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ABSTRACT

This thesis presents a new appTication of digital cyclotomic filters
and its realization in hardware: "a bank of single tone detectors",
named Cyclotomic Tone Detection (CTD) system,

Cyc]otomic filters are all pole Tinear digital filters with their poles
on the unit circle, Therefore,they can be used as receivers for single
tone detection.

ATl cyclotomic filters have integer coefficients in the feedback Toop

~and the coefficients of all the cyclotomic filters of interest are 0,1,-1.
Therefore,cyclotomic filters operate without arithmetic roundoff error and

all the cyclotomic filters of interest are implemented without multiplications-.
only additions and substractions are needed

The CTD system is characterized by the property that the tofie is detected with
few simple cyc1otom1c;fj]ters;gndhby_propér]y.changing:the sampling .rate

in steps.

The input to the CTD system is a single tone with constant amplitude

and frequency f that satisfies: ﬁng. The implepented CTD. system.detects in
which of 64 (;43) cells of frequency bandwidth fH/64 the tone is present,
This task is performed in 3 stages. Fach stage is characterized by a
different sampling rate, the sampiing rate at stage s is: fc = fH/4S'2.

s

In“the 15t stage (fc = 4fH) it is decided in which of 4 cells of frequency
bandwidth fH/4 Ithe'gbne is present.,

In-the 2"d stage (fc = fH) the cell of frequency bandwidth fH/4 detected 1in
the 15 stage is divdded by 4 and it 1s decided in which of the 4 cells of
frequency bandwidth fH/16 ‘the tone is present.

In the 3rd stage (f‘C = fH/4) the cell of frequency bandwidth f/16 detected
in the 2" stage 1is givided by 4 and it is decided in which of 4 cells of
frequency bandwidth f /64 ‘the tone is present.
After completion of the 3rd stage the CTD system indicates in which of the 64
cells of frequéncy bandwidth fH/64-the tone is. present.

Generallyone can have a CTD system with 4LceTIS where L is the # of stages.



There are several parameters to be determined’in the CTD system.The
determination of theseé parameters by computer similation résults in the
optimal CTD system The optimal CTD system was not implemented due to hardware
1imitatTons The 1mp1emented CTD system compromizes performance with

reduction in the amount of hardware :

The simulation program is capable of analysing a CTD system with given
parameters. The input to the simulation program is a constsnt amplitude single
tone with additive white Gaussian noise. Two performance measures are the
output of the simulation program:

A 5E(B): The fraction of trials which results in incorrect cell assignments
as a function of the resolution g in cells unit.

b+ SNRO:_The ratio of the variance of the frequency ervor before and after
frequency estimation .

In_the optimal CTD system 5€ is minimized and SNR is maximized for any given
signal to noise ratio at the input: SNR

In-addition to the simulation program an analytic statistical model is-derived,
The output of the model program is the performance measure PE(H) and subseqg-
ently SNR_ '

The results of the simulations, the model and the measurments were found to be °
in-good agreement.

The advantage of the model is that for high signal to noise ratio at the input
one needs an enormous amount of computer time to run the simulation program,
while the computer time needed to run the model program is small , and is
independent of SNRiu

An_exhaustive survey of cyclotomic filters, their characteristic cyclotomic
polynomials and the applications of cyclotomic filters is also given in this

thesis. The properties of cyclotomic filters and cyclotomic polynom1a1s are

given with full proofs. Known applications of cyc1otom1c filters are also
briefly described. These are oscillators for tone generation, receivers for
single tone detection and periodic sequence generation.
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" 'CHAPTER 1

- INTRODUCTION

This thesis presents a new application of digital cyclotomic
filters: "a bank of single|tone detectors”, named -
Cyclotomic Tone Detection (CTD} System.

The CTD system is realized in hardware. The CTD system is

- based on digital cyclotomic filters. Cyclotomic filters are
all pole 1inear digital filters with poles on the unit circle.
They have integer coefficients in the feedback loop and
operate without arithmetic roundoff,

A1l the filters of interest have coefficients 0, +1, hence
multiplications are not needed and the filters are simple to implement.

The thesis is organized as follows:

In Chapter 2 cyclotomic fiiters are presented. Properties of
~ cyclotomic polynomials are listed, with the detailed proofs
~given in appendix A. Properties of cyclotomic filters are given
such as impulse response and resonant harmonics.

Methods. of eliminating in-band higher order resonances are
presented, - These methods are transversal FIR filters at the
Tnput or at the output, Methods for implementing the transversal
filters are described. Word length and additions per cycle are
computed for various cyclotomic filters.

Chapter 3 describes the applications of cyclotomic Filters.
Cyclotomic filters have their poles on the unit circle, therefore
they may be used as generators and as receivers for a single tone,

Various applications were suggested by R. Kurshan and B. Gupinath(1’2’3’4)°
L These applications_are: FSK generation-and- detection;—a Touch-Tone & ——

Receiver-Generator and periodic sequence generation.



A new application of cyclotomic filters: "a bank of
single tone detectors" is proposed in this work and the
description of its hardware realization is given,

‘The new application is described in detail in Chapters
4 to 7.

Chapter 4 describes the principle of operation of the
proposed Cyclotomic Tone Detection (CTD) System. The
CTD system is based on cyclotomic fiTlters of the 1st and
end degree, With few simple filters and hy changing the
clock rate in steps the tone is detected.

Chapter 5 gives the error analysis of the CTD system., A
model that describes the performance of the CTD system 1in
the presence of a noisy tone 1s proposed.

Chapter 6 described the simulation program and the model
program. Results of the simulation and model are in good
agreement. CTD system parameters for optimal performance
are found from the simulations and the model.

The 1mplemented CTD system is a compromise. The performance
of the mplemented CTD system is found from the simulation
and the model programs. The performance of the CTD system
Ts also compared to the performance of a DFT tone detection
system,

Chapter 7 describes the design and construction of the CTD
system.

Chapter 8 gives the results of the measurments from the
implemented CTD system and a comparison to the simulation
results. The results of the measurments and simulations are
in good agreement,

Chapter 9 gives a summary and draws conclusions. A new way to realize
cyclotomfc filters is proposed.
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2.1

CHAPTER 2

PROPERTIES OF CYCLOTOMIC FILTERS

Introduction

Cyclotimic filters are a class of digital filters that operate
without arithmetic roundoff., These filters are all pole linear
digital filters, and can be used both as oscillators for tone
generation and also as receivers for single tone detection.

Generally, tones for signaling are analog signals of the form
A sin (ot + ¢) (A is the amplitude, 2w/w- is the period and ¢
is the phase).

The feedback loop of each filter is constructed in such a way

as to eliminate the possibility of roundoff or truncation
errors, thus insuring perfect arithmetic., This entirely
eliminates the problem of 1imit cycles. The presented filters,
when used as generators, produce quantized values of A sin wt

of arbitrary amplitude accuracy (1).

Implementation of these filters as receivers involves first
sampliing an analog input signal to produce a digital input into
the filter. The filter is designed to resonate for a particular
frequency. Thus enabling detection.

The means by which arithmetic errors are eliminated in the
feedback loop is by constraining all feedback coefficients to
be integers, a constraint necessary to guarantee perfect

- arithmetic in any digital filter., Thus multiplication by these

coefficients can be performed as additions, simplifying
implementation.




The behavior of the feedback Toop of this filter is modeled by

a linear recursion whose characteristic polynomial is a cyclotomic
polynomial. In recognition of this, we call the filter consisting
of the feedback loop alone a "cyclotomic filter', In (1) it is
shown that the only way to ensure perfect arithmetic and thus
avoid 1imit cycles in a digital filter is to constrain the
feedback coefficients to be integers. Furthermore, 1t 1s shown

in (1) with this constraint on the coefficients and also subject
to minimizing memory and eliminating as many resonant harmonics

as possible, the cyclotimic filter is uniquely optimal among

all digital Tinear filters, both for the purpose of tone generation
and tone detection.

Applications of cyclotomic filters are tone generators of
arbitrary amplitude accuracy and tone detectors (1). Devices
for tone generation and detection .have widespread applications.
The most notable examples are Touch-Tone~signaling 2 s and
frequency shift keying (FSK) (1). Periodic sequence generation

is another application (3’4).
Section 2.2 gives a description of digital cyclotimic filters.
Section 2.3 summarizes the properties of Cyclotimic Po1ynomia1s(5’6’7’8’10),

Section 2.4 gives the properties of digital cyclotimic fi1ters(1’5).

Section 2.5 explains how to eliminate in band higher order resonances
using a transversal filter.

Section 2.6 explains how to compute word length and additions
per cycie, i.e,, period of cyclotomic filter,




2.2 Description of'Digita1 Cyclotomic Filters

Cyclotomic filters are a special class of recursive filters of the form:

X = I a.x. . +u (2.1)

The numbers ai(i#l,...,k) are the feedback coefficients of
the filter. The filter is driven by a clock with time
interval © between pulses. In tone generation the filter
must satisfy.

X, = u(nz) (2.2)
at least for some initial conditions XgoovesXp 1 When used
as a receiver the analog input wu(t) is sampled producing a
discrete input u, = A sin(monf + ¢)

The filter( 2.1) must distinguish between the desired
frequency fo and all other frequencies in a band containing fo°

U Xn_l s Xn_2 o v 4 Xn_k

- a4

n 'j U, ‘ ak

Fig. 2.1: Recursive filter in k stages of memory.

1107 225w K bya ravpviph qaom 12,1 S0y
Specifically, it must satisfy the resonance property.

Tim sup |x | = o (2.3)

n-—+ ow



When f = fo’ and -in a sufficiently large band B including fo
there must be no other such resonances. Then‘|xnl‘w111 be
uniformly bounded in B in the complement of any small interval §
about Fo, say, |xn| < m(s) for all feB, fé&s , for all n.

A threshold detector can thus, detect in a finite amount of time
N.t ., the presence (or absence) within B of an input frequency fo
(with error + % |8|). It does this by comparing the gain

sup, .y 1%, with the bound m(s). If sup:|x [m(s), then fe s
otherwise it is not. h<M

0f course the smaller the allowable error &, the larger N must be.

Fig. 2.2 is a tone detector suggested in (1) based on the previous

ideas. _ wmm"(:)uglgck

ultld ppr Jimiter{>|sampley = filter ‘“n' giiiggld

Fig. 2.2: Structure of a tone detector.
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The z transform of 2.1 gives:

U(Z k ( 2.4)
Z

The characteristic equation is:
k
A aizk'1 =0 . - {2.5)

i=l




and P1s Pps++.p) are the roots of( 2.5).

In the case of cyclotomic filters (2.5) is a cyclotomic
polynomial. '

Example 2.1: Cyclotomic polynomial of order 9 - Cg(z)

Suppose we want to find the cyclotomic polynomial of order 9,
then:

pl = eJ en/9 ;:. j = J:i

The other roots are (pl)2 » 1<#< 9 where % has no common
factor with 9, briefly (2,9) =1 (the g.c.d. of 2 and 9 is 1).
Hence the roots are:

2 4
pls pl ’ pl s pl » pl » pl

and the cyclotomic polynomial is:

Cdz) = (Z—plz) =043 1
221
(2,9) =1
X I
i Xi- *n-61

g

Fig. 2.3: Cyc]ot%mic filter C9 in 6 stages of-memory.

L1197 miaaT 6 bya C9 MILIEPIY 0B 2.3 MTy




2.3

Note that the memory k is equal to the degree of the cyciotomic

polynomial, which is determined by the order of the cyclotomic filter.
(the order of the cyclotomic polynomial is greater than its
degree) .

Properties of Cyclotomic Polynomials

A summary of the properties of cyclotomic polynomials is
given in this section. For a detailed preéentation refer

to appendix A . Cyclotomic filters are a class of digital
filters. Therefore, we shall confine ourselves to cyclotomic
polynomials whose roots are in the Complex field. The roots
of the cyclotomic polynomial Cn(x) are all the distinct
primitive nth roots of unity, hereforth defined.

Definition 2.1

th voot of unity if oM =1 and o™ £ 1 for

0 <m <n. We also say that the order of o is n.

p is a primitive n

5 = o 21 th

is the fundamental primitive n*" root of unity.

If p is a primitive nth root of unity, every other primitive
nth root of unity is of the form o" where {nym)=1 (the g.c.d.
of m and n is 1). There are as many distinct primitive nth
roots of unity as there are positive integers less than n,
which have no common factor with n.

Next cyclotomic polynomials are defined and an example is given.

Definition 2.2

A cyclotomic polynomial of order n denoted Cn(x) is the polynomial
whose rnots are all the primitive nth roots of unity. ‘




p(n)
Cn()'() = 1 (x-p.i) (_’2;'6)
i=1 |
where Pys Posees Pyin) are the distinct primitive nth roots of
unity, and “¢{n) is-their number. w(n) is the Euler y-function,

Notes:

a) the degree of C, is p(n) < n

‘ m,
b) each py can be expressed as Py =P T for some primitive n

root of unity ¢ and positive integers m. < n.

th

Example 2,2

For Cg(x) py = e 276, o = (2n/6)5

Cs(x) = (x-plf(x—pz) = xP-x+2 and v{6) =2

' . [+ 3
If n=1p, ®j (prime decomposition) then w(n) =1 P, 1'1(
e.g. n =180 = 22.32.5 then -

o(180) = 2271 2-1).3%71(3-1) .51 (5-1) = 48"

p-i"‘]-)

The following are properties of cyclotomic pb]ynom1a1s:

Mao1= 1 Cq(x) (2.7)

din
From({ 2.7) one can conclude that

n= 3t y(d) (2.8)
d
dln




T (Xd-l)u(n/d) = (Xn/d _ 1)U(d) (2.9)

d|n djn

o)

——
>

P
1

where (-d) is the Moebius function defined by:

1 if d=1

u{d) (-1)k if d is a product of k distinct primes (2.10)

0 if d contains any repeated prime factors

Example 2.3:

Cro5(x) =7
105 = 3:5:7 hence by (2.9).

(1-x3)(1;x5)(1-x7)(1—x105)
(1-x) (1-x%) (1-x%1) (1-x%%)

Cro5(x) =

If pis a prime, then:

(%) = Pl P2 (2.11)

and for any power of p

‘ m-1
. (x)=c (x" (2.12)
pm D
k-1

¢ (x=c¢ (P ) (2.13)
mp

mp




A conclusion from 2.13 is that: 1
. Uk ag-l
_ o ,'__pl con pg, .
¢y PR (x ) (2.14)
Py " e by P1Po.--P,

- (p; distinct primes).

From (2.14) follows that most of the coefficients of c for m highly
factorabie w111 usua]Ty be zerOes, and hence the number of taps - to -
memory rat.o is genera]1y Tow.

In practice (2.14) prove quite he]pfuT in simplifying calculations.
Using {2.14), the calculation may be reduced to a case where n is
the product of distinct primes.

If p is a prime and pfm, then

C (xp) |
C_ =- (2.15)
P Cin(x)
If n=z3 and n odd - then
CZn(x) = Cn(—x) | (2.16)
0 ifF n=1
C:(1) = < Piff n is a power of the prime D | (2.17)

1 1ff" n has two or more distinct prime

factors.




0 iff n=2
-2 1ff n=1
C,(-1) = J 2 iffis a power of 2, n>4
p iff n is 2 times a power of p (2.18)
1 otherwise

In practice (2.17) and (2.18) provide helpful checks on the
result.

wn)
- Ifn>2and C(x) = = a1x1, then for all i:
i=0

a1. = aw(n)q- (2.19)

S0, to compute ao,...,aw(n), it 1s sufficient to compute only

the first w(n)/2+1 coefficients (w{n) is even except for C; and Cz)

Example 2.4:

Let us determine C36(x) by (2.14)

Caplx) = C22.32(x) = 02:3(x2'3) = cs(xe)

By example 2.2:

CG(X) = x2 - x+1 hence, |

o 12 6
C36(X) = X - X +1-

- For all n,Cn(x) has integer coefficients.




- Cn(x) is irreducible over Q {the rational field).

- If f(x) is a monic polynomial with integer coefficients and

every root r of f(x) satisfies |ri< 1, then f(x) = x™n Cn(x).
n
Cyclotomic polynomials make- very desirable characteristic
polynomials because of their extremely simple structure. For
example, for m <105 or for m a product of two primes the
coefficients of—Cm(x) are all 0, + 1. For m a power of a
single prime, the coefficients are all 0,1. For m <385
the coefficients do not exceed 2 in absolute value, If m is
a product of 3 distinct primes, all the coefficients are less
than the smallest of those primes. As n runs over all products
of three distinct primes, the cyclotomic polynomials Cn(x)
contain arbitrarily large coefficients. Those assertions
are cited in

2.4 Properties of Digita1'Cyc1otomic Filters

2.4.1

Impulse response

The imBu]se response is the output resulting from an input of
a single pulse: u0=1, un=0,|n$> 0. It is shown in the sequel
that the impulse response of the cyclotomic filter Cm is
periodic of period m, therefore we will refer to hn as a pulse
train. From difference equations theory it follows that the
impulse response hh of the cyclotomic filter Cm having ¢ {m)
poles is given by
¥{m)
h = 5 b.p." (2.20)




Since each Py is a pr1m1t1ve mth

hh is. per10d1c

n h for all n.

The proof is simple:

W.0:" = h

171 n

_ n+m _
Npam = ZP404

n m._
Ebspy ey =

Let h(g) be the DFT of h_ then:

m=-1
hg) = L ~j2m{q/m)mn
h(q) = = ¢ he |
n=0
Then
k k
o m-1 i
ha) =175 (5 by, erd2rla/mn 1
PR {=

0 if no such root o, exists.

bw if there exists a root ) such that p, = e

root of unity, the sequence’ .

(2.21)

p.ne-j21r(cl/m)n

J(2n/m)q
%

(2.22)

To simplify matters we shall use the expression "The Fourier

coefficient at (the root)

It will be shown that the bg's are given by:

" to indicate what, in the case
of (2.22) is the g th Four1er coefficient h(q)

(2.23)




By (2.4) the z transform of h, s
k

- 1 - 1
Hz) R (2.20)
1- 1% a1.z'"1 1= " P42
i=1 a
Taking the z transform of (2.20) gives:
k 1
H(Z) = I b1- 1 (2.25)
; l1-op. 2
i=1 Py
then:
' k k 0
b = Tlim I 1 (1-p2z Y= 1 2
L 1 -p.z"t ’ PyPy
2", |1l ° P i=1
i#L
Substituting A = 21 gives:
HO) = ry— (2.26)
‘m '
oo m-1 . o0 )
= LI n ik
But H{A) L h (= h A ﬁ;&h )
n=0 n=0
. - m-1 n
since h .- = hn' Defining f(a) = = h.A", one obtains:
n=0
_ 1"
f{a) = T (2.27)

Notice that f has integer coefficients (the input 8 is integer,
as are the coefficients ai).




2.5.,2

fndeed leAm is a product of cyclotomic polynomials one of

which is C (A). Specifically:

m _
1-2" = - 1 Cn(x)

nfm

~and from (2.26)

f(x) = -1 C, (%)
n{m
n#m

Consequently, f(p) = 0 for all n
for the primitive roots of unity

Resonant Frequencies

Let u . = ej(2“fnT *¢) then

n
Xy = T hn-i X; where
i=0
p{m)
hy = & byo,
=]
n p(m) ned
Xy = I ( = bng } u; =
i=0 =1
JWm L Se(e) (ned) (d2nfrite)

th

p(m)

z
%=1

o¥(m) g Gdanfr -p(a)] (n+1)

N and plé eJe(g) then

by

bn 1 - ejﬁznfr - e(z)]

n

L p

=

L

(2.28)

roots of unity, except

n-1i e,}(ijfT'H' )

(2.29)




The feébhahte éond%fion %é:
enfr -~ ‘ie(q) = 2wr
P=0,+1,+2, ....  (2.30)

Since if (2.30) is satisfied for some g the sum (2.29) contains
a summand e9%. bq (n+l) that tends to infinity as n tends to
infinity. )

As the roots are all of the form: exp [ij(d/m)] » the resonant
frequencies can be expressed as:

2ifr = 2n% (mod 21) (2.31)

for all positive integers d<m such that {d,m)=1. Resonance at
the fundamental is described by enfr = 2n(1/m), that is the
fundamental of the filter is f = r’lfﬁ. Hence, if one requires

a fundamental frequency of fo (.i.e., if fo is the frequency of
the tone to be generated or detected) and one intends to use a
filter with memory k = y(m), the clock rate r'lris set at T-1=f0m,
A1l other resonances occur at various harmonics {multiples of fo)
as follows: '

The resonant harmonics in the band Offfy'l occur when fr = d/m
that is, at f = dfo for all those integers d as above. For
example, if m = 30, then ¢(30) = 8 and d assumes the values
1,7,11,13,17,19,23,29. Hence, this filter has no resonances
between the fundamental fo and the seventh harmonic. It
resonates at the seventh harmonic 7f0, and thereafter at

llfo, 13f0, and so on.

The first resonance due to a]iﬁging will always be at f = f0+r'1 =

fo + fom = fo(m+1). In the case of the previous example, this

is the thirty-first harmonic.



2.5 Eliminating in-band higher order resonances(l)

The preceding analysis has indicated that, within the constraints
established, various higher-order resonances are unavoidable.
This could lead to difficulties. In practice, many higher-order
harmonics are introduced in the process of limiting the input
signal. The limiter (see Fig. 2.2) limits the amplitude of

the input signal u(t). For example, a common limiter is a
"hard-clipper". This has output +1, depending on whether |
u(t)> 0, or u{t)<0. The effect of hard clipping of the input
signal is to produce all the odd harmonics: sin 2nfr -

2/nsin 2nfr+2/3nsin 6xfr+ 2/5wsin 10wfr+ ..., Hence, a filter
with more resonances must be run for a longer period of time

to attain a threshold sufficiently high to reject spurious
signals. Also, when used as a generator, pertubations of the
initial conditions of the filter could lead to unwanted
harmonics at all the resonances of the filter. As such
pertubations are inevitable, it is usually necessary to make
allowance for eliminating these harmonics.

While resonances due to aliasing are. inherent to the discrete-
time nature of the system and are hence unavoidable, resonances
below the clock frequency 1"1 can be handled outside the feedback
Toop'. This is accomplished either through alteration  of the

input before it enters the filter: u.+ v, =1£0 U4 OF
equivalently through alteration of the filter output before
. i . d

t enters the threshold detector: x .y = 150 CiXpyi®

(see Fig. 2.4a and Fig. 2.4b respectively). Although these

two options are mathematically equivalent, considerations with
respect to minimizing the word length necessary for perfect
arithmetic would point in favor of one or the other. This will
be discussed in section 2.6.




*n-1 Xn-2 s Xk M
- | 3 ak
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X
n I
- : C4-1 %4
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Fig. 2.4a: Implementation of the weighting function at the
input.

LN07303 Ypwnh nrypats wintn  :2.4a 10y

:%::> Yn-1
o o 4
*n-1 Xn-2 T T -k -k
| Apossoasoacans I R ay
X Z A

Fig. 2.4b: TImplementation of the weighting function at the
output.

LNTNTA Dpunh nrepyis whinth 12.4b My

The weighting function ‘W(z) is a FIR filter. For Fig. 2.4a:
we have:

X(z) = -—-‘-’(—fi-- Wz) (2.32a)




For fig. 2.4(b) we have

(s AU ] |
Y(z) = [W(2)U(2)] —— 2.3%
() = [W(z)u(z)] T (2.32)

W(z) has the property that w(z)/Cm(z"l)_has poles only at those
roots of Cm(z) corresponding to those resonances actually desired.
Specifically W(z) will be a polynomial of z"1 of degree k-2r
where r is the number of resonances desired in the band [D,(Zr)“%]
The zeroes of W(z) will be those roots of Cm(z) corresponding

;o the unwanted resonances. Typically, one desires to eliminate

all resonances but the fundamental, in which case r=1 and

Y(z) _ W(z) _ 1 (2

- = +33)
U(z) Cm(z"l) 2% - az" 41
for Fig. 2.4a, 2.4b oné obtains:
Xp = o1 7 *po2tUy (2.34a)
Yn = o1 " Yty (234b)

th

If 'p is the fundamental p@ﬁmitive m* root of unity then:

(Z"1 -p) (z-1 -p) = 2"2 - az-l + 1
hence:
“a = 2Re(p) (2.35)

Although there will be truncation errors in (2.34), this will
not lead to Timit cycles, as there is no feedback from this to

WWﬁthe@filteFwquhemarithmetiGwofvthe—weighingﬁﬁunction~iswon]ymw~—~r S



approximate; since there is truncation error in the computation

of the coefficients ¢i. The zeroes of W(z) will not precisely
cancel out the roots of CH(Z). Rather the roots of W will be
slightly perturbed from the corresponding roots of Cm(z), The
effect of this, as will be shown is that all the resonances due

to the roots of Cm(z) will be present in the output however

they will have reduced energy (but for the fundamental). That

is, the Tess the error in the implementation of W, the smaller

the Fourier coefficients of the higher order resonant harmonics

of the filter. From the properties of DFT the Fourier coefficient
of the output with a weighing function at the root o is W(pj)bio
The conjugate coefficient N(EJ) = WTEET » observe that, if 0

is a root of W then the Fourier coefficient of Yn vanishes at
the roots ¥ and Bjo (W was chosen to be real).

If W' is the result of pertubing the coefficients of W to
correspond to truncation ervor, then w'(pj) is (by continuity)
close to zero. Hence, as errors in the weighing functions are
reduced, so is the power at each of the resonant harmonics
above the fundamental (running the system for finite time, of
course) .

If the coefficients of W' are simply those of W rounded to the
nearest integer, the results are frequently virtually as good

as if W itself were used. This is exhibited in Table 2.1 and
illustrated in Figs. 2.5, 2.6, 2.7. These figures correspond

to a filter using the cyclotomic polynomial 630. The input s

a hard clipped sine wave for each given frequency up to 15 times
the fundamental frequency.

For each input fréduency, the filter Cap is run for an amount of time
which equals to 7 gyc1es ofthe .fundamental N = 7130 = 210, The .output

is max n<N!Xn| as measured at each input frequency (1500 samples).
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Fig. 2.5: Hard ¢lipped, no we%ghting,cso, 7 cyc]es.(l)
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Fig. 2.6: Hard-clipped, rounded weighting, Cg0s 7 cycles, (1)

Ja7n7w oenten 7ya FIR f shard clipped .:2.6 N7y
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Fig. 2.7: Hard-clipped, exact weighting, 030, 7 cyc1es(1).
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Using a W' with integer coefficients enables one to perform all the
multiplications as additions, simplifying implementatian and
eliminating any further errors. As one expects, upon setting

Py = 51, the Fourier coefficient of Yn at the fundamental is:

_ !
W(pl)bl = W(pl) ng Py - pj T
_ P ; Py (1 =p4p1) _ Pl (2.36)
01 - 02 j=3 pl = pj p]. - 92

(236) gives the Fourier coefficient at the fundamental,

When W is replaced with NI where the later is obtained through

rounding off to the nearest integer the coefficients of the

former. The pulse train (impulse response) resulting from WI

will have integer levels, but the truncation error will introduce

higher order resonances. However, Table 2.1 shows that these

are very small indeed, leaving typically about 98% of the power

at the fundamental. This compares with 25% percent or less (for

F16’ F24, FBO) without NI. Note, for example, F8, The pulse train 1,0,0,0
. %1,0,050, “has. - resonances at the third, fifth, and seventh

harmonics. However, by simply altering this to 1,1,%,0,-1,-1,-1,0,

the first appreciable resonance does not come until the seventh

harmonic. In this case, use of wI does not introduce any new
levels in the pulse train. Table 2.1 gives an indication of
the possibilities for various filters.

Included in Table 2.1 are the filters with memory less than 12,
which provide the greatest separation between the fundamental and
the first resonant harmogig, either with or without tﬁe weighing
function. The asterisks(*) and daggers (T) indicate those which,
for the amount of memory, have the largest possible separation

- without or with the weighing function.
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2.6

For utilization with a "hard-clipper" (which has all add
harmonics), Fas Fg and Fi5 are included. Although they
resonate at all even harmonics.

The columns to the right of the double Tine all deal with the
integer - rounded transfer function NI. Columns A and B give
|b1|2/ téi |b1.|2 and |b1wI(p1)|2/ :é?lbiwg(pi)fz as a percent,
respectively, where by s the Fourier coefficient of the sequence
hn at the root oy

Column C gives (maxzﬁjfk/sziwI(pi)|2)/|b1w(p1)| as a percent,

The roots p1(1=1,...k/2) are assumed to be in order of ascending
argument <% (SO{piiS the fundamental).

Co]umns D and E give the moduli of the Fourier coefficients b and
b W (p )} of the sequence Xy and Yoo respectively,

Columns F and G give the pulse trains of Xn and Y,s respectively,
with initial pulse Uy = 1, Upsp = 0. The exponent denotes
repeated digit; the arrow indicates that the preceding train

is followed by another identical train, but that each digit is
the negative of what it was.

Computing Word Length and Additions Per Cycle (1)

To realize the cyclotomic filters in hardware with perfect
arithmetic, the necessary amount of memory and adder complexity must
be provided. We describe here how to estimate the word Tength

and the rate of additions required to implement a cyclotomic filter
with a weighing function. It shall be assumed that all operations
are performed in binary form. The number of binary bits required

to store each Xn is called the word length w of the system.

For generators that produce a signal approximating a sinusoid,

the word Tength required will depend on the accuracy of approximation




needed. When the filter is used ‘as a tone detector, the

word length required will depend on the duration of operation,
since the signal Tevel tends to build up, especially at
frequencies close to any resonant frequency. The signal level,
of course, does not uniquely specify the minimum word length.
Even though for storing X, we may need only w bits, it is
conceivable that during the computations numbers greater in
magnitude than X,» Which need more bits for storage, could
arise. To perform operations in a serial-multiplexed manner it
is desirable to have uniform word length for all operations in
the feedback loop of the filter. Hence, the word length will
have to be increased to accomodate any number encountered during
the computations. However, for the filters considered in

Table 2.2, it is possible to arrange the computations in such a way
that the word length is determined by the maximum magnitude of
Xo+ In general there is- a finite number of ways in which the
additions involved in the filter can be arranged. By simulation
of the different arrangements the word length can be determined.

There are two possib1e ways of implementing the cyclotimic
filters as generators. The first is to generate the impulse response
and use a weighting function; this is generally sufficient.

As the input is zero after the initial pulse Uy = 1, the weighting
function need only be used during the first d+1 steps of the filter. .
Let m be the Targest number in the pulse train Y of Table 2.1,

and [[x]] be the smallest integer larger than x. The word length
necessary for perfect arithmetic is at least w = [[Igzm]] + 1

and, for the filters considered here, w is also sufficient. (1 is
added for a sign bit}. This word length is shown in column B of
Table 2.2,

However, rounding off the weighting function introduces errors in

is not sufficiently good, then the initial conditions of the filter



can be set as accurately as needed, and then the filter is
operated with the feedback Toop alone. In particular, one
can set the initial conditions of the filter such that

X, = sin 2un/p|<2™™ (n = 0,...k~1) where sin 2mn/p 1is

the desired signal. One can then compute the minimum-word
1ength'requ1red by simulating the filter for one period. In
all cases of interest here, the word length 1ndTuding sign is
(i+1) for m<l2. Hence, as an example, the cyclotomic filter
of order 30 can generate a sequence (xn) such that

%, = sin 2mn/p|< 2720 i the initial conditions are set such
that |xn - sin (2wn/p)|<2'10 (n=0,...,7), using a word length
of 11.

To determine the number of binary additions per period of the
filter (i.e., per cycle of the fundamental), one counts the
number of bit additions per step. If m denates the number of
additions per step, then pmw is the number of binary additions
per cycle, where p corresponds to Fp and w the word Tength used
in the feedback loops. When the generator is implemented in the
first way (using an initial pulse and the weighting function),
the number of additions is shown in column C of Table 2.2 {not
including those necessary in the initial d+1 steps for the
-weighting function).

When the generator is implemented in the second way (setting
the initial conditions, the number of additions can be computed
by multiplying the value in column C by w/w', where w is the
word Tength chosen and w' is the corresponding word length from
column B.

When the filter is used as a detector, we assume that the input
to the filter is a sequence which only assumes the values +1.
This is true, for example, when the analog signal to be detected

~is either hard clipped or delta moduiated. In these cases, it is



advantageous to apply the weighing function to the input U,
rather than to the sequence Xp3 since, in general, X, can assume
many values other than +1 computations involving the weighting
function are simpTified if they are performed on the input. 1In
fact applying the weighting function to the input is so simple
arithmetically that it can be implemented with a ROM, On the
other hand, if a ROM is not used and one wishes to save on
computations by checking the threshold only in the

last cycle of the filter (with respect to its duration of operation
for detection, then the weighting function is best implemented
on the output of the feedback loop. Then the filter can be run
during all but the Tast cycle, without computing the weighing
function.

When the weighting function is applied to the input the filter
is described by:

d

-

i
|
(9]
=

(2.37a)

o1 )

asX_ .t v (2.37b)

Where u, is the input into the filter and Vi is the result of
the weighting function. Fig. 2.4a describes this filter.

For the filters in Table 2.1, the effect of rounding C; to the
nearest integer is slight.

Hence, it is fortiori suitable to round off v, = zc.u . to the

nearest integer. Therefore, since the only values assumed by

uj are 11, it suffices to have for v a word Tength of

n

w=[[1g,{z| cil}]] +1 (where {x} is the integer closest to x).



The sequence vh can then assume any value between - {z|c1|} and
x| C1|} . (the c;'s are the exact coefficients of W, not WI).
With d as in (237.a) and w as above implementations of the
weighting function with ROM requires then 2d+1w|nemony bits,

The respective values for this are shown in column D of Table 2.2.

When a bank of such tuned filters is in one receiver, all filters
could use one ROM for the weighting functions.

To determine the word length for use in the feedback loop of the
detector, the maximum signal level can be determined by using an
input Uy, of the same frequency as the resonant frequency. Since
the impulse response of these filters is periodic and of the same
period as the resonant frequency, the later produces the maximum
signal Tevel 2E§|§§J,f0r duration of operation Nt . Let this
maximum be M. The word length required should then be at least

[[ 1g,M J]+1. For all the filters considered here, [[1g,M]] +1
is also sufficient. The number of M, of course, is determined by N.
If the cyclotomic filter is of period p, then the filter runs
through N/p periods, corresponding to N/p cycles of the fundamental.
Calculations have been made for two values of N/p:7 (the number
of cycles computed in (2) to be necessary for touch-tone interchannel
rejection), and 10 (a more uniform point of reference). = Table 2.2
column E shows the word Tength required in the feedback loop for
the indicated durations, when the weighting function is. computed
on the input, implemented equivalently with or without a ROM.

When there is no weighting function on the input, the word. Tength
required is shown in column F.

The binary additions per cycle for the detector is determined in
the same way as for the generator; the number is pmw as defined

~_above. These numbers are shown in columns G,H, and K of Table 2.1. -




Column G shows the number of binary additions per cycle in the
feedback Toop when a ROM is used to implement the weighting
function , applied to the input. If a ROM is not used to
implement the weighting function, then the weighting function

has to be computed. Since the numbers involwded in the computation
of the weighting function on the input are generally smaller

then those in the feedback loop, the word length required for
their computations are smaller. Hence, one can use two different
adders, one for the weighting function and one for the feedback
Toop. Using this arrangement, the number of additions per cycle
for calculating the weighting function is shown in column K. The
number of binary additions per cycle when no weighting function is
used is shown in column H., To calculate the number of additions
when the weighting function is app]ie& to the input, but a ROM is
not used, add columns Hand K.

Column A indicates the respective cyclotomic filters described by '

their periods.
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3.1

3.2

3.3

CHAPTER . 3

APPLICATIONS OF CYCLOTOMIC FILTERS

Introduction

Possible uses for the cyclotomic filters have been mentioned
in section 2.1. Various applications were suggested by 7
Ri Kurshan and B, Gupinath, These applications are described
in this chapter. A new application proposed in this work
and which was realized in hardware, is briefly described in
this section. The new application is described in detail in
chapters 4 to 7.

Fskt )

As described in chapter 3, by selecting the initial conditions
of a cyclotomic filter of period p, one can approximate
uniformly sampled values of a sinusoid of period p, t.e.,
sin(2wn/p). By changing the clock rate of the filter, one

can shift the frequency of the sinusoid to any preassigned
value. Hence, when using the filter as a generator, one

can shift the clock rate to shift the frequency. This method

of shifting frequencies does not introduce any "discontinuities"
in the signal. '

In a similar manner, when using the filter as a detector, one

can shift the resonant frequency by shifting clock rate,

Hence, with the same filter, one can generate and detect both tones
used in a typical arrangement.

A Touch-TonéE)Receiver-Generator (2)

The basic Touch-Tone telephone must generate tones to identify the
ten basic possible inputs (1,2,...,9,0) or, in the case of
augmentedfﬁéTébhghég,lz to 16 possible inputs (including, for

example, * and #). This is done by arranging the input buttons



in a grid of four rows and three or four columns. Associated
with each row is one of four "Tow" frequencies (697, 770, 852,
or 941 Hz), and associated with each column is one of three
or four "high" frequencies (1209, 1336, 1477, or 1633 Hz).
When a button is pushed, one Tow and one high frequency are
simuTtaneously generated corresponding to the row and column
~in which the button is situated.

In the central office, a detector decodes the incoming pair of
tones to determine which button was pushed. An incoming signal
first passes through a series of tuned filters that filter out
dial tones, ring tones, busy tones, and power harmonics (which
have amplitude too large to be accomodated by the subsequent
channel filters). Next, the signal passes through two parallel
bandpass filters BPF (seé Fig. 3.1) - ane to reject the four
high-frequency tones {low BPF) and one to reject the four low-
frequency tones (high BPF). The output of each BPF passes
through a hard-Timiter, which convert the analog output of the
BPFs into a signal which is either +1 or -1, depending on whether
the analog signal is nonnegative or negative, respectively.

Tuned
Filters

{697 =]
E—— Detection

Circuits

Low Freq Tone

Limitef

e

Sum of
Two
Tores Separatioq R
| oAZ3]2eparatiol DigT
Generator Line Filter Deco?er
Hi Freq. = Detection
Tone I ie 1330 ¢S vbuits

Fig., 3.1% General receiverﬁgg?lwnﬁmfﬁwwﬁwwwwfmﬂmwwm”w,7WW -
.

(2)

L2713 vhn 301 My



The channel filters which follow the hard-limiters are identical
cyclotomic filters, F_. The cyclotomic filter for each channel
has as its input the output of the hard-limiter sampled at a

rate p times the channel frequency, where p is the period of the
cyclotomic filter used. This requires clock pulses of different
frequencies for the different channels.

The channel filters are run periodically for an interval of time
inversely proportional to the channel frequency, called the
interval of operation. At the beginning of each such interval,

the filters are set to zero. The magnitude of the output of

each of the filters is compared with a fixed threshold, when the
magnitude exceeds this level, a tone corresponding to this freguency
is assumed to be present. The length of the interval of operation
is dependent on the permissible error. An interval of operation
corresponding to seven cycles of the channel frequency was found to
be sufficient. This corresponds to 10ms for the channel corres-
ponding to the Towest Touch-Tone frequency, 697 Hz. Hence, if

the 697 Hz channel tone is present for the required 40msec

(typical time allowed for a single detection) then in at least
three consecutive intervals the tone will produce a:signal above

. the threshold. For higher frequencies the interval of operation

is shorter.
770 697p Cyclotomic Threshold
P P Filters Detectors
. limiter
output —
852p
941p

Fig. 3.2: Channel filters of the Tow groupw(z)
(2)
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3.4

By synchronizing the intervals of operation of all

channels, testing is made for the simultaneous presence of

a high tone and a Tow tone. When a high tone and a low

tone are each present for three consecutive intervals, a
valid Touch-Tone signal is assumed to be present. The digit
corresponding to a pair of tones is decoded. 66 is suggested
for use as the cyclotomic channel filter. For more details
refer to (2)

Periodic Sequence Generators (3,4)

Digital periodic sequences are usually generated by shift
registers with feedback using mod 2 arithmetic. Periodic
sequence generators based on cyclotomic filters use ordinary
arithmetic. Furthermore, the feedback is obtained from taps
which are +1 or 0,

The general model of an array of shift registers used to _

generate a periodic sequence (yn) can be described as follows:

Let Rn be the vector whose components denote the states of

the shift register array at time n. The dimension k of YB

is the number of delay stages available, which will be referred
to as the memory. The periodic sequence (yn) is produced by

some transversal operation h on ?h,

Fig. 3.3 gives the schematic for a linear recursive algorithm
using k stages.




[

! L ! h_"—“' Y

Fig. 3.3: Schematic linear recursive algorithm.

<7270 NI oD NMAYR Y¥ ?nnop NINn 13,3 1Y

The equations that describe the system are:

4 5L X (3.1a)

y, = h(x) (3.1

We assume that L is periodic, i.e., there exists a smallest

integer p such that ?h =!Yh+p for all initial states.

It was shown in (3) that introducing nonlinear feedback cannot
increase the period {or for given period, reduce the memory).

Here L is a kxk matrix. To simplify mechanization of the
recursion it is useful to restrict the elements of L to be
*1,0. In this case for arbitrary period p there is a recursion
L whose elements are 0,+1, which requires only as much memory
as would be necessary, where the elements of L were allowed to
be arbitrary rational numbers (3).




The canonical form of this recursion L is now described. let

be the canonical prime number decomposition of the period p;
if (p,4), the greatest common divisor of p and 4, is not equal 2,
define L to be the matrix;

-
Ly
L
2 (3.2a)
L= 0
0 []
Lr J
010 vvvvvvnnn. 0]
0010 s,civunss “.0
. j000010 ..... o0 (3.2b)
Li =|
00 .......0. oo 01
o o ' o
k1 k,i_l o L ) 1
. A
where for kaki, 9=P; 5 €z €; and -
c(a) =20t 942 g
- k
, €-1
?\k - I w.‘lk-j =c(x% ) (3.3)




Since all the coefficients of C{}) are 1, the ai's are ~1,0,
The recursion associated with each Li is then of the form:

k
5 (3.4)

where k = qe(q-l), hence, combining the r recursions the
minimum memory required to generate sequences of period:

e.
o, (4, p) £ 2
is:

L (pye1) (3.5)

This expression enables one to compute the maximum period
achievable with a given memory.

Table 3.1 shows the maximum period sequence that can be generated
as the function of memory.

If p equals 576 by (3.5) one obtains the minimum memory to be

38, in the same way if p = 577, then k = 576, Hence, a judicious
choice of period could effect a substantial saving of memory,

él r . .

When (p, 4) =2, let p = 2 Py “-.- P, be the canonical prime
decomposition of p. Then the canonical form of L is jdentical to the
previous except for the (say) first block which is now replaced by
the cyclotomic filter é(_Abléﬁ*l) which has coefficients 0, 1.




Memory | Maximum Period Memory Maximum Period
(k) | (p =) (K) (p =)
1 2 68 17907120
2 6 70 24504480
4 12 72 38798760
6 30 74 58198140
8 60 76 116396280
10 120
0 230 80 232792560
14 420 84 281801520
16 840 86 314954640
18 1260 88 465585120
20 2520 92 698377680
24 5040 94 892371480
26 9240 % 1338557220
28 13860 98 2677114440
30 27720 102 5354228880
32 32760 108 6750984240
34 55440 110 10708457760
36 65520 114 16062686640
38 120120
9 1eate0 118 26771144400
42 360360 122 32125373280
124 38818159380
46 720720 126 77636318760
50 942480 128 82990547640
52 1113840 130 155272637520
54 2042040 132 165981095280
¢ 2153080 138 310545275040
140 331962190560
60 6846840
| ‘ - 142 465817912560
62 12252240 144 497943285840
64 13693680

Table 3.1:.1Méximdh*pe?fod vs. memory,(4)?. :

0(“) 1173TA 9714 TAID YnpEn Nithn :3.1 710y

The minimum memory again, is given by (3.5).

Equation (3.1b) describes the operations on the vector output of

the recursion L which transform this to the (scalar) output of the
number generator. Periodicity of the output is guaranteed, of course,
independent of h, by the periodicity of L. The only standing
requirement on h is that it does not decrease the effective period

~ of the recursion i.e., that the period. of the output y be the same

~as the per‘iod of the input inéLn);(’O,



When h is essentially a function of single outputs from each
array of shift registers of relatively prime periods (as is

the case in the above realization when h depends on only one
component from each Li)’ then h (1inear) will preserve the period
of (7n) if only all its coefficients are non zero.

Example 3.1:

Suppose that the amount of available memory is 34 stages. In

Table 3.1, one can find that the maximum period possible is 55440,

Since the prime number decomposition of 55440 is 24.32.5.7.11, the

memory will be distributed among five shift registers corresponding
to the five distinct primes, as shown in Fig. 2.11. Specifically,

for example, the second shift register corresponds to the C(x)

for q=3 and €=2: A6 + A3 + 1, and thus is defined by the recursion

Xpt6 = “*pe3 . *n (or memory 6),

i
z:n+7

- Fig. 3.4: Realization of Example 2.4, S
L2.4 NDATT 9B wInTh o 3.4 MY



In general, if a sequence of period p is to be constructed
expreiglp in Egrms of its prime number decomposition, say
P=Pp "vee Py r, First, suppose that if one of the pi's is
a 2, the corresponding Ei is greater than 1. In this case,
the sequence generator will be built from r shift registers
corresponding to q (q one of the primes P;s & one of the
integers ek) has (q-l)q'é"1 stages and, viewing the shift
register in the direction of signal transfer (left to right
in Fig. 3.4), every qe;luth stage is connected to a tap with
feedback coefficient -1. Thus, there are g-1 evently spaced
taps. If {say) pfgl = 2 then (say) the first cyclotomic
filter will be: | ' o
o €5-1
. . by 2
C €1 < (1) = sz(-x )
P1 P

3.5 A Bank of Single Tone Detectors

This is a proposed new application, dealt in detail in

chapters 4-7. The system is baséd on the cyciotomic filters
01,02,C3,Cs. Given a single tone of frequency f, fL<f<fH, of
constant amplitude and random phase, the system indicates in

which of 64 cells of B.W. fH/64 is the tone present. The

system is described in chapter 4, analysed in presence of a

noisy input in chapter 5, ~the"simulation’results’are given

in chapter 6 and the details of realization are given in chapter 7.

Measurments from the implemented CTD system are given in
Chapter 8.




CHAPTER 4

THE CYCLOTOMIC TONE DETECTION SYSTEM,

PRINCIPLE OF OPERATION

4.1 Ihtroduction

Briefly the CTD system is a single tone detector., The tone
appears with constant amplitude, random phase and random frequency
which is uniformly distributed in the range 0 - fH' The system
indicates in which of 64(=43) cells of bandwidth fH/64 is the

tone present, '

In a traditional bank of filters, a filter corresponds to each _
cell. If the tone is present in cell i, then the tone will appear
in the output of theithfilter, while in the output of all the

other filters the tone appear attenuated.

The CTD system is not a bank of BPF's but only indicates,
digitally, in which of the 64 cells is the tone present.

The system is based on the cyclotomic filters C1,02,03 and C6“
These filters together with C4 are the only cyclotomic filters
having a single resonant harmonic. These filters are simple to
implement, since no transversal is needed, and are at most of
the second order,

The tone is first converted to a complex tone, i.e., (A cos(2nft +¢)
is converted to Ang(ZWft + ¢1),this is done to eliminate the effect
of the random phase. , as will be explained.

Referring to Fig. 4- 9, there are three stages, Fig. 4-9a to
Figo 4- QC:0




At the first stage, Fig. 4-9a., the complex tone is sampled
and converted by an A/D with sampling frequency fs=4fH. The
system detects in which of the four quadrants of bandwidth
fH/4 is the tone present. The filters C1 2’C3’CG can not
perform the above task. C1 and CE cover the first and third
quadrants respectively, thus leaving the second and fourth
quadrants uncovered,

This prob1em is solved by covering the second quadrant with
(J ) which means multiplying the sampled complex tone by J

and operating C The fourth quadrant is covered with C (J ).

This method was suggested in (11), multiplying the samp]ed complex

tone by (')k is equivalent to shifting the tone's frequency by

f /4 to the right and the resu1t1ng tone can be detected under

C3 or 62 in the case of C3(J )} or C2( k) respectively.

.k

At the second stage the CTD system is operated with a sampling
frequency of fc = fH. Fig. 4..9b shows how in this stage the

band (0, fH) 152 covered by 16 filters. If at the first stage

the tone is detected in the second quadrant (the tone's frequency

f satisfies fH/4<f<fH(2), then at the second stage the four filters
under this quadrant are operated. (Cz(jk),C3p3(jk),Cz). Continuing
in this way for three stages it is possible to tell in which of

64 cells of bandwidth fH/64 is the tone present.

At each stage four filters are operated. The four filters receive
the same input, for a finite time; N/f. - (N samples of the
input; s = 1,2,3). S

The outputs of the four filters after N samples are the basis for
the decision in which of the four filters is the tone present.

In the implemented system in each stage the operation of the four

filters is repeated an odd number of times and a maJor1ty dec1510n
‘rule is used. Repetitions are performed with new data and are




4.2

intendent for improving the noise immunity of the system. For
example if at the first stage there are 31 repetitions and if

at least in 16 repetitions the tone is detected in the third

rfi]teﬂ P (Cs),_then it is decided that the_‘toﬁé% frequency satisfies
%foéf§3/4fH.

Section 4.2 gives a description of the digital filters used in
the system. Section 4.3 gives the response of the filters to

a sine wave, in this section it is also explained why a compliex
tone should be used. In 4.3.1 the response of C1 and C2 10 a
complex tone is developed,

In 4.3.2 the response of C3 and C6 to a complex tone is developed.
On the first reading, 4.3.1. and 4.3.2 can be omitted, but refer
to Fig. 4.5 and 4.6,

Section 4.4 explains that shifting the input frequency is
equivalent to shifting the filters response without changing
the input's frequency.

Section 4.5 explains the principle of operation of the CTD system.

Description of the Digital Filters in the CTD System

The system is based on the following cyclotomic filters:

The first is:

Cl(x) = x-1 - {4.1)

X = X + U (4.2)

The second,

e O (R X (8:3)

+U (4.4)



The third,
Calx) = xPext] (4.5)
Xg = "Xq.1 = Xgop ¥ U, (4.6)
The fourth,
Ce(x) = x% - x+1 (4.7)
Xo = Xpa1 = Xpap * U, (4.8)

Fig. 4.1:gives the block realization of C1 and"Cé.

PN Q SIGN

oUn

Fig. 4.1: Realization of Cy (SIGN =1) or C, (SIGN = ~1).
Cy (SIGN = -1) n Cy (SIGN=1) Yw m>mi%a van'n 4.1 119%

In the implemented system C1 of‘Cé are heeded one at a time.

Fig. 4.1 shows that by a suitable choice of SIGN either C2 (SIGN=1)
or C, (SIGN = -1) can be chosen.

Fig. 4.2 gives the block realization of C3 and 66.




4.3

+ ' SIGN

2>

-

.q-i.-—aun

Fig. 4.2: Block reaTizafion of FCB(SIGN = -1) or C6(SIGN = 1).
.CG(SIGN = 1) Ix C3(SIGN = -1} Yo 0°p172 vanen :4.2 7Y

In the implemented system C3 or CG are needed one at a time.
Fig. 4.2 shows that by a suitable choice of SIGN either
‘C3(SIGN = 1) or “CG(SIGN = -1} can be chosen,

The Response of the Filters to a Sine Wave (Tone)

et the impulse response of a cyclotomic filter be:

{hk}oo then:
k=0
n
Xg = B uho (4.9)
k=0

where:
'uk = s the input at instant k and
uk=0 for k<0

X = 1is the output at instant n
Uy is given by:
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U = A cos[ g%f K+ ¢] (4.10)

k =0,1,...

Ad Amplitude of the tone
=  the toné's frequency
f & the sampling frequency

¢ = the phase shift of the tone, a random variable.

To compute X, 8 complex input is applied and the real part of
the output is taken. Let 6 be the angular frequency given by:

6 = S (4.11)
fS
then:
no o s(kete)
X, = Re( & Ae hooi)
k=0
ip N jke
= Re(e’? 5 A’ %h ) (4.12)
k=0
Let:
. ® ik :
an(8) + Je (0) @ = AeIn (4.13)

k=0

% and Bn are real for all n, e



hence:

X, = an(6)cos ¢- Bn(e)sin $ =

=\/u2n(6) ¥ snz(e) sin [tg™! ?ﬁf"(e-) -6 | (4.18)
o Sn(e)

For a given f: {g}and n, X, 1s strongly dependent on ¢. Since ¢

is a random variable uniformly distributed 1in the interval (0,27 ),
threshold detection can't be used, and the cyclotomic filters are
impractical.

Therefore a configuration as in Fig. 4.3 is used to cancel the effect
of ¢.

URn = A cos{ng +¢) ¥z

o ¢ -2

\/, 2 P Izni

‘ZR . +ZI . R

e01n= A sin(ne + ¢)

" Fig. 4.3: Cyclotomic filter realization with a complex input.
LN7DI7BMIT ND12 BY CMILIYETY Yaph YY eantn 4.3 MY

By {4.12) z, s given by:

. n N
- pad? Jk¢
z, = Re I e L
k=0
hencé:
1zni =A'k20eJkehn“k o (4.15)



" From (4.15)'i£T1§561éaFv£Hét using the realization of Fig. 4.3
the dependence of the output on ¢ is eliminated.

In the implemented system Up and Uy are obtained from u(t) by

analog linear networks (12). The method is explained in Chapter 7.

4.3.1* The Response of C1 and C2 to a Complex Input

The impu1se response of C1 and 02 is obtained by applying un=q1
to (4.2) and (4.4) respectively. One obtains:

For C hn=1 n>0 (4.16)

15

o(_1\N
For C5, h =(-1)" n>0 (4.17)

by (4.15) one obtains:

n

Zc (n,8) =A| ejke 1| =
1 k=0

jo (n+l)

ze (n,e) | = A |& 7 -1

1 et 1
. n+1
sin o
Z¢ (n,8)] =A v (4.18)

1 sin %

This section can be omitted on first reading. . ..




*
4.3.2

Similarly for 02 one obtains:

(o + 7) (n+1)
lzcz(“»e)l = A 2 (4.19)

sin (e Z LAY

sin

Note: ForlzC (n,O)IandlzCQ(n, m)lone has to take the 1imit
(the result i& n+l for the two cases).

From (4.18) and (4.19):
H] = ] 1 4.20
]zc2 (n,8)| |Zc1(“ 6+ ) | (4.20)

Hence:  [z; (n, 6)| can be obtained from |z, (n, )| by
shifting 6,7 rad, L

The Response of C3, C6 to a Complex Input

4

Applying u, = &, to (4.6) and (4.8) one obtains:

(]

for C3: hn {1,—1,03... } (4.21)

for C6: hn $1,1,0,-121,0,...1} (4.22)
hn of CB(CS) is periodic of period 3(6) respctively.
obviously:

he (n) = h (n)(~1)" | (4.23)

Cs 6

This section can be omitted on first reading.



From (4.15) one obtains:

. n
|zc3(n, o) = kfo oJke hc3(”‘k) (4.24)

and:

n .
2o (o) = | = el h. (n-k) (4.25)
6 (-0 6

From (4.23) one concludes that

’ = s T 4.26
|zc3 (n, 8)] |206(n o+ )| ( )

Hence, we can have |zC {n, 8)| from |z¢ (n, e) | by shifting
6 T radians. 3 6

To find an expiicit expression for |zC (n, 8)| two cases are
considered: ‘ 3

Case 1: n = 3m or 3m-1

Rewriting (4.25):

n .
T e Jke h
k=0

|zcs(n, 8)| =A n-k

_ Jne J(n-1)e
= |h e + hle + ..o +h |

0

From (4.21) one concludes that hauoq = 0 hence: .. =
203(3m-1,e) = zc3(3m-2,e),



therefore 1t is enough to compute [z, (n, 6)] for n = 3m-2
3

|zCS(n,e)| = 'A ‘l(ejne _ ej(n—l)a) 4 (ej(n-s)e ) ej(n_ﬂ,)e )

# (e D1 =

|ZC3(n’ 8)| =A leje - 1] [e‘j(n"l)e + edn-dle vor t
+e938 417
|,ZC3("’ o) =aled® -1y eJ:3me
1 - eJ36
Jal 3m.
= 2 |sin %';:1_% (4.27)
n=3mor 3m1l, m=1,2,..,
Frpm (4.26) and (4.27) one obtains:
L3
) zg (n, 0)] = 2A |sin &2 ST” 7 (o) S
6 sin 1.5 (o+m) (4.28)

n=3mor 3m-1, m=1,2,...

—

~Note: |zC (n, %m )| and |zC (n, %ﬂlare found taking the 1limit.
3 6

Case 2: n = 3m-2

Similarly to case one, one can obtain:
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Fig. 4, 4: Output of 01/02, 8 samples.
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'n-2 . B ] n""2
| -i=5e sin 5 sin 55 6
|zc (n,e) [=A|2e 2 o 41 (4.29)
3 - sin 1.56 .

[zcs(n,e)l ~is obtained by (4.26).

Fig. (4.4) gives plots of |zo (7.0)] and|z. (7, 6)| , Fig.(4.5)
gives plots of|z, (7,0)] andllzC (7, 8)]
3 6

The plots of Fig. (4.4 and (4.5 are for n=7 (8 samples of the
input). In the implemented system each filter runs for 8 samples
of the input, a decision is made and the filters are reset,

From section {4.3) one concludes that operating Cl(Cg) is equivalent
to operating CZ(Cg) with the complex input multiplied by (-1)".

4.4 'An'Equiva1ént of Shifting the Input Frequency

This section explains the meaning of C(jk).

In general the input can be multiplied by ejnu where o is a given
angle. o correspons to a frequency shift: af = ufs/2w. This

s equivalent to shifting the fiTter's response by ~o without
changing the input frequency.

In the implemented system a shift of o = %—15 applied. C(jk) means
multiplying the input by jk and operating the cyclotomic filter C.

Fig. 4.6 describes the operation of multiplying the input by jk

A cos (ne + ¢) Re {Aéjne * an }
F
-y N :
A sin {ne + ¢) (3) Im {AedN® * AR

4W7Figfw4.6:~fPresentation~ofﬁmu1t1pTyingmthe—1nput*by”(j)n

.(j)n~n AD?320 Y92 AI¥?? 4.6 17X



4.5

One can éasi1y obtain:

N AeJ(ne +¢)jn Implementation

Re e&———¢ Re

4m 1 |A cos(ne +¢) + jA sin(ne +¢) )
.......... S

4m¥l | {-A sin{ne +¢) + jA cos(ne +¢) Res A ¢ Re

SR IR i I[n Im
4m¥2 | -1 |A sin(ne +¢) ~jA cos(ne +¢) Re - Re

N il <K 1
Re-——-—.'i:a Re

4iit3 | -J |-A cos(ne +¢) -jA sin (ne +¢) A

Im“—~a=£olm

Table 4.1: Expansion of the operations in Fig. 4.6.

<4.6717°¥n M71yda nama :4,1 Q720
From Table 4.1 the implementation is very simple. For example
when n = 4m+l interchange the 1ines and multiply the imaginary
Tine by -1. Hence the implementation incorporates operation
of changing sign and/or interchanging the Tines.

'CTD System, Principle of Operation

The tone is first converted to a complex tone, the complex tone
is converted by an A/D and multiplied by jn.

Fig. 4.7 shows the above operations.




A cos{2nft+g,) ped(n8+e,)

A cos (2nftie) A/D

N

j[n(e'"_qa;
Aet +§+ 1]

A sin (2wft+¢1)

| fo,  1=1,2,3
Fig. 4.7: The preprocessing of the tone.

LTk e oaTin Tay 4,7 Moy

H1 and H2 are two all pass filters that have a phase difference
of 900, in a given band. (Their design is given in chapter 7).

Referring to Fig. {49 ), let the tone's frequency satisfy f<fH.
There-are three stages characterized by different sampling frequencies.
At stages I, II, III the sampling frequencies are fc = 4f

£ = fH’ fc3 = fH/4. respectively. :

H!
€2
‘Stdge I: Referring to Figs. 4.8 and 4.9a , the four filters
Cl,CB(jn), C6,C2(jn) are operated. C3(jn) means operating C; with
the complex tone multiplied by jn which is equivalent to shifting
the response of C3 -n/2 radians without changing o,

The decision Togic in stage I is as following, to decide in which
of the four filters the tone appeared a threshold is attached to C1
and C2° Let the threshold be TR1l, then:

TRl = |z, (N-1,0)| (4.30)
G o=

oo |

N is the number of imput samples the filters are operated with.
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For "silence detection" a threshold TR6 is attached to Cé and C6 .

TR6 satisfies:

TR6=% |zo (N-1, 7) | (4.31)
6
The value of TR6 is (d reasonable choise from noise considerations .

If the output of C, |z (N-1,8)| 1is greater than TRl it is decided
that f is in the f1rst f%]ter (0 <fef /4) and the stage is terminated.
If the output of C, (J ) passes TRI 1t is decided that f is in the
fourth filtter:: 3/4f <f<fH and the stage is terminated.

If none of the above is satisfied and the output of C (J ) passes
TR6 and is greater than the output of C6 it is decided that f is

in the second filter (f /4<f<f /2), else if the output of Cg passes
TR6 and the output of C3(J ) 1s 1ess equal th n the output of C

it is decided that f is in the third filter (?—-<f<1- H)

If none of the above conditions is fulfiled it is decided that no
signal is present.

To indicate the cell in which the tone is Tocated a six bit register R
is used, R = RgsRgs .- -»R;  where Rg is the MSB and R, is the LSB.
After the first stage let:

R6RS = (# of filter) -1

Stage II:  Fig. 4.9b

At this stage the filters are operated with a sampling frequency

a",C = fH' There are four quadrants each consisting of four filters.
2 .




Suppose that in stage I the tone was detected at the pth filter,
where 1 < ¢ < 4,

h

In stage II the four filters of the ot quadrant are operated and

the logic of stage I is repeated.

For example suppose in Stage I a signal was detected in the third
filter. In stage II the following operations are done: the filters
Cos Cﬁ(jk), Css Cl(jk) of the third quadrant are operated.

If the output of Cz_passed TR1 then R4R3 =0 0 and this stage is
terminated. If the output of Cl(jk) passed TRl then RﬁRg = 11 and
this stage is terminated.

If none of the above conditions is satisfied and the output of Csfjk)

passes TR6 and is greater than the output of C3 then R4R3 = 01,
else if the output of C3 passes TR6 and is greater or equal the
output of Cﬁ(jk) then R4R, = 10.

If none of the above conditions are fulfilled it is decided that
no signal is present.

'Stage III: Fig. 4.9¢
In this stage four filters are operated with sampling frequency

fo o= f, 4.
Gg H/4

Fig. 4.9c. consists of four replicas of Fig. 4.9b.., If at stage II
the signal was detected in the z?h filter (1<2 <4) of some quadrant
(1t does not matter in which quadrant) then at stage III the filters
of the £$h quadrant are operated. Under a quadrant in stage II
there are 4 quadrants in stage III (i.e. one replica) and if in
stage Il the tone appears fn the u?hfi1ter thep under the zth filter:

appears’.the th quadrant.




The decision Togic in stage III is as in the previous stages.
After completion of stage III, R2R1 is set and the number of
cell is given by the contents of R in binary code.

In the implemented system the operation of the four. pairs of

filters is repeated at each stage an odd number of times and a
majority decision rule is used. Repetitions aré performed with

new data and are intendent for improving noise immunity of the
system. For example if stage I is repeated 31 times and the tone

is detected in the first filter for at least 16 times, it is decided
that the tone appeared in the first filter.




5.1

CHAPTER 5

" 'DETECTION ERROR ANALYSIS OF THE CTD SYSTEM

‘Introduction

The input to the CTD system is a single tone of constant
amplitude, random phase and with additive Gaussian noise.

The CTD system indicates in which of 64(=43) cells is the
tone present. As a function of signal to noise ratio at

the input detection errors may occur. There are two kinds

of detection errors: a signal is transmitted but is detected
in the wrong cell or is not detected at all.

The purpose of this chapter is to compute the average pfoba-
bility of detection error, this quantity is very important since
through its minimization one obtains the optimal parameters

of the CTD system.

Sectijon 2 gives definitions and expressions of the basic
probabilistic quantities, such as average probability of
detection error at each stage and overall probability of
detection error.

In section 5.3 the error analysis of a pair of cyclotomic
filters is given. The statistics of the output is found to be
Rician and in practice it can be approximated by the Gaussian
distribution.

In section 5.4 expressions for computing the average probability
of detectioh error at each stage are given, without and with
repetitions (cf. Ch, 4).

The next chapter gives the numerical results based on this

to a DFT torie detection system.

chapter, a comparison to simulation results and a comparison



5.2 -

‘Definitions of Probabilistic Quantitites

The input to the CTD system is a tone whose frequency is
uniformly distributed in the interval [0, fH], briefly
fel[0, fH]. The CTD system is generally operated with L

different clock frequencies: fcl = 4fH, fcz = fH’ fc3 = fH/4..,
a2 as L gets larger a finer resolution of the

fo =y ;

C,
fr%quency measured is obtained. There are 4

band [0, f,].

cells in the

Let stage s correspond to fc . At each stage an error may
- s
occur, Let Pe be the average probability of detection error
s

at stage:s.
Let.PD denote the average probability that the tone 9s
correctly detected by the CTD system. Assuming each stage
is statistically independent on the other stages then:
- L -
PD = I (1-Pes) (5.1)
s=1

Let PE be the average probability of detection error then:

PE = 1 - PD (5;2)

)
m
1l
3=
1
=
——
—
1
=)
o

(5.3)

A question arises how to compute Pe ?
. S
Let f be the tones frequency and O the angle defined by:

o, =(20/f ) (5.4)
S



5.3

At stage s, let P (Bs) be the probability of detection
S
error as a function of B> then:

P =E{P. (0.)} (5.5)
es es S

E = Expectation

es is a random variable uniformly distributed in an interval

of length =/2.

Error Analysis of a Pair of Cyclotomic Filters

At each stage four pairs of filters are operated. Each pair
of filters represents the equivalence of one filter receiving
a complex input.

The preprocessing of the tone and a general pair of cyclotomic
filters operated at stage s is shown in Fig. 5.1.

Referring to Fig. 5.1 the tone appears with additive Gaussian
whiterndise. The tone passes through an ideal LPF: [0, FH],
The purpose of the LPF is to eliminate the noise components
having frequency greater than ng The LPF produces additive
Gaussian coloured noise without changing the amplitude of the
tone.'”H'l.‘.and_H2 are two all pass Tinear networks that convert
the single tone "Asin (2nft+¢)+n(t) to a complex tone-~
Acos(ant+¢i)fnR(t)t+j[A sin(wat+¢1)+nI(t)] in a given

frequency band [fL, fH ]. The noisy complex tone is converted

by an A/D. The samples of the noisy complex tone are multiplied
by ()X, where o=1 or o= V2T (F(j¥)). After the multiplier

uk, two identical cyclotomic filters are operated for a finite time

N/f_ . The modulus of the complex output zR(N—1)+sz(N—1) is

Cs _ -

found, the proééss term{ﬁafééwéﬁdmfﬁéﬂffTté;éwé}éirééeﬁ!7



Asin(2nft+y) + no(t)

L.PF
Asin(2nft+e) + n(t)
1
H1 HZ
J
Acos(2nft+¢1) + nR(t) Asin(2wft+¢1) + nI(t)
T AlD
S
|
Rcos(2nfle + ¢.) + ng(=9) | Asin(2nfke + ¢.) + no (X
f 1 R -[-' i f 1 I f
c, C c c
5 s | 5 s
; i
o ———= multiplier by dk ] a=1o0r]j
f _—’ c foo—=
Cs s l
k=N-1
e ____ﬁ___-
\/ 2 2
z + Z
R T
) . A B

Fig. 5.1: A general pair of filters operated at stage s,

.5 apa hyoinn °%%0 meaivn AT 5.1 10y



5.3.1

The operation dﬁ 2 4 212 is very complex to implement, in
the 1mg1e ented CTD sgstem a Tinear stochastic approx1mat1on to
VZR I is used (15

Fig. 5.1 describes the principle of operating a general pair of
cyclotomic filters. At each stage the complex tone is sampled

with different sampling frequency f and the samples are processed.
In the implemented CTD system the coﬁplex tone is sampled only with
sampTing frequency f = 4fH The samples are stored in a RAM,

Two RAMs are operatedlwh11e one Ram receives information the
information of the other RAM is processed and vice versa.

The processing of the information in the suitable RAM is performed
with a Tfast clock (® 60fH). The different stages (fC ) are
simulated, by processing samples such that consecutivessamp1es have
addresses differing by 45"1(s=1,2,3).

The theory developed in this chapter is applied to the implemented
CTD system without changes.

The Statistics of n(t)

' \4 A

Fig. 5.2: The spectral density of no(t) and n(t).

n{t)-1 no(t) 7v T1I0PBDA MI87REY :5.2 17X

n (t) is Gaussian wh1te noise with autocorrelation R, ( ) =N 6( )

B No-
and spectral density S (w) = N . S (w) is given by:
no 0 n



2
S,(w) = Sno(w)fﬂ(iw)l (5.6)

S (w) is plotted in Fig. 5.2,

The autocorrelation of n(t) is the inverse Fourier transform
of Sn(m) and is given by:

W
H .
. N w, Sinw,T
=1 Jor _ o H H
Ro(t) = g | N = = o (5.7)
—NH

Létﬂc%nz be the power of n(t) given by Rn(O)

’ W
2 1 A No®y
oiy° = R (0) = o= fNodw = -2 (5.8)
Hence:
R. (1) = o, 2 sinc:(uw,t) (5.9)
in in “H ’

Let the signal to noise ratio at the nput be defined by:

2
- A~/2
SNRi = 10 1910 > : (5.10)

20
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5.3.2 The Statistics of nR(t)-and hI(t)

H1

nR(t) + Acos(mt+¢1)
. ﬂ ’

A sin{wt+s) + n(t] o

nI(t) + Asin(wt+¢1)

Fig. 5.3: The 90° phase shift network.

.90°~1 TBN NTTn N

:5.3 MY

Referring to Fig. 5.3 one concludes that :

Gl + ¢q=0)
le 3 1 w>0
H, = LT
1 izt §q-0)
-le 2 ! w<d
3(q-¢)
le _ w>0
H = - .
“ | -iteg-9)
le w<0

where 99 is dn“general a function of w.

The spectral density of np is given by:

Spof0) = Sple) x [H (G0 % = 5 (w)

(5.11)

(5.12)

(5.13)



and similarly:

2 sianr

Spg(8) = Sple) = o (5.14)

in wyT
In the sequel the cross correlation of nR(t) and ﬁI(t) is found:

0w (5.15)

S (#) = Sple) by () Hpld0) = -5,

N1
From (5.11) and {5.12} it follows that:
* (]
HoHi = -js1gn(m) (5.16)

s 7§ ()
nInIE

{

-

—NOJ
Fig. 5.4: The plot of S {w)
n.n
I'R
.S (w) %9 A2xn 5.4 10y
"1"r
11}
H w,,T
. 2, H
o) N w, sin“(—=—)
_1 Jur _ 0% 2
RnInR(T) T 7n J. SnInR(m) e du = B Oyt
“®H 7

by (5.8) it folTows that:

R () ey P

nInR n UJHT (5'17) T



Tim R (¢) =0 hence:
el

>0

i

£ g (t) ng(t)} =R, (0) =0

"R
It follows that nI(t) and nR(t) are uncorrelated, and since
they are Gaussian they are also statistically independent.

The CTD system is basically a digital system. In the sequel it
is shown how to pass from the continuous autocorrelation and
corosscorrelation functions Rn(T) and Rn n (1) to their discrete
forms, At stage s the sampling frequency ~”fg sgtisfies;b

LS
W
H
f. = — (5.18)
se{l,2,...,l}
where s is the stage number.
v must satisfy:
r o= K (5.19)
fc
s
Using (5.18) and (5.19) and the convension R(z%—) = R(k), one
obtains that: Cs
ke 4571
() =R (K) = R (K) = oy 2 2 (5.20)
R | = = = . .
n Ny Nn in k1T4s-l




: . 2 | a5=2
R (k) = -R (k) - 2 sin k4

} (5.21)
Mg Nahy in 1Tk4s-2

Table 5.1 and 5.2 give tabulations of (5.20) and (5.21)

Gl
=)
nfro
=

2

- - 2 _ 3 2
Table 5.1: Tabulation of Rn(k)/cin = RnI(k)/oin = RhR(k)/cin

2 2 2
R(KY oy = RnI(ky6in = RnR(k)/a1n Ye Y10 5.1 Y

k ’ i !
0 1 2 3 4 b 6 7 8 9 10 11
2 2 2 2 2 2 2 2 2
1 Olx i7|3 % i 7 O { o | 57 | =
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0

. . 2
Table 5.2: Tabulation of RnInR(k)/Uin

R —— . R L
'RnInR(k)/oﬁn v n2¥7a0 :5.2 nvap



5.3.3 The Statistics of zR(N;1) and z(N-1)

Since the tone effects only the average of ZpsZy it is
assumed that the tone is not present.

In the sequel it is shown that zR(N-l) and zI(N-l) are
- statistically independent and have the same variance,

k=N-1
nR(k) A ZOR(N']-)
o (o) - x (1)
: Z(N-1

nI(k) /}/A .)I
2] C I
|
ae(l, §}

- Fig. 5.5: The filters and the multiplier
.7913M WwraaPAN ;5.5 110X
Let us make the following definitions:
n(k) & na(k) + Iny(k) (5.22)

Ciz(N-1) & Zp(N-1) + gz (N-1) (5.23)

Let h_i be the impulse response of the cyclotomic filter <.
It i$ shown that:E{(z°(N-1)} = 0 and that

2D} = EzP(N1)) - Bz B(N-1)3+ 25 Lzp(N-1)z,(N-1)) = O

hence:

E {27 (N-1)} = Efz

CN-D =Bzt (N1 (62




and

E{zp(N-1) zy(N-1)} =0 - | (5.25)
From (5.24) and (5.25) it follows that zR(N-l) and zI(N-l) are
uncorrelated and have the same variance.

Now to the proof that E {z2(N-1)} =0
N-1 . N-1

E (201 = ECz hoM .
i=0 2=0

N-1 N=-1
= ¥ I hihau

i=0 =0

N-1-3 N-1-L g fn(N-1-1)n(N-2-1)}

Etn(pIn(a)} = E{[np(p} + dn;(p)] [ny(a) + np(a)]}

E {np(pIng(a)} - Etny(p)ny{a)y

+

J[Etng(pIn (gl + E{n (p)np(q}] =

it

R,(p-a) = Ri(a-p) + J[R, I(q-p) + R, I(p-q)] =0

X X

The result follows using (5.20) and (5.21).
. 2 . . )
Using (5.24) Oyt 1S defined by:

2 -
out

2 . . .
Next Sout 15 found,.51nce.

o E {2 (N-1)} = E(z,P(N-1)) (5.26)

2(N-1) Z'(N-1) = ZB(N-1) + 2 %(N-1)




hence:
2 ) *
Sout = RE{z(N-1)z (N-1)} (5.27)

2 N-1 N-1
= wle=d, ¥ Nula *
Pout T LE B g M) N g (8100
i=0 2=0 |

N-1 N-1

=1 3 b hih2

i=0 2=0

oML (NI 140 (Neden) )

1

En(p)n’ (a)} = E[ng(p) + dny(p)] [np(a) - dni(a)]}

= E{ng(p)np(a) + ny(pIny(q)} +

+

JEL -ny(a)ng(p) + ny(pIng(a)}

2[R, (p-a) + RnInR(p~q)]

] = % I Ne 1w MN-1-2 . . .y
h,h:o (o*) [R (2-1) + jR (2-1)] (5.28)
i=0  g=0 % n g ]

2 since by (5.20) and (5.21)

R (k) =0 for all k and R_ (k) = &(k) - o, °
nI no.

nr

For s=2,3 it is simple to find Sout

hence for all the filters (:




_ N-1
2 2
Sout .= O4n © hy? for $=2,3 (5.29)
- i=0
For s=1, °out2 is found only for the filters operated at stage I;

,C (Jk), Ce and CZ(J ). (Refer to Fig. 4.9%a).

For Cl (a=1)

he (1) =1 ¥ ,using (2.28) and the facts that R, (k) is symmetric,
23

R (k) is antisymmetric and Rn(k) = 0 for k even it follows that:

nInR
N-1 N-1
2 . L
Sout R £ Rfe-i) =
20 =0
N-1 |
2, N
Sout ; ¢ = NR(0) + 2 = R (1) (N-i) (2.30)
1 -
i=1
i odd

For C2(J ) 0=]

he (i) = (-1)-i usihg (5.28) -t! follows that:

2
N-1 N-1
2 ., i Loy N=1-i, . \N-1-2 .
GOUt ’CZ(Jk) = X z | ('1) ("1) (J) ('J) |Rn(2"'1) +
2=0 -0 '
Gl =T 5 ()]
+ 2-4)| = = z (=J " Y -
R [R.(2-1) + R (2-1)] (5.31)
IR =0 2=0 n "%
N-1

S ol — Outzcz-—z {-5)P[Ro(p) + Ry (PI] - [N- o] (2.32)

p=-(N-1)



X
From (5.20) and (5.21) 1t follows that R (k) = (-1) 2 R (k)
, IR,
for k odd.: Using this fact and some more manipulations on
(2.31) one obtains that: '

2 I - 2 o .:r‘
ut °* C; out ;Cz(Jk) (5.33)

(5.32) was also confirmed by a computer program for N=6 to 12.

*

For C6: a=]

hCG(i) = {;1,1,0,"1,"‘1, 1,1,0,"1,"19--- }
Using (5.28) ft'follows that:

N-1 M-l
= 1 % hh,[R (s-1) + jRnInR(z-i)] (5.34)
i=0  2=0

2
%out 3 Cg

(5.34) was computed by a computer program for N = 6 to 12.

Ky,

a=j

For C3(j

hcs(i) = {1,"1,0, 1,"‘1,0, ----- }
from (2.28) it follows that:
N-1 N-1

“ut , Cy(3¥) = T % hihyd

N2 R (4-4) + 3Ry (1-1))
1=0 2=0 '

(5.35)




(5.35) was found by a computer program for N=6 to 12. It
turned out that for N=6 to 11 ¢

. 2
Table 5.3 gives Oout /Gin

stage 1 for N=6 to 12.
program using (5.30), (5.31}, (5.34), and (5.35).

2

I

out ,C; = Yout ;

2

ok
C4(37):

for the four filters operated at-
The results were obtained by a computer

E 6 7 8 9 10 11 12
G 11.34759|13.45106(15.3726 |17.29422 |19.3577(21.4202]23.3674
C3(j }| 7.39531] 9.07436|11.5901 |11.59012 [13,1277!15,502 |15.502
Ce 7.39530| 9.07435{11.5901 |11,59012 13,1277 15.502 15.502
C2(jk) 11,34758} 13.45105|15.3726 17.2§119 19.3572121.4202| 23,367
Table 5.3: Uoutz/uinz for the filters operated at stage I.

.1 a%wa o27yminn oraaphn Way cout?‘/c.in2 5.3 n'7ap
For stages II and III using (5.28) one obtains Table 5.4. From

(5.29) follows that I

ut

;C

“out ; C

2 ) t

(55




F " 6 7 8 9110 11
C1 6 7 8 g]110 |11
Cy 6 7 8 9 10| 11
Cq 4 5 6 6 / 7
C6 4 5 6 6 7 7

2

Table 5.4: Uoutzlcin (foﬁ the filters operated at stage II

) 2 .. _ 2 .
and IIJ (Gout , C7 0out ;C(jk)).

IIT-1 IY o=a%wa oe%yoinn o733pha OH1ay Uoutz/oinz :5.4 n71p

ooyt ,C = %out ,C(jk))

Next the statistics of VQRZ(N-l) + zIz(an) is found when a

tone is present.
k=N- 1|

VR(k1;+:"h(kl <
— : >

. |

' |

| |
A

|

|

@)k

vi(k) + gk} loefod

Fig. 5.6: The final processing unit.
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vR(k)=Acos(%k+¢1) (B, 36a)

j
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vI(k)-= A sin‘(%ﬁ?-k + ¢1)

i

define v(k) by:

A .
_Y_(k) - VR(k) + JVI(k)
Define uR(k) and-UE(k) by:

ug(k) & vp(k) + np(k)

up(k) = vy(k) * ny(K)

Also define u{k) by:

u(k) = v(k) + n(k)

n{k)was defined by (5.22).

Referring to 5.3.21t follows that:

uR(k) mN[vR(k), UTnZ]

u(k) N (K), oin’]

~ N means Normally distributed.
at each input (real, imaginary).

{5.36b)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

is the power of the noise

The filters are operated at stage s for N samples, hence:

N-1

=0

zR(Nliiﬁﬁwwéwmﬁiﬁé"T&N'l’ggINli-m)}W"”W"m”"ﬁ”ﬁ”(Ejiéé)



N-1
zfi-1) = = b, Ingal1mg (V1020 (5.43b)
=0

from. (5.43) it follows that zR(N-l) and zI(N~1) are linear
combinations of Gaussian variables, it follows that
zR(N-l) and zI(N-l) are Gaussian:

N-1
z(N=1) = 3z h a1 F u(n-1-n) (5.44)
2=0

Define z by:

= |z(N-1)|= VQRZ(N-13_+ z,%(N-1)

define Xp and Xy by:

N1
xR(N-l) = % hu_Re {uN"l"ngn_1_g)} (5.45a)
=0
N-1
xp(N-1) = 5 h, Iy no1ag)y (5.45b)
2=0 ’
define x by:
x = [x(N-1)] = VxgB(N-1) + x 2 (N-1) (5.46)
then:

M1 o[-0, 00 51 (5.47a)



2 (N-1) N (x;(N-1), o (5.47b)

2
out J

where o 2 is given in tables 5.3 and 5.4.

out

Since zR(N~1) and ZI(N"l) are statistically independent, it
follows that z is Rician distributed (13, 14).

(13) the distribution of z is given by:

2

F(z) = g @ M 1) (5.48)
out out

By

f(zzfﬁz)/Zo

where x is given by {5.46).

Io(x) is the modified Bessel function of order zero, given by:

2 - on
_ 1 X C0s®9 _ X
IO(X) = E_[ e de = = 7 (5.49)
0 2 (n1)
0 n— h

The Raileigh distribution is a special case of the above
with x=0 (IO(O) = 1), i.e. no signal present:

Z
) 20 &
f(z) = 2—-7-—2— e u(z) (5.50)
ma

out

u(z) is the step function.

The:Railtelgh distribution has the following properties:

m, 2, _ 2 2 _ T 2
J%; E{z7} = 20out » 0, 7 (Z"EJ Sout

E{z} = (5.51)

Sout



5.4

6.4.1

.

E _ v = X/o
06T a=0(Rayleigh) out

i , 21 _ 2, 2
P . ,”a‘[z = X /(Zcout )
9-5 I~ a=1
O:41 =2 a= a=6

0:3F
. [e3

0.2

0.1

Probability Density Function f(v)

L R e A R
v
Fig. 5.7: The Rician density function.
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2 *
For’5—-—§ >> 1 (>10db) the Rician distribution can be

200yt |
approximated by the Gausian distribution.

Error Analysis at Stage s

At each stage four pairs of filters are operated. The filters
output z is considered over an interval 0 of length »/2, In
each stage the question is in which of the four pairs of filters
is the tone present.

- Error Analysis at Stage I

Fig. 5.8 gives the plot of the four pairs of filters
at stage I.-
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91 is assumed uniformly distributed, i.e.:

g[05] (5.52)

There are two kinds of errors:

a. Errors associated with C1 in the interval 0<el<ﬁ/4

a.l The output of the pair of Cl's should have passed TR1
in the interval 0<81<w/8 and did not pass it, because
of the noise,

a.2 The output of the pair of Cl's was expected not to pass
TR1 in the interval w/85p1<ﬁﬂland passed it because of
the noise,

-

b. Errors associated with 86, 03(jk) in the interval w/8<61<3ﬁ/8.

b.l The output of C6:iC had to be bigger than the output
N . , 6
offC3(jk):zCS(jk5, in the 1interval w/8<0y<n/4, but because
of the noise the contrary happened.

b.2

ZC6 had to be smaller than Ze jk) in the interval ﬁ[4<@1<3ﬁ/8 .

3
but because of the noise the contrary happened,

¢. Errors associated with Cz(jk) in the interval w/4<91<w/2.

¢.1 The output of Cz(jk):zC (jk) was expected not to pass TRl
in the interval w/4<31<§w/8 and passed it because of the
noise.

c.2 ZCz(jk) should have passed TRl in the interval 3n/8<el<m72

‘but did not pass it because of the noise.

Another point has to be mentioned, if an error of any of the types

a to ¢ occurs in a neighbourhood of the points {%ﬁ%yg%a%} of



bandwidth Eé%—(s~1/2) where 1/2<g<l |
-The error will be corrected by the filters at the last stage
and the frequency found will be whithin the permitted resolution.

The permitted resolution is taken to be %ég-ﬂ i

Calculating the Probability of Detection Error for C, and Cz(jk)

TR1 \\\\ET\\\

- 0
|
o
Fig. 5.9: The amplitutde of the output of the pair Cl.

.C1 0°31DBA AT DN?X? 79 NTID?78BKR :5.9 117X
Let Pel(el)lc1 be the probability of detection error at 8y

{stage 1) constrained to Cl“
define A and m by:

a8 |x=TRL | (5.53)

mé 4 (5.54)

The distribution of 'z  is shown in Fig. 5.10.
| 1
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Fig. 5.10: The distribution of ”:zc .
1
In either = (a) or (b) the probability of detection error
is given by the shaded area.

(-x%/2)

Péléel)Icl = V%' S e dx (5.55)

(5.55) can be expressed more compactly by:

: Pe1(91)| C; =% erfc(m/V2) (5.56)

Fgr Cz(jk) one obtaines the same results as for C1 since

Uout;(11 Sout ,Cz(Jk)'

Calculating the probability of detection error for Csrand
gs(jk) in_the interval w/8<¢ <u/4.

266(91) is compared with ?Ca(jk)(gl)'

) -
\\ 01 [g» 7]

Fig. 5.11: Graphical presentation of the comparison of Ze and Ze (.k)
| - 6 3\ s
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Referring to Fig. 5.11 the point B corresponds to
[x s Xe S k)(e )] , i.e. no noise is present.
An rror occurs 1f [z, (e ), ZCB(jk)(ell]iis’in.the

shaded area,

Assuming that 20 and Ze (jk) are statistically independent.

This assumption is based on the fact that z. and z .ky cover
, Ce C4(37) =0

different frequency bands.

A detection error occurs if:

ZC6(91)< ZC jk)(el).’ 616[‘%‘ ’ %[T‘]

3

Ze (91) -z .k (91)
d = —0 39 (5.57)

V2

define m by:

m= - (5.58)

hence:

Ky _ 1 /2 -
Pe;(61)| Cgs C4(37) = 7 j el =X72) gy
m
= % erfc (m/V2 ) (5.59)

Now—the average probability of detection error-at stage 1, Pe
can be computed.





