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Abstract

The paper describes the implementation of a
computationally efficient isolated-word recognition
system (IWRS) on a Nova 2 minicomputer. Since the
whole recognition process is done by software, great
emphasis has been put on reducing the computation
load, without degrading the recognition performance.

Time scale compression (TSC) of all input utterances,
to the same duration, is performed at the
preprocessing phase. This is done by means of a
recently developed efficient algorithm, which requires
(in this application) only one multiplication and two
additions per input sample. By using compression
factors of up to 3 a comparable reduction in
computation is achieved in the later phases of the
recognition process.

In the parameter extraction phase 6 partial "correlation
coefficients (PARCOR) are extracted per 15 msec
segment of the compressed input signal, so that only
102 parameters are necessary to represent each input
word of up to 1 second duration.

The fact that all parameter vectors, representing the
input utterances, have the same dimensionality avoids
the need for using computation consuming methods for
time normalization, such as Dynamic Programing (DP),
which usually combines time normalization and
classification. In this system classification is dome
by means of the simple Chebyshev distance function.

In 360 recognition tests, with the first ten Hebrew
digits spoken by 3 speakers, the system achieved a
recognition score of 99.1%. Additional 240 tests have
been performed under noisy conditions (S/N=20dB) with
a score of 97.9%.

For better evaluation of the proposed system, the
same tests have been performed on a reference system
which does not use TSC at the preprocessing phase,
and applies DP for classification. The reference
system required 3 time more computationsbut achieved
the same score in the noisy case and only 98.3% in
the quiet-environment case.

I. Introduction

In typical isolated-word recognition systems (IWRS),
the recognition process of an unknown input utterance
is divided into three main processing phases. These
arel) : preprocessing, parameter extraction and
classification.

The preprocessing phase includes operations such as
amplitude normalization, untterance boundaries
determination, removal of silent or redundant segments,
and preemphasis of the input signal. In the parameter
extraction phase a parametric representation of the
input signal is obtained. These two phases can be
performed by a computer system or by a special purpose
hardware, but the next phase classification is always
implemented on a computer system.
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Classification is performed by time normalization
and comparison of the parameter vector, which
represents the unknown input utterance, with stored
reference vectors which represent the reference
utterances of the system vocabulary. The unknown
utterance is classified as that utterance in-the
reference library to which it is most similar or

nearest, in terms of an appropriate similarity or
distance measure.

The paper describes the implementation of a
computionally efficient isolated-word recognition
system (INRS) on a Nova 2 minicomputer, Since the
whole recognition process is done by software, a
great emphasis has been put on reducing the
computation load, without degrading the recognition
performance.

In this work an approach is proposed for significantly
reducing the recognition time. The approach is to
perform time scale compression (TSC) of all input
utterance, to the same duration, at the preprocessing
phase. This is done ?y means of a recently developed
efficient algorithm?)’ By using time scale compression
factors of up to 3 a comparable reduction in
computations is achieved in the later phases of the
recognition process,

The TSC and other measures for reducing the amount
of computations at each phase of the recognition
process are detailed in the sections II-IV,

The flow chart of this system is given in F}g. 1
(in accordance with the general scheme in 1)).

For evaluation of the proposed system, a comparative
system without TSC was developed. This system,

which is described in section V, applies dynamic
programming for calssification.

Recognition tests of the same utterances were
performed with the two systems. These experiments
and the results are given in section VI.

The comparison between the performance of the two
systems and conclusions are contained in the last
section.

II. Preprocessing Phase

A. Utterance Boundaries Determination.

The operations which are described in this section
are the first step in the preprocessing phase.

The software written for the system enables two

modes of operation. In the 'real-time" mode the

output signal from the microphone is amplified, band
limited to the range 200-3200 Hz, sampled at a

10 KHz rate using a 12 bit A/D converter, and stored
in digital form in the computer's memory for further
processing. In the other mode the utterances are first
recorded by an analog cassette recorder and the
digital data base is prepared as detailed above.



only input samples which belong to the same quasi-
stationary interval are being weighted in. That is
because from (2) the range of the imput samples which
are being weighted is (m-1)N,,=200, or 20msec for
sampling rate of 10KHz, and Ehe 1nter\als of signal
quasi-stationarity are typically in the range of
20-40 msec.

The value of the compression factor C varies from one
input utterance to the other. It is recomputed for
each input utterance in order that all compressed
utterances be of equal duration.

The compression factor €y for the f¥-th utterance is
piven by 3,
= [Lj - (m-1)N;] /Le (6)

Le=Leo [1+2/(3Np)], (7)

Ly is the number of samples in the j-th input utterance
to be compressed, and L., is the desired number of
samples for the compressed utterance. Using L; instead
of L.y, in (6), is based on the result obtained in 2
that the relative error in Cj is limited by

0.5(C;-1)2 /(CyNy). Limiting Cj to 3 yields,
worst” case, that Le of (7) should be used.
In the implemented system L;p=3000, Lco was determind
such that it contains an integral number of analysis
segments to be used for parameter extraction in the
next phase of recognition process, and so that the
maximum compression factor to be used is limited to

3 (approximately). As utterance duration L;, were in
the range of 0.5 to 0.9 sec the compression” factors
used were in the range 1.66- €53, C; should be limited
to 3, because this value was found to be the.
perceptual limit of compressed speech

where

in the

For m=2, a particularly simple choice for h(t) which
satisfies the required constraints 3), is the shifted
symmetrical triangular function
hee) = t/ (NpT) G<t<NpT
=1-h (t-NpT), N T t3 ZNPT (8)
Hence the general expression (2) for computing an
output sample Y, is replaced in this case by

Y=ho (k) [ (k+Np) - s(k)] + s(k) (9)

where ho(k) =

k/Nsec, k=1,2,...Nsc

(10)

replaces h(t).

With this modification, only one multiplication and
two additions per output sample are required. The
total amount of computations required for applying
the TSC algorithm constitutes, therefore, of L.,=3000
multiplications and 2Lco=6000 additions, for each
input utterance.

I1I. Parameter Extraction Phase.

There are three main requirements for parametric
representation for utterance recognition. The first,
that it contains only rélevant information about the
utterance, without redundancy. The second, that this
information enables correct discrimination of the
various utterances, The third, which is particularly
important for the implemented system, that the amount
of computation is minimal.

The determination of the parametric representation for
the utterances in the 1Tplemented system was_based on
the works of Ichikawa 6)and White and Neely

Ichikawa 6) tested the folowing parametric representa-
tions: smoothed logarithmic power spectrum, cepstrim .,

autocorrelation function, linear predictive
coefficients (LPC% and partial correlation (PARCOR}
coefficients. 5the most efficient representation
according to the mentioned above requirements were the
PARCOR coefficients. The system which used them
acheived 100% sucess in recognition, in the shortest
time and with minimal amount of data.

White and Neely 7)tested parametric representations
which were extracted by sampling the outputs of 6 and
20 channel filter banks, against the log ratio linear
predictive residual (LPR) which is based on the LPC.
Their conclusion was that the two representations were
approximately equivalent in accuracy.

Hence, we tested the following parametric representa-
tions: PARCOR coefficients, LPR,and filter bank
implemented by software. It is shown in 4 that the
amount of computationsrequired for extraction of each
of the parametric representations is approximately the
same. However in the calssification phase, the PARCOR

coefficients require less computations than the other
representations.

Since all three representation were found to yield
good recognition results, the PARCOR coefficients
were chosen in order to minimize recognition time in
the implemented system.

The PARCOR coefficients were extrcated by the
autocorrelation method and not by the covaiance method,
because only in the first method, the all-pole filter
associatﬁd with PARCOR coefficients is theoretically
stable 8/, and this staibility is actually achieved
with floating point computations.

Although, for pitch synchronous analysis the
covariance method)gives more accurate estimates of the
speech waveform “/but this analysis requires an
additional amount of computations. In the case of
pitch asynchrounous analysis with a large segment

(2 or 3 times pitch period) the performance of both
methods in repgesenting speech waveform is more or
less the same “J),Therefore, the analysis segment

size in the implerented system is N=300 samples(30msec
for sampling rate of 10KHz). Choosx?g this value is
suported by the recomendation in , that N=§F; where
¢=20 to 35 and Fs is the sampling rate in KHz.

Prior to the analy$is the speech samples of the
compressed utterance were differenced as a simple
mean for frequency preemphasis, which is needed for
acheiving better a approximation, with the PARCOR 11
coefficients of the vocal tract transfer function ).
Each differenced analysis segment is multiplied by an
Hamming window, having Nw—N—EUG s les. The algorithm
presented by Markel and Gray in 12) for computing the
PARCOR coefficients is then applied.

Since the amount of computations required for the
PARCOR extraction is proportional to the number of
coefficients P, and this step provides in the
implemented system most of the computation load, it is
desired to use the lowest value of P which still does
not degra e reco&nltion performance. Based on the

work in ©’and 13Jit was decided to use P=6. It is quite
reasonable that 6 PARCOR's represent the first 3
formants. The higher formants were attenuated and
filtered since the speech signal was band limited to
200-3200 Hz. Hence, as was also verified by us, the
accuracey of the representation of the speech signal
with six PARCOR's is sufficient

In order to efficiently approximate the fast changes
in the speech signal a set of 6 PARCOR's was
computed for every Nk=150 samples of the compressed
utterance. With Lco=3000 samples of the compressed
utterance, and the above chosen Ny and Ny, Ls=19 sets
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The first ten Hebrew digits have constituted the
vocabulary of words tested. All, but one, of vocabula-
ry words have two syllables and their duration (as
measured for three speakers) were in the range of 0.5
to 0.9 seconds, ’

Two different data bases have been used in the experi-
ments. One data base contained the utterances of three
speakers which were recorded in a quite room on an
Akai cassette recorder. Each speaker has recorded four
sets of the ten digits. The recordings were made in
two sessions, several days apart, The second data base
contained the utterances of two speakers (out of the
previous three),which were recorded, with a regular
omi-directional microphone, in the noisy computer
room where the experiments were conducted. The signal
to noise ratio was found to be in the range of 18 to
21 dB in the frequency band of 200 to 3200Hz used.
Again four sets of the ten digits were recorded for
each speaker in two separate sessions, several days
apart .

In each of the recognition tests, a word in one
library (set of ten digits) of a given speaker was
compared (using PARCOR representation) to each of the
ten words of another library of the same speaker. This
way 120 recognition tests were conducted for each
speaker in each of data bases. Thus the overall number
of tests performed was 360, for the first data base
(quiet environment), and 240 for the 'noisy data base".
The results of the recognition tests for IWRS with TSC
and for IWRS with DP are summarized in Tables I and II,
respectively.

TABLE I
Summary of Recognition Test Results for IWRS with TSC

Type of Number of Numbersof Errors Recognition
: er Speaker

Environment| Tests IEP DE DA Score (%)

Quiet 360 3 0 0 99.1

Noisy N

(shedom || 240 4 2 97.9

TABLE II
Summary of Recognition Test Results for IWRS with DP

Type of Number of Nnmbersof Errors Recognition
i per Speaker

Environment| Tests IE Uﬁ DA Score (%)

Quiet 360 6 0 0 98.3

Noisy

(S/N-20dB) 240 5 0 97.9

VIT. Discussion and Conclusions.

Comparing theresults summarized in Tables I and II, we
observe no loss of overall performance of the system
with TSC (for the quiet environment, the results with
compression were even better), while the overall
computational load was reduced by a factor of at least
three, as it is shown in Table III.

TABLE III
Amount of Computations in the TSC and' DP Systems.
TSC DP
additi- multipl-|addit- multiplica-
ol ons ications |ions tion
o
e L L
ance
Compression 60090 20N0 - -
Differencing 5700 - 14200 B
PARCON: '8 39900 45600 99300 113500
extraction
Classification 9180 - 249900 11900
Total 102780 48600 405400 125400

scaling

TSC is still

It can be observed from Table III that even if time

duration normalization at the classification phase,

in a sysgfm without TSC, is performed by linear time
which requires considerably less computa-

tions than DP, the computation load in the system with

reduced by a factor of at least two.

It is realized that the number of tests pérformad, the
size of vocabulary used, and the number of speakers

. .involved in the above experiments, are not sufficient
* for reaching at final conclusions with respect to the

application of the proposed TSC algorithm to any
general all-digital IWRS. Yet, it is believed that the
results obtained support the proposed approach and

point out to its potential, .

It is stated in 7) that severe reduction of the raw

data by preprocessing could have an adverse effect
on recognition results.

It is conjectured here that the reason that the compr-

ession performed did not cause a loss in performance,

is due to the way the proposed TSC Algorithm performs

the compression,namely, weighting of all or most of
the input data and not just discarding portions of it.
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