmonic location. This parameter 

quantifies the difference to the previous harmonic in terms of an integer multiples of 

the fundamental frequency and is quantized using a Huffman code. 

The proposed system operates at both fixed and variable rates in the range of 12 to 16 

kbps. 

 

The improved model was tested for perceptual quality using the EAQUAL software 

which provides an objective quality measure for reconstructed audio files as 

compared to the original. The most interesting parameter output by EAQUAL is the 

ODG (Objective Difference Grade). An ODG of -4 means a very annoying 

disturbance, while ODG of 0 means that there is no perceptible difference. The test 

results showed an improvement of 0.4 points (from -3.3 to -2.9) in comparison to 

HILN and an improvement of about 0.5 points in comparison to TWIN-VQ, at the 

cost of about twice the run-time. 
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