
Chapter 5 

Hierarchical Interpretation of 
Fractal Image Coding and Its 
Applications 

Z. Baharav, D. Malah, and E. Kamin 

Many interesting features associated with iterated function systems and standard fractals seem 
to fade away as the fractal coding of images evolves. For example, the property of self­
similarity at different resolutions, inherent to fractals, does not show up in a simple form in 
the image coding problem. In this chapter we will demonstrate a hierarchical model for the 
fractal encoding of images, and we will use it to show that the properties of self-similarity 
at different resolutions, and the related notion of fractal dimension, exist in fractal coding of 
images. Moreover, applications of these properties will be given. 

The chapter is organized as follows: Section 5.1 reviews the formulation of partitioned 
iterated function systems (PIFS) coding. Notations and illustrative examples are also given. 
Section 5.2 presents the main result. It contains a theorem, relating the different resolutions of 
a signal to its PIFS code, and gives a hierarchical interpretation of this theorem. Section 5.3 

develops a matrix form of the PIFS code; a formulation which is needed for the applications 
sections that follow. In Sections 5.4-5.6 various applications are described: Section 5.4 de­
scribes a fast decoding method. Section 5.5 defines the important notion of the PIFS embedded 
function, and applies it to achieve super-resolution. Section 5.6 revisits the definition of the em­
bedded function, this time to examine different sampling methods. Conclusions are presented 
in Section 5.7. Finally, the proofs of the three main theorems appear in Addenda A, B, and C. 
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92 Chapter 5. Hierarchical Interpretations of Fractal Coding 

5.1 Formulation of PIFS Coding/Decoding 

In this section we discuss and show an example of a different formulation of PIPS coding and 
decoding. Also, we will refer to I-dimensional signals, and we will call them either vectors 
or blocks. Extensions to two-dimensions are immediate in most cases. The following notation 
will be used: vectors are in boldface letters (like a) and matrices are in bold uppercase (like A). 

Encoding 

The task of finding the PIFS code of a vector 1'0 is the task of finding a contractive transformation 
W, such that its fixed point is as close as possible to 1'0. Formally, this task can be described 
as follows. 

Consider the complete metric space (]RN, dOO), where: 

1. ]RN denotes the N-dimensional Cartesian product of the real numbers. Each point in ]RN 

is a column-vector of size N of real numbers. Thus 

X E]RN (S.1) 

2. doo is the metric defined by: 

x, y E]RN dOO(x, y) = max IXi - Yi I . 
i=l •...• N 

(S.2) 

The vector to be encoded is 1L0 E ]RN. We seek a transformation W, such that the following 
three requirements are fulfilled: 

1. W maps the space into itself: 

W ]RN -* ]RN 

V t-+ U = W(v) . 
(S.3) 

2. W is a contractive transformation: 

3 s E [0, 1) I V X, YE]RN dOO(W(x), W(y)) ~ s dOO(x, y). (S.4) 

These first two requirements define the set of allowed transformations, W E W. 

3. Being a contraction in a complete metric space, W has a unique fixed point fw E ]RN 

such that fw = W(fw) (Contraction Mapping Theorem 2.3). The third requirement is 
that W minimizes the distance between its fixed point fw and 1'0: 

(S.5) 

That is, 
(S.6) 
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Finding such a transformation W can be a very complex problem, since it involves a mini­
mization over many transformations. An approach to making this problem solvable is to restrict 
the number of allowed transformations ([45], [44 D. The W found this way may be suboptimal, 
but this is a compromise that one has to make in order to solve the minimization problem. 

Thus, we will restrict the allowed transformations W to be systems of M R functions Wi. 

Each Wi is further restricted to be of the form: 

]RD --? ]RB 

dm, 1-+ ri=wJdm )=aiCP(dm)+bi l B , 
(5.7) 

where: 

d - is a block of D consecutive elements extracted from v. It is called the domain block. dm, 

is thus the mi-th domain block in an enumerated list of all such blocks in v. The use of 
the subscript mi stresses the fact that the domain block dm, is mapped to ri. For now, no 
specific mechanism for extracting the blocks will be discussed. 

r - is a block of B < D consecutive elements of v. It is called the range block, and ri is thus 
the i-th range block. ri belongs to the image of W. 

cp - is a spatial contraction function which maps blocks of size D to blocks of size B . 

ai - is a scalar scaling factor, 
(5.8) 

bi - is a scalar offset value, bi E R 

IB - is a vector of size B of all 1 's. 

The three parameters (ai, bi , mi) are called the transformation parameters. 
By loosely using the union notation to describe concatenation of blocks, we can write: 

u W(v) 

MR 
W(v) U wi(dm), dm, E V. (5.9) 

i=1 

The length ofu, which is the result of concatenating M R range blocks of size B each, is therefore: 

N=MR ·B. (5.10) 

Moreover, the concatenation of range blocks can also be written (using ri(j) to mean the 
j-th coordinate of ri) as: 

u((i -1). B + j) = ri(j); i = 1, ... , MR , j = 1, ... , B. (5.11) 

Now the mechanism of computing u = W(v), when all the parameters describing W are 
known, can be described as shown in Table 5.1: 



94 Chapter 5. Hierarchical Interpretations of Fractal Coding 

Table 5.1: Algorithm for Computing the Transformation u = W(v). 

1. For i = I to M R : 

(a) Extract the dm, block from the vector v. 

(b) Compute 

ri = wi(dm) = aiCP(dm) + bi 18 . (5.12) 

2. Concatenate the range blocks thus obtained, ri, i = I, ... , M R, in the 
natural order, to get the new vector u. The length of the vector u is 

N=MR·B. 

The transformation W described above is called a blockwise transformation, the reason 
being evident from the computational algorithm. 

So far the discussion of the Wi'S was quite general. In order to make the discussion both 
more practical and lucid at this stage, we will make further restrictions and assumptions about 
the different parameters, shown in Table 5.2. 

The description of the PIFS code of a vector, namely, the parameters that define W, can 
now be summarized. The PIFS code is shown in Table 5.3. 

All other relevant parameters needed for decoding, such as D = 2B, Dh = B, N = MRB, 
and others, are derived from the PIPS code using the previous assumptions. 

The process of encoding, namely, the process of finding the MR triplets of transformation 
parameters (ai, bi , mi), is shown in Table 5.4. As stated, we seek to minimize dOO(#La, f), where 
#La is the original vector, and f is the fixed point of the sought transformation. 

Since, by the Collage Theorem, 

I 
dOO(#La, f)::s 1 _ s dOO(#La, W(#La)), (5.13) 

one actually tries to minimize the upper bound on the right of Equation (5.13), by minimizing 
dOO(#La, W(#La)) instead of dOO(#La, f). (Note that since s is the contraction factor of W, the 
factor l~s depends on W. This factor, however, is not taken into account.) Though this method 
will not necessarily lead to a minimum of dOO(#La, f), it is at present the most practical way of 
doing the coding. See [64]§4.4 for a statistical motivation for the minimization goal. Since W 
is a blockwise transformation, this minimization can be done in stages, as described below. 

The minimization process to be described consists of finding a W that satisfies #La ~ W (#La). 
Thus, #La is approximately the fixed point of W. Since W uniquely defines its fixed point, storing 
W (by storing the parameters that define it) defines a lossy code for #La. Note that in this case 
both the operated-on vector and its image by the transformation W are assumed to be #La. 

Therefore, both dmi E #La and ri E #La· 
This formulation is now demonstrated with a numerical example. Figures 5.1 (a)-(b) present 

a vector #La and its PIPS code. The PIFS is given in a table form. By performing the transfor­
mation described by the PIPS on #La, one can verify that in this example the vector #La is a fixed 
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Table 5.2: Parameters, restrictions, and assumptions. 

1. N - The size of the vector /La to be encoded is an integer power of 2. 

2. B = 2' - The size of a range block. B is therefore also some integer 
power of 2. 

3. D = 2B - The size of a domain block is twice the size of a range block. 

4. Dh = B - The value of Dh is defined to be the shift between consecutive 
domain blocks. Thus, the number of domain blocks is M D == (N ;;.D + 1), 
and each domain block is given by 

dm,(j) = v«mi - l)Dh + j), (5.14) 

mi = 1,2, ... , M D ; j = 1,2, ... , D. 

Note that the domain blocks are overlapping, since Dh < D. 

5. rp(.) - The spatial contraction function is defined to be: 

1 
rp(dm, )(j) == 2(dm, (2j) + dm, (2j - 1)), (5.15) 

for j = 1,2, ... , B. That is, rp(.) contracts blocks of size D = 2B into 
blocks of size B by averaging pairs of adjacent elements in dm, . 

Table 5.3: PIFS code. 

1. B - The size of the range blocks. 

2. MR - The number of range blocks. 

3. MR triplets of the transformation-parameters (ai, bi , mi). 

95 
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Table 5.4: PIFS Coding of /Lo . 

1. Store B in the code file. 

2. Store MR in the code file, where MR = N / B, and N is the length of /Lo. 

3. Partition /Lo into MR range blocks, as described in Equation (5.11), 

ri(j) = /LoW - 1) . B + j), (5.16) 

i = 1, ... , MR , j = 1, ... , B. 

4. Extract from /Lo the M D = (N ;;hD + 1) domain blocks, according to 
Equation (5.14) 

dl(j) = /Lo((l - l)Dh + j), (5.17) 

1= 1,2, ... , MD , j = 1,2, ... , D. 

5. For i = 1 to MR 

(a) Find the best parameters (ai, hi, mi), such that 

(5.18) 

is minimized. 

(b) Store the parameters (ai, hi, mi) in the code file. 

point of the transfonnation (namely, /Lo = W(/Lo», and thus the coding in this case is lossless. 
Indeed, as shown in Figure 5.1(c), the result of computing the first code-line, namely, WI, on 
/Lo, produces exactly rl. 

Decoding 

The process of decoding is straightforward, since it involves the finding of a fixed point of a 
contractive transfonnation W. This can be done by repeatedly iterating W on any initial vector 
until a desired proximity to the fixed point is reached [4]. 

In Table 5.5, the decoding of the PIFS code of Figure 5.1b is demonstrated, starting from 
an initial vector of all D's. 

Looking at the example in Figure 5.1, an important fact about the decoding (as well as 
the PIFS definition) can be observed. In the example, the PIFS code, with the prescribed 
B = BI = 4, resulted in a transfonnation Wi : ]R16 1-+ ]R16 with fixed point fl E ]R16. Suppose, 
however, that the value of B is changed to some other value than the one prescribed in the PIFS 
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~1.----------d2----------~·1 

I' dl '1' d3 '1 

I 23 121 117 119111 I 9 115 113 I 5 I 7 I 3 I 1 115 113 I 9 111 I 
I+-rl ----+1.11+. ----r2 ----.... ~1.---r3 ----+.11+. ----r4 __ 

Range-
block 
index 
i 

1 
2 
3 
4 

(a) 

Domain-
block 

Scale index 

ai mi 

0.5 1 
0.5 3 
0.5 2 
0.5 1 
B =4,MR =4 

(b) 

rl = 0.5· cp(dd + 12 = 

Offset 

hi 

12 
8 
0 
4 

0.5· cp([23, 21,17,19,11,9,15,13]) + 12 
0.5· [22, 18, 10, 14] + 12 

= [23,21,17,19]. 
(c) 

97 

Figure 5.1: (a) An original vector /La. (b) The PIFS code of /La. (c) An example of computing 
rl using the first code line in (b) and d l E /La given in (a). 

code, e.g., B = ~ B I = 2. We have thus created a new transformation, denoted here by W 4, 
which is clearly a contractive transformation in JRs. The decoding process of W! will therefore 

yield a fixed-point vector d of length N = N! = 8, which is half the length of fl. Thus, we 
conclude that the PIFS can be decoded in different spaces, yielding a different fixed point in 
each space. Through the remainder of the chapter, we will keep using the notation wq (and 
f q ) to denote the transformation (and fixed point) which results from the PIFS code when using 
B = qBI; where B = BI is the size of the original PIPS code range block corresponding to Wi 
and fl. In Figures 5.2(a)-(c), three fixed points of the same PIPS code (using different B's) are 
described, each one being in a different space -JR 16, JR8, and JR4, respectively. 

The exact relation between these different fixed points, and its interpretation, is actually the 
main subject of this chapter and is examined in detail next. 

Table 5.5: Decoding by iterations. 
iter I vector 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 12 12 12 12 8 8 8 8 0 0 0 0 4 4 4 4 
2 18 18 16 16 8 8 10 10 4 4 0 0 10 10 8 8 
3 21 20 16 17 10 8 13 12 4 5 2 0 13 12 8 9 
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I 20 112 I 4 112 I 
(a) 

I 22118 110 1141 6 I 2 114110 I 
(b) 

I 23 121 117 119111 I 9 115 113 I 5 I 7 I 3 I 115 113 I 9 111 I 
(c) 

Figure 5.2: Decoding ofthe PIFS code of Figure 5.1 with (a) B = 1 , (b) B = 2, and (c) B = 4. 

5.2 Hierarchical Interpretation 

As described in the previous section, each value of B leads to a different transformation with a 
different fixed point. The following theorem describes the relation between two different fixed 
points that arise when B is halved. 

Theorem 5.1 (Zoom) Given a PIFS code that leads to WI with B = BI, and to w4 with 
B = BJ!2: 

1. Zoom-out: Letfl be the jixed point of WI. Thenthejixedpointf4 ofw4 is given by: 

(5.19) 

where NI == MR . BI. 

2. Zoom-in: Letd bethejixedpointofW1. Thenthejixedpointfl of WI is given by: 

I 1 1 
f ((i -1)BI + j) = aiP«mi - I)Dh2 + j) +bi , (5.20) 

i = 1, ... , M R , j = 1, ... , BI , 

where Dh 1 == D~l =~. 

The proof of the theorem is given in Addendum A at the end of the chapter. 
An interpretation of the theorem is as follows: In order to compute each element of d 

from a given fl, one has to take the average of two adjacent elements in fl, as described in 
Equation (5.19). On the other hand, in order to compute fl from a given d, one follows 
Equation (5.20), which is similar to computing WI itself (compare with Equation (5.12». 

Theorem 5.1 establishes a relation between the pair fl and d. The same relation is carried 
over to the pair d and d , 

1 1 { II} f 4(j)="2 P(2j)+P(2j-l) , (5.21) 

1 1 1 

P«i -1)B! + j) =aif4«mi -l)Dh4 + j)+bi . 
2 

(5.22) 
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The relation also holds for the pair f~ and d , and so on. The collection of fixed points can thus 
be described in terms of a hierarchical structure, as was shown in Figure 5.2. This structure is 
a pyramid of the PIFS fixed points, with flf2P comprising the p-th level of the pyramid. Thus, 
f l /2 P has NJ/2P elements, and fl corresponds to p = 0 and is oflength N I • The level with the 
coarsest resolution (Figure 5.2c) is called the top level. 

The relations between two adjacent levels in the pyramid can be summarized as follows: 

1. In order to go up the pyramid, from level p to level p + I, the operation is as follows 
(zoom-out): 

f 1/21'+1 (j) = ~ {f1 /2P (2j) + f l/21' (2j - 1)}, 

j=I, ... ,NI/2 p+l , 

and is identical to Equation (5.19) for p = O. 

(5.23) 

2. In order to go down the pyramid, from level p + 1 to level p, the operation is as follows 
(zoom-in): 

1/21' 1/2p+1 1/21'+1 f «i - 1)B1/2P + j) = aif «mi - I)Dh + j) + bi, (5.24) 

i = 1, ... , M R , j = 1, ... , B1/2p, 

where Dh 1121'+1 == Dh I /2P+1 = BI/2 p+l . Here, Equation (5.20) is obtained for p = O. 

An intuitive understanding of the process can be gained by noting that the domain blocks of 

fl, after contraction, are actually blocks which are contained in d. Formally, this can be shown 
by writing down the expression for the I-th element in the contraction of the mi-th domain block 
off l (Equations (5.14)-(5.15)): 

I 1 { I I } rp(dm, )(/) = 2" f «mi - I)Dh I + 21 - 1) + f «mi - 1)Dh I + 21) (5.25) 

IEl, ... ,BI. 

According to Equation (5.19), the right-hand side is exactly d «mi - 1)Dh J/2 + I), and if we 
! ! . I 

further denote, as before, Dh 2 == Dhl/2 anddm, 2 as the mi-thdomam block offz, we conclude 
that: 

lEI, ... , BI . (5.26) 

The question arises: what is the smallest size of the top level such that the above relations 
between two adjacent levels still hold? This is answered by the following corollary. 

Corollary 5.1 Letfl E]RN be afixedpoint ofa given PIFS, and let B = BI = 2/, D = DI = 2BI, 
and Dh = BI. Then, the number of levels in the pyramid of PIFS fixed points is 

(5.27) 

leading to a top-level size of N /2/(= MR). 
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Proof: Ascending one level in the hierarchy means halving the size of the range block B. Since 

this size must be at least 1 in order that the PIFS can be applied, the corollary follows. • 

Table 5.6 summarizes the notation. 

In some cases, the top level is directly derivable from the code. For example, if the coding 
procedure is modified so that domains are orthogonalized with respect to DC (monotone) blocks, 
as in Chapter 8, then the top level is the DC value associated with each range block. Further 
relation between this method and the method of Chapter 8 can be found in [65]. 

Table 5.6: Pyramid of fixed points: Notation summary. 
Level-num. Range-block size Num. of elements fixed point 

p B N f 

0 BI NI =MR ·BI fl 

1 BI/2 = BJ/2 NI/2 = NJ/2 f1/2 

log2 BI = I BI/BI = 1 NIIBI = MR fll111 

(top level) 

5.3 Matrix Description of the PIFS Transformation 

In this section, a matrix description for the PIFS transformation W described above is given. 
We assume that a PIFS code is given. This code includes all the necessary information for 
computing W, as described in Section 5.1. 

The transformation u = W(v) is composed of (Wi}~R, where each Wi operates on a domain 
block. The j -th element of the i -th range block of u is, according to Equation (5.11): 

ri(j) = u«i - 1) . B + j); i = 1, ... , MR ; j = 1, ... , B. (5.28) 

This element is, according to Equation (5.12), the result of transforming the appropriate domain 
block, as given by the PIFS code: 

(5.29) 

Substituting the definition of q; given in Equation (5.15) and using Equation (5.14) gives 

a· 
ri(j) = i (v«mi - l)Dh + 2j) + v«mi - l)Dh + 2j - 1)) + hi . (5.30) 

Writing the last equations in a matrix form for all the elements in u yields: 

u=Fv+b, (5.31) 

where F and b are described below: 
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• b - An N x 1 offset vector. It is a block vector, composed of (N / B) basic blocks of 
length B, 

where, 

is a B x 1 vector. 

• F - An N x N transfer matrix, given by : 

In this decomposition of F we have: 

N 
i = 1,2, ... , B 

(5.32) 

(5.33) 

(5.34) 

• D - A domain-location matrix. The product !D. v plays the role of rp(dm,), and therefore 
has a dual role: 

1. Extract dm, from v. 

2. Perform the spatial contraction operation on dm, . 

D is a block matrix with a structure that is best demonstrated by the example below. In 
this example d 3 is transformed to rl, d l to r2, and d4 to r3 

OB OB I DBxD I OB OB OB OB 

I DBxD I OB OB OB OB OB OB 
D= 

OB OB OB I DBxD I OB OB OB 
(5.35) 

NxN 

The matrix 0 B denotes an all-zero matrix of size B x B. The location of the B x D blocks 
DBxD is determined by the indices mi, whereas the spatial contraction is performed by 
its elements, as explained below: 

1. If domain block mi is transformed to range block i, then a block matrix DB x D would 
be positioned with top left element at 

((i - I)B + I, (mi - I)Dh + I)). (5.36) 
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2. The spatial contraction mapping is performed by DBxD , which has the following 
structure: 

I I 0 0 0 0 0 
0 0 I I 0 0 0 

DBxD = 0 0 0 0 0 (5.37) 

0 0 0 
BxD 

Namely, !DBXD maps blocks of size D to blocks of size B by averaging every two 
adjacent elements . 

• A - A scaling matrix. It is a block-diagonal matrix: 

LN 
(5.38) 

where 
N 

i = 1,2, ... , B . (5.39) 

The matrix IBxB denotes the B x B identity matrix. If, for a certain code, aj = a for 
every i, then A = aINxN • 

The size of each of the matrices F, A, D, as well as the size of the vector b, are seen to 
depend directly on B. Indeed, as we have already seen before, changing the value of B results in 
a different Wand therefore leads also to different matrices, though their basic structure remains 
the same. For example, the matrix form of the PIFS code described in Figure 5.1 (b) with B = 2 
is described in Figure 5.3. 

5.4 Fast Decoding 

A fast decoding method, which we call hierarchical decoding, follows directly from the hierar­
chical interpretation of the PIFS code. In this method, one begins by computing the top level. 
This can be done either by computing it directly, when possible (for example, with the method 
of Chapter 8), or by iterating the PIFS with B = 1, that is, by applying W to an initial vector 
of size MR until a fixed point is reached (or closely approximated). Then, one follows the 
deterministic algorithm Equation (5.24) to advance to a higher resolution. The process of ad­
vancing to a higher resolution is repeated until the desired vector size is achieved. This method 
is compared below with the conventional iterative decoding method [48], where the iterations 
are done on afull-scale image. The computational savings obtained in using the hierarchical 
decoding method stems mainly from the fact that the iterations are done only in order to find 
the top level, which is a small-size vector. 
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A = 1· Isxs , b = [12, 12,8,8,0,0,4, 4]T 

[ ~ 1 0 ~ ] 0 0 0 0 
0 1 0 0 0 0 d\ ---+ r\ 

0 0 0 0 [ ~ 1 0 ~ ] d3 ---+ r2 
0 0 0 0 0 1 

D= 
0 0 0 ~ ] 0 0 d2 ---+ r3 

0 0 0 0 0 0 

[ ~ 0 0 0 0 0 0 d\ ---+ r4 

0 0 0 0 0 

Figure 5.3: The matrices A and D, and the vector b describing the PIFS code of Figure 5.1, for 
B =2. 

Computational Cost 

A detailed discussion of the computational cost, for both the I-dimensional (I-D) and 2-
dimensional (2-D) cases, is given in [2]. Here we concentrate on the simple I-D case, assuming 
a floating point processor (which means that addition and multiplication operations take the 
same time to perform). 

The following notation and definitions are used: 

top - the computation time of a summation or a multiplication operation. 

ttot - the total computation time. 

I - the number of iterations. 

In arriving at the following results, multiplications by t or ± were not counted (counting them 
shows even a greater savings in using the hierarchical decoding, because they occur mainly in 
the iterative method, when applying cp). 

With N = N\ denoting the input vector length and B = B\ the range block size, we have: 

• Iterative decoding - Referring to Equations (5.12) and (5.15), for a single iteration, the 
computation time is: 

N\ . [(1 + l)sums + Imult.s] = N\ . 3top . (5.40) 

Thus, the total computation time is: 

(5.41 ) 

• Hierarchical decoding - Recall that at the top level there are M R elements (by Corol­
lary 5.1). Hence, according to the result in Equation (5.41), we know the computation 
time needed to compute the top level. According to Corollary 5.1, there are log2(Bd 
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levels in the pyramid, excluding the top level, with NJ/2 P elements in the p-th level 
(p = logz Bl at the top level). Referring to Equation (5.24), we can compute the cost of 
transforming from the top level to f 1: 

log,(B,) ( N) N L 2P ~ • [Isums + Imult.s] = (Bl - 1)~2. 2top ~ Nl . 4top. 
p=1 Bl Bl 

(5.42) 

The total computation time is therefore 

h ~ (31 ) ttot ~ N 1 · Bl + 4 . top. (5.43) 

Thus, the ratio of computation times is : 

Q == t?ot = (* +4) = (~+~). 
tiot 31 Bl 31 

(5.44) 

It is seen that the larger the values of I and B1, the more advantageous the hierarchical 
decoding method is. For example, for a typical case in which I = 8, Bl = 8, one gets Q = 0.3. 

In [2] it is shown that for the 2-D case (assuming BIz» I), 

8 
QZ-D=M' 

Thus, the savings can reach more than an order of magnitude. 

5.5 Super-resolution 

(5.45) 

The subject of resolution is inherently related to the discretization of a function of a continuous 
variable. The process of discretization is called sampling. In the following definition we define 
a specific method of sampling. 

Definition 5.1 Given afunction G(x) E UJO [0, I], define Gr(i) by 

Gr(i)==r ( G(x)dx, 
J~ , 

i = 1, ... , r, (5.46) 

which is the function G(x) at resolution r. We say that Gr,(i) is finer (i.e., having higher 
resolution) than Gr,(i) (which is coarser) ifrl > rz. 

The following theorem introduces the new notion of the PIFS embedded function and relates 
it to the PIFS fixed point. 

Theorem 5.2 (PIFS Embedded Function) Given a PIFS code, there exists a unique function 
G(x) E L OO [0, I] such that a vector VN E ]RN is a fixed point of the PIFS iff it is equal to the 
function G(x) at resolution r = N, V N, i.e., 

j = 1,2, ... , N. (5.47) 

Thefunction G(x) is called the PIFS embedded function. 
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The theorem is proved in Addendum B. 
In Figure 5.4, an intuitive demonstration of the PIFS embedded function theorem is given. 

The PIFS is the one described previously in Figure 5.1. Its fixed points, for B = I, B = 2, and 
B = 4 are shown in Figure 5.4 as functions of a continuous variable x E [0, I]. For example, 
the fixed point using B = 1 is the vector [20, 12,4, 12], which has N = 4 elements. Thus, the 
fixed point is drawn as a piecewise constant function: 

(5.48) 

The embedded function G(x) is also shown. One easily sees that the fixed points "approach" 
the PIFS embedded function. Moreover, it is seen that the value of each function, in each of 
its intervals, equals the mean of the PIFS embedded function over the appropriate interval as 
described by Equations (5.46) and (5.47). 

8=1 8=2 

20 20 

10 10 

0 0 
0 0.5 0 0.5 

8=4 Embedded Func. 

Figure 5.4: Fixed points for B = I, B = 2, B = 4, and the corresponding PIFS embedded 
function. 

Super-resolution deals with finding a higher resolution of a given discrete signal [73]. For 
example, suppose that a vector vI with elements vl(i) = hN(i), i = 1,2, ... , N is given, where 
hN(i) is the unknown signal hex) E LOO[O, 1] at resolution N. The goal is to find a vector 
f2 of length 2N, which approximates the signal hex) at resolution 2N, namely, h2N (i), i = 
1, 2, ... , 2N. The process of transforming from a given resolution to a higher one is also called 
zoom-in (or simply zooming). 

The hierarchical representation suggests a simple method for finding higher-resolution rep­
resentations from a given resolution. Given VI, we can find its PIFS code. This PIFS code 
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will be, in general, a lossy one. Thus, its fixed point fl will only be an approximation of Vi. 

The PIFS code enables us to build a hierarchical structure, which we called the pyramid of 
fixed points. The PIFS code also gives us an algorithm for relating two adjacent levels in the 
pyramid (zoom theorem; Equations (5.19)-(5.20)). Thus, after finding the PIFS code and fl, 
all that is needed in order to get a vector f2 of length 2N is to apply the zoom-in algorithm in 
Equation (5.24) to fl. The vector f2 is an integral part of the pyramid of fixed points and is the 
fixed point of the PIFS code when using B = 2B I. This vector can be used as an approximation 
of the higher-resolution representation, namely, an approximation of h2N. 

The Fractal Dimension of the PIFS Embedded Function 

We have already introduced the PIFS embedded function. It is of interest to note that its fractal 
dimension can be bounded directly from the matrix representation of the PIFS code, as described 
by the following theorem (see also [5]). 

Theorem 5.3 (Dimension Bound of the PIFS Embedded Function) : Given a PlFS code 
W, let F, A, D, and b denote its matrix representation, using B = 1 (see Section 5.3), such 
that 

W(v)=Fv+b= (A~D)V+b. (5.49) 

Let G(x) denote the related PIFS embeddedfunction. Thefractal dimension ofG(x) is V where 

1 :::::: V :::::: 1 + log2()..)' (5.50) 

and where)... is the largest real eigenvalue of the matrix (Aabs . D), and Aabs denotes a matrix 
whose elements are the absolute values of the corresponding elements in A. 

The proof of the theorem is given in Addendum C. 
The importance of the fractal dimension stems from the fact that it tells us about the nature 

of the super-resolution vectors (see [4] for a detailed discussion concerning fractal interpolation 
functions). By introducing certain constraints in the coding procedure (for example, on ~ and/or 
lai I ), one can change the fractal dimension of the resultant PIFS embedded function. Thus, 

the above-described super-resolution method results in fractal curves (vectors) with a fractal 
dimension which can be computed from the PIFS code and can be affected by the constraints 
on transformation parameters. 

An application of the super-resolution method is demonstrated in Figure 5.5, in which one 
sees the "fractal nature" of the interpolation. A vector of size NI = 256 serves as the original 
vector, namely, Vi. This vector was used to determine a PIFS code having a fixed point fl. The 
fractal dimension of the PIFS embedded function was found (Theorem 5.3) to be 1.16. This 
PIFS code was then used to find a vector f4 oflength 4· NI = 1024. The first 32 elements off4 

are shown ("+" combined with a dash-dot line) on the same graph with the linear-interpolation 
of the first 8 elements of vi ("0" combined with a dotted line). 

The following features of the interpolation are observed: 

1. The mean of each 4-elements of f4 is approximately equal to the appropriate element of 
Vi (a strict equality would hold if the coding was lossless, i.e., fl = Vi). 
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Figure 5.5: Super-resolution via PIFS code ("+" and a dash-dot line) versus linear interpolation 
( "0" and a dotted line) . 

2. The interpolation function , introduced by the super-resolution method, does not neces­
sarily pass through the given points of v' . Furthermore, if we try to compute f8, it will 
not necessarily pass through the points of f4 . 

3. Linear interpolation tends to smooth the curve, while the PIFS code interpolation pre­
serves the fractal dimension of the curve, which ensures the richness of details even at 
high resolutions. This feature is most evident when dealing with textures: while linear 
interpolation typically results in a blurred texture, the PIFS code interpolation preserves 
the appearance of the texture. 

Rational Zoom Factors 

After describing the method for achieving super-resolution, the following question arises: 

According to the described method, one can only get resolutions which are N, times 
a power of 2, i.e., N" 2N" 4N" .... Can one also achieve different resolutions 
as well, such as ~ N" for example? 

This question is addressed below. 
In the description of the decoding process of a PIFS code (see Section 5.1), the possibility 

of replacing the prescribed B = B, by a new value was suggested. In the construction of the 
pyramid of fixed points, if super-resolution is desired, the new value of B is taken as B2 = 2B ,. 
This yields a fixed point of length N2 = 2N, = 2B, MR. Suppose, however, that we choose to 
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take B = BI + 1, which we define as B(B,+I)/B,. This, in tum, yields a fixed point oflength 

(5.51) 

Similarly, taking B = B(B,+2)/B, = BI + 2 leads to 

(5.52) 

Pursuing the same reasoning, we see that we get a whole range of resolutions, quantized in steps 
of MR. These resolution levels yield a pyramidal structure, which we call a rational pyramid. 
Each level of the rational pyramid is a fixed point of the PIFS, and the earlier pyramid of fixed 
points is contained in this rational pyramid. 

For example, Figure 5.6(a)-(c) demonstrates the decoding of the PIFS code given in Figure 
5.1, with B = 4, B = 3, and B = 2, respectively. In this case, MR = 4. 

I 22 118 110 1141 6 I 2 114110 I 
(a) 

I 22 119118 111 112113 I 6 I 5 I 2 114111 110 I 
(b) 

I 23 121 117 119 111 I 9 115 113 I 5 I 7 I 3 I 115 113 I 9 111 I 
(c) 

Figure 5.6: Decoding with (a)B = 2, (b) B = 3 (approximated to the nearest integer value), 
and (c) B = 4. 

It is easily shown, by the use of Theorem 5.2, that given the PIFS code and some level 
of the rational pyramid, one can compute any other level of the rational pyramid, though not 
necessarily directly. For example, given the PIFS code and fl that corresponds to B = BI = 3, 
what is the algorithm for computing d which corresponds to B = 4? The method is to first 
compute f2 from fl and the given PIFS code, according to Equation (5.24). Here, f2 corresponds 
to B = 6. Then, compute f4 in the same manner, with r corresponding here to B = 12. Each 
element of d is now directly computable by averaging of every three consecutive elements 
from f4 (this follows directly from Theorem 5.2). The method is summarized as follows (see 
also Equation (5.46»: 

1. Compute r from fl and from the PIFS code, by twice applying Equation (5.24) (note 
that p can be negative). 

4 
2. Compute f'3 by: 

r1 (k) = ~(r(3k) + f4(3k - 1) + r(3k - 2», (5.53) 

k = (1, 2, ... , MR' (BI + 1», where MR' (BI + 1) = MR' 4. 
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5.6 Different Sampling Methods 

Let G(x) E L 00 [0, 1] denote a given embedded function of some PIFS code, and let gN(i), i = 
1, ... , N, denotes its sampling by integration at resolution N, according to Equation (5.46), 
i.e., 

i = I, ... , N. (5.54) 

As stated in Theorem 5.2, gN(i) is a fixed point of the corresponding PIFS, with a contraction 
function rp as defined in Equation (5.15): 

(5.55) 

Finding the PIFS code for gN with this rp would result in the correct PIFS (the one with 
embedded function G(x)), and the coding would be lossless. There could be cases where more 
than one PIFS code has the same fixed-point vector at resolution N, but these codes correspond 
to different embedded functions. Such cases are not of interest here, so we will not consider 
such situations in remaining discussion. 

Suppose, however, that now G(x) is sampled in a different manner, denoted point sampling, 
to create g~(i); 

g~(i) == G (i -1) ~ ) , i = 1, ... , N. (5.56) 

All the previous results will be shown to hold here too if we define: 

(5.57) 

meaning that rps is now also a point sampling operation. An earlier work on the subject can be 
found in [53], where a method to compute discrete values of a fractal function is discussed. 

Now, let us restate few of the previous theorems and definitions, for this case of point 
sampling (the proofs are omitted since they closely follow the previous ones): 

Theorem 5.4 (Point-Sampling Zoom) Given a PIFS code with rpS(d,)(j) == d,(2j -1), which 

leads to Wi with B = BI, andto wt with B = Bd2. Letthefixedpointsofthesetransformations 
he f I and d, respectively, then: 

1. Zoom-ont: 

j = 1, ... , M R(BI/2). 

2. Zoom-in: 
I " f «i - I)BI + j) = aif2«m, - I)Dh 2 + j) + hi , 

j=I, ... ,BI . 

where Dh4 == D/ =~. 

(5.58) 

(5.59) 

(5.60) 
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Definition 5.2 Let G(x) E L oo [0,1]. Define G:U) by 

G:(i) == G (U - l)~ ) , i = 1, ... , r. (5.61) 

G:U) denotes the function G(x) at point sampling resolution r. We say that G:\ (i) is finer (i.e., 
having higher resolution) than G:2 (i) (which is coarser) ifrl > r2. 

Theorem 5.5 (PIFS Embedded Function) 1 Given a PIFS code with rpS(dl)(j) == dl(2j -1), 
there exists a unique function G(x) E L 00 [0, 1] such that a vector VN s E ~N is a fixed point of 
the PIFS iffit is equal to the function G(x) at point sampling resolution r = N, i.e., 

j = 1,2, ... , N. (5.62) 

The function G(x) is called the PIFS embedded function. 

The importance of formulating and treating different sampling methods lies in the fact that 
the coding problem can usually be stated as follows: One has a model for a continuous signal, 
be it a voice signal, an image, etc. The model states that the continuous signal is of fractal 
type. This signal is then sampled, and the work of finding the code is performed on the discrete 
signal. 

As we have shown, the proper method for coding, namely, the method which enables 
finding the correct code, depends on the sampling method. So, given a model and the method 
of sampling, one can use the corresponding coding method. 

It is worth noting that the embedded function for both sampling methods is the same. This 
should not be surprising, since as N grows, g~(i) and gNU) approach each other, as seen from 
the definitions in Equations (5.56) and (5.54). 

5.7 Conclusions 

This chapter describes a hierarchical interpretation of the PIFS coding problem. Decoding the 
PIFS code at different resolutions results in a pyramid of fixed points. The ideas presented 
suggest many directions for future research. Some of them are: 

• Fractal image-interpolation - This subject was briefly described in Figure 5.5 . 

• Tighter Collage Theorem bound - The Collage Theorem 2.1 (see also [4]) uses the 
distance between the image and its collage to bound the distance between the image 
and the related fixed point. However, the pyramidal structure suggests that the distance 
between the image and its collage in different resolutions should also be considered. 
Namely, instead of using 

one can use 
1. 1 ! 

d(IL!, r') -::: d(IL!, WI(IL!»+S' d(ILJ, W>(ILJ» + .... 

For further details, see [65]. 

J The reason for using the same name for the two sampling methods will be justified below. 
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• Fractal image segmentation - The embedded function relates a certain fractal dimension 
to the image. However, there may be cases when more then one fractal dimension can 
be related to the image. This may be done by investigating more thouroughly the matrix 
structre of the transformation. Thus, the image can be segmented into regions with 
different fractal dimensions. 

We believe that the combination of the evol ving area of fractal image coding and the established 
use of pyramids in signal processing [13] will provide a useful common ground for future activity 
in this area. 

Addendum A 
Proof of Theorem 5.1 (Zoom) 

In this addendum, we will prove Theorem 5.1 (zoom) stated in Section 5.2. The proof is divided 
into two parts, according to the two parts of the theorem. 

A.1 Proof of Theorem Zoom-out 

In order to prove that d, as given by Equation (5.19), is indeed the fixed point of W ~ , all we 
need to show is that it satisfies 

I I I 

P (I) = W, (P )(1), (5.63) 

In the following, it is convenient to express I as follows: 

1= (i -I). B,/2+k, (5.64) 

This expression for I emphasizes that the /-th element of d is actually the k -th element of the 
i -th range block of fL Also, letthe superscript I or t denotes a symbOil as belonging to f' or f~ , 
respectively. Thus, for example, we let Dh! = BI/2 (in accordance to our basic assumptions 
in Section 5.1); it denotes the shift between two adjacent domain blocks in d. We start by 
substituting d into the right-hand side of Equation (5.63), and taking the relevant Wj, 

I I B, 
W'(P)((i -1)- +k) 

2 
I 

= ai' cp(d~,)(k) + hi . 

Substituting for q10 from Equation (5.15), Equation (5.65) becomes: 

(5.65) 

aj' ~ {d«m j -1)Dh~ +2k)+d«mj -1)Dh~ +2k -I)} +bj 

I {I I 2:' [ajP«mj -I)Dh ' +2k)+bil 

+ [a jf 1«mj - I)Dh ~ + 2k - I) + bil} . (5.66) 
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Now, let us further explore the first term in the last equation: 

I I 
ai ·P((mi -1)Dh 2 +2k)+bi 

= ai· ~ {f\(mi - 1) . 2Dh! + 4k) + fl((mi - 1) . 2Dh! + 4k - I)} + bi 

= ai· ~ (fl((mi - I)Dh I + 4k) + fl((mi - I)Dh I + 4k - I)} + bi 

= ai· cp(d~)(2k) + bi . (5.67) 

but since fl is the fixed point of Wi, it follows that the last equation is equal to 

f'CCi - I)BI + 2k). (5.68) 

Treating the second term in Equation (5.66) the same way, leads to: 

ai . f! ((mi - I)Dh! + 2k - 1) + bi = flCCi - I)BI + 2k - 1). (5.69) 

Thus, Equation (5.66) can be written as: 

1 
"2 (fl(Ci - I)BI + 2k) + fl((i - I)BI + 2k - I)} (5.70) 

which, by the theorem statement (5.19), is just dCCi - I)%- + k) which, in turn, is the left side 
of Equation (5.63). 

A.2 Proof of Theorem Zoom-in 

The procedure here is similar to the previous one, so we skip most of the details. It is needed 
to show that fl obtained by Equation (5.20) is a fixed point of Wi: 

Wl(fl )((i - ))BI + j) ai . cp(d~)(j) + bi 

1 { I I = ai ·"2 f ((mi -1)Dh +2j) 

+ fl((mi - I)Dh I + 2j - I)} + bi . (5.71) 

By Equation (5.19), which we have just proved, the last equation reduces to 

= flCCi - I)BI + j). (5.72) 

AddendumB 
Proof of Theorem 5.2 (PIFS Embedded Function) 

The proof is constructive. It is based on finding the PIFS embedded function G(x) and then 
showing that G N(X) is indeed a fixed point of the PIFS at resolution N. 
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Suppose that the PIFS is composed of MR transformations. Let (ai, bi, mi) denote the 
transformation parameters of each range block ri, i = 1, ... , M R, 

For operating with the PIFS code on a function of a continuous argument x E [0,1], we 
look at the following analogies between the current continuous variable case (functions) and 
the previously discussed discrete case (vectors): 

discrete i E (1,2, ... N) 

continuous x E [0, 1] 

discrete i-th range block: VN(j), j = (i -1)B + 1, ... , iB 

continuous i-th range block: f(x), x E [(i-l)B ill) 
r ' r 

Such a configuration is demonstrated in Figure 5.7, where the i-th range block is 

x E [a, b), 
B B 

a=(i-1)- and b=i-, 
r r 

and the mi-th domain block is 

B B B 
x E [c, d), c = (mi - 1)- and d = (mi - 1)- + 2· - . 

r r r 

f(x ~ range domain 

o a b c d 1 x 

Figure 5.7: Domain to range transformation. 

Define the following transformation Wi : L 00[0, 1] --+ L 00[0, 1]: 

W.(f(x» = { a;J(2(x - a) + c) + bi a:::: x -: b 
I 0 otherwIse . 

Then, since lai I < 1 , Wi is contractive. Next, define the transformation 

MR 
W=UWi, 

i=l 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

which is a contractive PIFS [45], and thus has a unique fixed point defined to be the function 
G(x). 
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Now it is left to show that G N(X) is indeed a fixed point of the PIFS code. We take 

(5.77) 

and look for consistency with the fixed-point criterion, i.e., verify that VN = W(VN)' Take, 
for example, the j-th element in the i-th range block. Let (ai, hi, mi) denote the appropriate 
transformation parameters, so the fixed-point equation for this element is: 

1 
VN«i - I)B + j) = ai 2(vN«mi - I)B + 2j) + 

vN«mi -1)B+2j -1»+hi' 

j = 1,2, ... , B. 

(5.78) 

This time we deal with elements rather then whole blocks, so that the following notation is 
used (see also Figure 5.8): 

• Boundaries of the j -th element in the i -th range block are 

1 - 1 a = «i - I)B + j - 1)- and h = «i - 1)B + j)- . (5.79) 
r r 

• Boundaries of the (2j - 1)-th and the (2j)-th elements in the mi domain block are 

_ 1 
c = «mi - I)B + 2j - 2)- ; 

r 
_ E+d . 1 
e = - = «mi - I)B + 2) - 1)- ; 

2 r 
- 1 
d = «mi -l)B +2j)-. 

r 

~ 
D I I I 
abE e d 

Figure 5.8: Elements of transformations. 

Substituting GN(i) for vN(i) in the right side of Equation (5.78) yields: 

VN«i - I)B + j) = ai ~r(1e G(x) dx + [i G(x) dx) + hi 

a)r (J G(x) dx + hi. 
2 Jf 

The left side of Equation (5.78) yields 

VN«i - I)B + j) = r i b 
G(x) dx . 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

(5.84) 
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Since G(x) = Wi(G(X», and since the range x E [c, d) is mapped to x E [ii, b), we obtain: 

r lj [ai G(2(x - ii) + c) + bd dx 

air lb G(2(x - ii) + c) dx + r lb bi dx 

a.!r ri G(x)dx+b. 
'2 ic ' . (5.85) 

Thus, since Equations (5.83) and (5.85) agree, we've established the consistency of the fixed 
point equation for VN, under the theorem assumption that vN(i) = G N(i). 

AddendumC 
Proof of Theorem 5.3 (Fractal Dimension of the PIFS Embedded 
Function) 

A related formal proof can be found in [3] and [34]. We will follow the informal proof, similar 
to the one given in [4] about the fractal dimension of a fractal interpolation function. 

Let E > 0, and let G(x) be superimposed on a grid of square boxes of side length E. Let 
N(E) denote the number of grid boxes of side length E which intersect G(x). Since G(x) has 
fractal dimension D, it follows that the following relation exits: 

(5.86) 

Our goal is to evaluate the value of D. 
Denote the number of boxes intersecting G(x), for x E «i-rl)B , !lj-), by 

Ni(E), i=l, ... ,MR . (5.87) 

Namely, Ni (E) is the number of intersecting boxes in the i -th range block. 
Since E --+ 0, the contribution of boxes at the edges of range blocks can be ignored. 

Therefore we can write 
MR 

N(E) ~ L Ni(E). (5.88) 
i=1 

Now, let us investigate more thoroughly the value of Ni(E). Let mi denote the index of the 
domain block mapped to the i-th range block by the PIFS. This domain block is composed of 
two adjacent range blocks with indices denoted as mJ and mf. 

After transforming the mi-th domain block onto the i-th range block, each column of grid 
squares is mapped into a column of grid-rectangles, with height lai IE and width %E. Let us 

define q == %, and hence, according to our assumptions, q = ~. Therefore, if a column of width 
E in the domain block intersects G(x) in L boxes, then after transformation the column will be 
of width qE, and the number of boxes of size qE intersecting G(x) in the transformed column 
is therefore at most, but possibly less than, lai I L / q boxes. 
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Summing on all the domain columns yields 

(5.89) 

Denoting by Ci the proportionality factor, i.e, 

(5.90) 

we can write 

(5.91) 

With the same reasoning for all others range blocks, we get 

i = 1, ... , MR. (5.92) 

Recalling the definition of the matrix D in Equation (5.35), the last equation, for all the blocks, 
can be written as: 

c· (q)-V+l ::: (Aabs . D) . c, (5.93) 

It can be shown that (q)-v+! is bounded by the spectral radius A of (Aabs . D), and hence 

(5.94) 

and hence, 
(5.95) 

Since we assume q = % = i, the theorem follows immediately. 
It is worth noting that: 

• Equation (5.93) holds even when q =I i, and so does Equation (5.95). For example, it 
can be shown immediately that in the case of uniform fractal interpolation of functions 
[4], where the whole function is mapped to each interval, the following results: 

D 
D=N, q = - =MR , 

B 
(5.96) 

1) = 1 + 10gMR (t lail ) (5.97) 

which agrees with the result there. 

• The matrix q D is a stochastic matrix. That is, the sum of the elements in each row equals 
1. Thus, all its eigenvalues are equal or smaller then 1 (in magnitude), and at least one 
eigenvalue equals 1. For example, if 

(5.98) 
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one can write 

(5.99) 

since la I / q is a scalar factor, and q D is stochastic, the largest eigenvalue is la I / q. Thus, 
Equation (5.95) results in 

(5.100) 

If q = ~, then 
(5.101) 

which approaches V = 2 as lal approaches 1, and V = 1 if lal :::: ~ (by Equation (5.50)). 


