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ABSTRACT

The paper addresses the problem of optimally estimating
(in the ML sense) the pitch of each of several speakers
talking simultaneously. This information is needed in sys-
tems which perform co-channel speech separation. We pro-
pose a multi-pitch model which is used in conjunction with
an EM-based iterative estimation scheme. In addition, the
pitch period of each speaker is allowed to vary linearly in
the analysis interval, thus offering improved co-channel
speech separation. The proposed algorithm is shown to
outperform standard pitch detection algorithms, in detecting
the pitch of simulataneous speakers.

1. INTRODUCTION

Degradation of speech intelligibility due to noise, par-
ticularly when that noise is the voice of another speaker, is
arecurrent problem in many contexts, for example automatic
speech recognition systems and hearing impaired persons.
Another recurrent problem is cross-talk over communication
channels. Most of the intelligibility loss is due to the voiced
portions of the interfering speech [1]. It has already been
shown [1-5] that intelligibility may be improved by speaker
separation or interference suppression algorithms.’

Several approaches to the speaker separation problem
have been proposed [2,3 and references therein], all capi-
talizing on pitch differences between the speakers. The
crucial and most difficult part is the accurate estimation of
pitch for each speaker directly from the single input, without
a-priori information. Another problem is the smearing of
spectral harmonics due to varying pitch. Since relatively

! We make the distinction between speaker separation algorithms,
which can exploit the pitch of both the desired speaker and the
interferer, e.g. [2,3], and interference suppression algorithms
which exploit only the pitch of the interference, e.g. [4,5].
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long frames are needed to effectively separate speakers
with close spectral harmonics, even relatively slow varia-
tions in pitch cause widening of the harmonics, especially
the higher ones. Most works, e.g. [2,3], try to cope with
this problem by letting each spectral harmonic deviate from
its ideal shape and frequency.

The approach taken in all of the previous works is either
to assume that the pitch contours are known a-priori, or
exploit one or even several of the many standard single-
speaker pitch detection algorithms (PDAs) available [6].
These PDAs generate a list of pitch candidates, which are
transformed into pitch contours by pitch tracking algorithms.
However, since the underlying model of a standard PDA is
that of a single speaker [6], this approach is not optimal
when more than one pitch is present, e.g., when both speakers
are voiced. The main difficulty is in estimating the pitch of
the weaker speaker.

We propose an optimal, yet efficient, Maximum Likeli-
hood (ML) procedure for the simultaneous estimation of
the pitch for two or more speakers, based solely on the
single co-channel speech signal. Unlike previous works, a
multi-pitch model is assumed, and the approach is extended
to estimate the pitch rate of change for each speaker. The
signal is represented as the sum of quasi-periodic signals,
where the pitch period is allowed to vary linearly within
the analysis window. Efficient solution of the multidimen-
sional estimation problem is facilitated by an iterative
scheme (depicted in Fig. 3 for the two speakers case) based
on the Estimate-Maximize (EM) algorithm [8,9]. The ML
processor and the signal decomposition functions are de-
rived and shown to be a time-varying comb filter, realized
by a time-invariant comb filter, preceded by appropriate
time warping and followed by its inverse. Estimation of
the pitch period and its rate of change is done by adjusting
the time-warping function to maximize the energy of the
(inverse) time-warped comb output. In a special case of an
EM separation scheme (Fig. 3), each of the composite



comb filters operates on the residual signal of the other.
Each speaker is time-warped separately and independently
of the other speaker. The warped signals have a constant
pitch and thus the harmonic smearing problem is avoided,
allowing the use of longer analysis frames and enhancing
the pitch detection. Finally, voiced/unvoiced decisions can
be made by comparing the energies at the input and output
of the composite comb filters. We will henceforth refer to
the scheme of Fig. 3 as the Multi-Pitch Detection Algorithm
(MPDA).

2. THE SINGLE PITCH MODEL

The deterministic model we use for voiced speech of a
single speaker is that of a quasi periodic signal, i.e., a
strictly periodic signal (inverse) time warped by an invertible
function. The model is given by
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where {C,} are time-invariant Fourier coefficients, §(t)
is an invertible warping function, L(?) is the number of

pitch harmonics in the analysis bandwidth. The model pa-

rameters are denoted by @ and given by ¢ and {C, },{L:y}.

The derivative of the warping function, £2(¢), represents
the instantaneous pitch frequency in radian/sec and thus it
is constrained by the feasible range of human pitch.

Consider a given voiced speech signal
x(t) = s(t) + v(r) where s(z) is the model [1] and v(¢)is a
noise process representing modeling errors and- additive
noise. We assume that v(¢)is a zero mean additive white
Gaussian noise (AWGN) process uncorrelated with s(z). It
is well known that Maximum Likelihood (ML) estimation,
in the case of AWGN, is equivalent to Least Squares (LS)
estimation. The LS problem is then,
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where w is a non-negative window function with support
on (-T/2,7/2) and s, is a periodic signal whose Fourier
coefficients are {c,}. Alternatively, (2a) can be posed in
the warped time domain & = ¢(¢): Defining,

wu, ¢) & we”w) ¢ (3a)
i(u, ¢) & x(¢7(u)) (3b)
(2a) becomes
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Although (2a) and (4) are equivalent LS problems, in

the latter s, is independent of the warping function. Using
results from (7}, it can be shown that given ¢, the s, that
minimizes (4) subject to (2c) is given by

Y w(u+2rk)x (u+2nk)
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This is the output of a comb filter tuned to a nominal
pitch period of 27 and fed by the time-warped signal with
coefficients weighted by the time-warped window function
and the Jacobian of the warp.
Substituting (5) and (3) into (4), the minimization need
be carried out on the only remaining parameter, the warping

function. Let us now restrict ourselves to warping functions
of the form

12
u=¢(t)= ;o' + 2nPt (6a)
Q)= ¢(t)= at + 27 > 0 (6b)
0<a<Q(t)<h ; te (—%;] (6¢)

Substituting (5) and (6) into (4), we obtain a simplified
problem where the minimization should be made over a
suitable domain of 8 and @, which are the average pitch
and the pitch rate of change, respectively. In practice, we
first set @ = 0 , estimate a coarse 8 over a 50 to 500 Hz
range, and then estimate ¢ and 8 simultaneously using a
gradient based search, where f is now limited to some
neighborhood of the coarse estimate.

3. THE MULTI-PITCH MODEL

Co-channel speech is described by
We)=x,(t)+x,(t) =
51(t;Q1) + V(t)+ Sz(t;'Qz) +0,(t) (D
where x, and x, are the target and jammer speakers respec-
tively, 5, and s, are the quasi-periodic models as above for
the respective speakers with

6 f[az B, 50,1] 6, f[az B, so,z] &)}
andv,, v, are assumed to be zero mean uncorrelated AWGN
processes, each representing the modeling error of its re-
spective speaker and a portion of the actual additive noise.
The multi-pitch estimation problem requires the simul-
taneous solution of (4) for the parameters & and 8 of N
summed speakers. This is a non-linear optimization problem
in 2N dimensions. Since under the AWGN assumption the
LS problem is equivalent to ML estimation, we can apply
here the results of [9], where the given signal is decomposed
into its components and the parameters of each component
are estimated separately. The algorithm iterates back and
forth and uses the current estimate of the parameters to
decompose the given signal, thus improving the next esti-
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mate. Under some regularity conditions [8], convergence
to a stationary point of the likelihood function is guaranteed.

Applied to the multi-pitch detection problem, the signal
components are estimates of the individual speakers’ wave-
forms, so that the MPDA actually separates the speakers
while estimating their pitch. The regularity conditions of
[8] are met since with the model (1), all the signal compo-
nents are continuous with respect to their parameters. In
terms of complexity, the EM algorithm decomposes the
2N dimensional ML problem to N separate 2 dimensional
ML problems (4) which are solved iteratively. In the terms
of [9 ], the ML Processor solves (4) and the Signal Synthesis
is performed according to (1). Together, it is equivalent to
finding the warping function that maximize the energy at
the output of a cascade of a time-warp, a comb filter tuned
to 1 rad/sec, and an inverse time-warp.

In [9] the noise term is arbitrarily divided among the
decomposed signal components at each iteration. In the
special case where we assign the entire noise term to a
single decomposed signal, and rotate this assignment every
iteration, the parameters of each speaker are estimated
from the residual signal of all the other speakers. The re-
sulting MPDA scheme is shown in Fig. 3 for the case of
two speakers and warping functions of the form (6).

4. SIMULATIONS AND RESULTS

Although the MPDA may in principle handle more
than two simultaneous speakers, simulations have been con-
ducted with real co-channel speech of two speakers only.
A database was constructed from a subset of the DAM
database, sampled at 8 kHz and band limited to 3.2 kHz.
Speech from four speakers, two males and two females,
each speaking 7 sentences, was compacted by removing
silence intervals. The resulting speech duration was 50 sec-
onds. Another speech file was created by reordering the
speakers. A co-channel speech file was created by adding
the first speech file to an attenuated version of the second,
where the attenuation ranges from 0 to 20 dB. In the
terminology of [1], the Target-to-Jammer Ratio (TJR) there-
fore ranges from 0 to -20 dB, where the first speech file is
the jammer and the second is the target.

Reference pitch contours were made for each speech
file before they were summed, using the Super Resolution
Pitch Detector (SRPD) [10]. This PDA is highly accurate
and is able to track abrupt pitch variations because it com-
pares exactly two consecutive pitch periods. The SRPD
provided voice/unvoiced/silence decisions as well.

The MPDA was compared to three other standard PDAs
which are capable of detecting more than a single pitch.
These PDAs were modified to provide two pitch candidates
instead of just one, with the restriction that the second
candidate cannot be harmonically related to the first (i.e.,

half, double ,2/3 etc.). This feature is inherent to the MPDA,
since each pitch is estimated from a residual signal which
has spectral nulls at the harmonics of the other pitch. The
PDAs used were the well known Cepstrum (CEP) [6], the
Harmonic Product Spectrum (HPS) [6] and the Pseudo Max-
imum Likelihood (PML) [6,7] PDAs. The test data was
processed by the three PDAs and the MPDA. Trying two
types of windows (Hamming and Blackman) and a range
of window durations, we got the best results with a 60 ms
Blackman window. The analysis bandwidth was 3.2 kHz.
Each PDA supplied two pitch candidates. The MPDA almost
always converged within 2-3 iterations. In the error analysis
that followed, only frames where the SRPD labeled both
the target and the jammer as voiced were considered, totaling
2409 frames.

Since for speaker separation purposes octave errors are
of secondary importance, the two pitch candidates of each
tested PDA were compared not only to the reference pitch
values but also to their half and double values. In order to
render the pitch errors invariant to octave errors, all pitch
values were transformed to an octave scale, same as the
one used in music. The procedure went as follows: First,
all pitch values were converted to an octave scale by the
operation log,(x/440) where x is the pitch value in Hz.
Then the triplet consisting of the first reference pitch joined
by its half and double (obtained by adding 1 and -1 to the
value in octaves) was compared to the two pitch candidates
of the evaluated PDA, and the absolute difference between
the closest pair was defined as the pitch error. The last step
was then repeated for the second reference pitch.

The results are depicted in Fig.'s 1 and 2 and Tables 1
and 2 for the MPDA, CEP and HPS PDAs. The PML PDA
results are not included as they are similar to those of the
CEP PDA. Fig.'s 1 and 2 show the percentage of frames
with pitch error (in octaves) exceeding the abscissa, for
TIRs of 0 and -12 dB, respectively. The vertical arrow
indicates a pitch error of 0.189 octave, equivalent to 1ms
at an average pitch of 140 Hz, and classify the pitch errors
to gross and fine. Tables 1 and 2 show the percentage of
gross errors and the RMS of fine pitch errors (in octaves),
calculated for TJRs of 0 and -12 dB, respectively. It is
evident that the MPDA consistently outperforms the other
PDAs. Its error distribution is better, both for fine and
gross errors, and for both TJRs.

For TIR from 0 to -12 dB, when the pitch values of the
speakers come within 5% of each other, the standard PDAs
tend to detect them as one value while the MPDA can still
distinguish between them to the point where they are only
1.5% apart, although with a somewhat slower convergence
rate.

In another experiment, three analysis bandwidths of 1.6,
3.2 and 4.8 kHz were tried. It was found that increasing
the bandwidth benefitted all the PDAs and especially the
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MPDA, in terms of better detection of the weaker pitch
and improved discrimination of close pitch values. The
MPDA is able to make better use of the increased bandwidth
primarily because of its time-warping capability which
minimizes the smearing of the higher pitch harmonics.

The MPDA was integrated in a speaker separation sys-
tem. It considerably improved its performance and extended
its effective operation range in terms of TJR.

5. CONCLUSION

We presented a novel multi-pitch detection algorithm
(MPDA) which outperforms standard PDAs in a multi-
speaker environment. The MPDA has potential in improving
the performance of speaker separation and interference sup-
pression systems.

We believe that the next step should be the use of even
longer analysis frames in conjunction with a long-term model
for voiced speech which incorporates not only the pitch
variation but also the other non-stationarities of the signal.
This could improve the ability of the MPDA to distinguish
between close pitch values, and the ability of the speaker
separation system to separate close pitch harmonics. Pre-
liminary results of this approach are reported in a companion
paper in this conference.
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Table 1: TJIR=0dB

PDA || % Gross errors | RMS error
MPDA]l 3.4 0.037
cep | 11.2 0.051
HPS |i 14.1 0.066
Table 2: TIR =-12 dB
PDA || % Gross errors] RMS error
MPDAJl 9.8 0.046
CEP || 18.4 0.055
HPS || 23.8 0.070
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Fig. 3 - The MPDA EM based estimation scheme
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