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R1an :1pd

1?7 Y21 hinn 1.1

n1IAn Yyna p25%a0n (speech enhancement) 7127 NINIR 5 hwaqan hrya
ANRA DY Y YR bu oaan voonn Swa 1h ,072% Draphnb RWII 29 1T ATh
INTI YIRY MIWsKnh ,N119NKRY AYnw nrab1adva RinTphnh 19 115 L ha1nsa yinon
neaTATt Ratnn L5Mah 11193 9phnR DR RTAOQR AXYRA L0357 D2ANTIIASR FNITAR
nmwyan mIvan ohir 235 011903 531pnia hanph RIA ,IT AT1a¥a wehwa 93 '"MeaT
ST MR YR 073w (perceptual aspects) b?Ynwrsh brbarh 18wb Apnana
NTI3Y ¥ Wpna DR INITH NAIBA RIAY 112700 AR 13915 115595 15R miviys
SUYID PAN TAT MR DY OX AYATH D1YIYS n1wya At 9n312h vatha LT

N171¥3Y D727 DYIUPNA AYYOINR BYIA 0751300 12T IR S8 AaThh nYya
By A0 7MY navearn R0a L [1] fann Baotn A h1Tab ARk ehh AaT L,niaw
2U1 11ATR NAIR YY 2571100 haann 19 100 .91370 DIRD A1 RIA 1A 191K
TYBYN TN 12R ATYAN 11908 LMIMAR 11270 D17Yan 3Y 7Y DYTAYIR Ynwh hoayn
LD7WARY B717733Y0 ANIR N0RIT ATYAR TRAND 71bh RINY TYRNA ARNAY 785
77 ORA L712Th NIRD D953 NI TNTOT 107R LeYTR A0 YUY DYYTAIA hYYAan YRan
ST wyan 175R Ity Bava 71aTa RIR By Yayed nra orA L,wyab biht qpn
JUTATA? DYATIIYNR NN ThETann Larhh hr1bh hvhn aavnn

9 1219 ,7thn ,v40 ant vyl nrh® 5157 91278 kY a1ivan eyan
92170 5Y 1hapn bryatan (Yiaya) orrbawh R QY70LIPR DYIR L, NTNDn 01T
TIAX1170 DIPNA NIATH NIRZ 90%90nd 5157 wyan L 1oy S'Mah breyan Sw oralay
v1aya L, (MR3 2190 7n%a ypa vyt Y@ 9N B?T0DIPR LYTR SY BYIpHRa 11aD)
YYIR 119ARA AN L02pna R, (11850 T11pa Y hnwn 0rTh YU RTapna 11a3)
JIPTRRND JYOINIRYBYA DIPNA NN YPT OUYY 1791905 AR R0 Wyt havhh Y1or
D753pRNY NI1IOH YTTha BYR¥NIN D75YI5 Y RHA1TH DR R7an5 (073 AT Qaph 212y
17200 1T 1rhd 5157 914Th DIk 11193 wYAA 131 188D LLPY 9Thn RIRMIA
»7AT0PTIR O™TA RN PP WYI L, RNATY L NI5T atxhiaaap L2 aruprhauban L, rarprir
07700IPRA DY TAA WYY 1D7RY 72T Eer0YIn Yy Ran (fading) nDyTe Yaran wya
TAR RYA OGR A1I0R WYY DIRD 172 hrodbrbLbn N1bha LhTNIYa3p wYA RIn
707 2107 Uy »atan ypa o eya Lbunk Lhavnng v Yy hyrawny Atyan Y3178°Rn
07TAR UYHY TIY3A L,NT 21070 R¥DIN TTTY DY 1ATA DIRA DYubbob 231hn 'nba
UYL MINR RBAITI LANXY 1270 DIRA RIDDYLLL Thhh MiThb Y157 DY rvLIPRA
NIBY 28dn AR MIRa 71%0 7hda hvar oAt AT 1IRD A1ban ATeTIvAINIRA
» 1100 RIA AYRTI0IIPN NINT 1001 DR BRT Omiys L5972 Probn RIA WTNTILINIPA
JI127Hh NIR DY ApTh NhuDrLLUL haSh hrhh ypan uyad



nIR S NRrTSNa 18TY RYA AYATAN DIYENARI ATURd 0?1119 ANIN AMunh
(intelligibility) ni32%n :D7awIn 73¥3 BYA7hHAR AYISN H13032 . PYITA 9197)
nTYRd MPPR ThIND YAY0RTIIR TR RYA N12TA Maam L (quality) hinery
Yy nrasyn ATran Yy tan AT TR YW 107y .M1A2T48 DIRA 115 NT¥RT181YRA
7270720 TTR NATR .RIDYRN ORT hniyh .ovarTRn S oav ason My bopo haan
DTTAI AT DR DAY TIYA L T1ATY 1rTRAD DTYA IR DA Aa ATph Dy yravehn
o' R7h LDAT0RYA0 NBTYR SY BYhAIna DTThI RIDTRA LA07HA BYTA1RY DYTINRA
2T DR DY TAIRD L,ynvn daynd anyaoh nTrat wyan v o vsarn My narinn
NIR L0125 .02750 20018 2T DA BMan oY TInn YAy 177 IR L Y1) 1Ny
MIR NYayn LREATT? L18RhY 1210 NOYR DY hM5RAa 13178 ANax D1AAn SYa qtaT
DYIN L, 1122102 NMerw5 nn1a (high pass filter) brn13a 77a¥n 1ab6n 197 139
Unina sy 159 hDhavon 2y L 1hiorRa ntrath hrt oy Tn

UYIIN NAIRD NIDIRD T997W NAATUNR NARYIRR IAT hwaTab Didvynn a0
1797 5¥ 717003 APIn BI9TRI T197WA NI1AIP DPAYY L, 1TH AANY L0133 63 RY IR
110 IR NY32T03 MNISBTY AR 1N NIOAYN YY AnR1Ta D¥RINR 800 DYYH L N132INa
N197¥NN AR Y2In RIAY 11179 Q37 D1AYWh hIDTRN 119°wH L h15TRA A8YMNR P
LNAIRD DYI2ID AR 1787PYA BWH 153 17 TRBA

B759200 12T MR DY AUATAR NTYan 0Y0a YeIp LYY thon Yryb y1vn
N1H7WA DYATIIVRT ATTHA LIPAY WY ha 1w Hisrw 9T SY yraxn ba XIn Lwyna
poanbnb NYLA [1YA MnTUp NT WP MRS LWY1an DIRD YY NI2I03 IR N1DTRA
SN1I2I8 2Y ATV A0 EYITR 1T MR NTOIRA 119785 MipTia N DIDyna

TRANY BRNID TINRS3 A7RY BYI2 B25130R 1137 RNR RYATh hoyab (iahen
nYATAY nisaynh 53 .wyan1 DIRD DITIR 1ADIPAY DTHIYA AT¥NIIDATRDY AYvan
nN11150 DY Lynwn hoayn YY1 19TR DR SY NAAISh hAnR IR AT NTYRA hivNan 14T
N7T¥NNT01TR 1a01RY TRy Bha nravn nvnvvp‘.l.z G7Y03 VY5 TINYY 1YR
002 13TH RAR DY Dayab rantawana ¢ty AR Levian 11290 DIRd vas hobia
N7¥PN1927R 21831 "N AP R ARATAD hya 15RS DYApna LwYAa 17HR At
avwn Sunb nry Hryh AR3TAY BrHY10R DBAYTA . AWATAR 2703 119705 27311 4TYh
1T 7PN 2TH NIR DR 97aYaY ATTRA WY DIRh 5w 1t bhva M1aaina 1ave
N1 ,MIps 2Tand 2TYn Y7IND ARIPR D7D A3 RTNR RPAITA .DY09323 17aPn 1306
7337 Y073 L0700 RD2 R¥NAN UYIR DR AprYR LIYPYY rawn 11517PHA wahenb
2y Y1072% n1TAT0ATR MIpTasv MY 93pnn ¥y habhnd AT bIh? q1ph
Mwyrad naven hwatha Ard aappaw 17vx% 7Ry L (2] (adaptive noise cancelling)
11780 AT DINTI0n hYaNant BTV RhA



P¥U D112I0DN IR/Y NADIRA NI9W YW AYYAN 2730 Aba A3 TY 117Th Y
nJynb D7aH13 nrLaYn u;nvvp L0737TRB 7394 1nynwn 002 PYIL 231300 13T DIR
2¥ 0NYIvs 119w W AT RIA 02172760 BYLAYAR TAR L7137 DINAR SU AvATAR
PIinrean nyata RYIIN mMaren L [3-5] wya 7RaNa 0YHYIsn 1127 MIDIR YTTEN
MIMIR NIS¥A 7115 111 11370k 119w bRk 0 [TRNSL A1IWPhA 932131 75 0n
DYIUAN DNIBPL MY DY 1127 TTIeR YU nvenavaTRh fvva hnvtp 19 0o L9134
LI 7N DINITYY DYTIRPR 2Y 21T/ WPIYA L7127 DINAR SW 1I0AR IR Ahavh nwh
YTIPRY 11170 .NTAuY nvavb 2400 vy W oaxpa Ynhsot YIM hhayhd ornoring
TATH DR D725 ST 5y nDr) Avpa brodann SMan bravpa 0rbYish 9127 DR
LUYIT MR RN DNTHR ADTADA DIR WRD NWANYL DR%IYS |, (72707A1101R o11n)
AT LDUYAT 071D 13Y N1T QPR 13K 72YDAATIVRN STInhY KA T15% haron
77IBR 7I0RY8 2¥ 719YVR DLW DN DYAYRRN N3IWRIA LNILDIY hea 4T n7Ya fIph?
P707 TYPONNY DTP-TaYNY B enhwns nvavn nvYwa , [6-101 n67351 wyAn DIno11Yb
R1N NIIWRIN ALTeR R 2vpryia y3tonn L [11-131 TTpnn Yysin nava wyan o
111" DN p RY Avay nraravbh RS nvya nyvhd nD0th 71vYwA nYyaw 153
VINTW NTUARND NTAY 102 13NY ¥Y RTAwh hDTRY ORT NnAYY L 1IN TyTauny nrnive
R3320 DIW?aY 177%1 .72 11T MR DY NT12YY 0 nYTRIND 07X193 BYTTIRA
¥ 11597831 M2 NMBYW ATAn AvATAA hP1Ys MY Drwand DYWpAR ARIR AMLNA
CLAUATAR NOAYD RXIND RPIT IRDY TP RNINA 13TH DR

Yow YTy DIned nrviwp 92T MIRYR hwaThd h'yah v nranx 07vath
D7a5%1% Sw obipn niiyn nmon L ([14-16] ana ®nA1T5) AP HY 7735 DrYARD
"o [17] avn rpoyvan 029T9nN

.UYI2 0727307 12T DIRIR AUATA S hvyan qprn DR wrnnn 9oy 11710
7AIIIVO-TTRIAP 7ATVVIR UYL B721200 12T DINIR DWATha 2503 1T pTiaya
T35 VYN RIRA MY 1INIWYYE N33 10 1m0 .71127H IR OY n7¥5IID tonR
IP7PI 1NN N2 BYIR LBYI0M AI0D RIThY Uyl R 27233 RY on7a1abRh hanea
AT RIGB OR QPIN KW 11175 N3 rnvryab awna AT WYR LLYb A0 BYa 913y
BIPB APAd fanT probn kYA YIYL ANTAIAY 795 77YAR .13TH DR Y va0A
S ATIZI RINOI3 7T WY NITIR NAY5B23Yh NANAA AAYan RODY 11999 ,D7a7
IR DY 2190 qhraw AR wYIY bINT NP DAE YWpb BYNTAB 133K .7997A hIND
(1.3 n2y01 VIBAIY ¥53) NIBLI NIAT NSV IT ATYI LUYIR 175K N11%3 BB Y9990
.073% DPINY 9A0R A1IAn 1rrTYY



YNYA N2YR PWr 91T MR DY D139R N12150 9500 SRR AT P9 qwBha
70111290 MWINA RYATA 1IN QRN TWYIY NIBTIP D171y AO¥PY P51 19 Ino
JPNNA BN DR ATXPA DDLAY BYNDIAN ATIAYA DR Y1703 §10a2% LaanTiayh

ynwn NoYn1 712Ta 1IN D1aon 1,2

o7 "y (vocal tract) 7Hipn "aysh MY 5¥ ARYIN RIp 12TH DR
n%¥anyn 2"y AR LPpn AN 77T MIRYIAR 7R 9aynn ARYIND DYMIRIAN 17N
AXAN TR NIR PIWRIN AR L7 HAEn Yaynn YR bray 0rebeRa RI1MNYAn 971K
1.1 717y . (unvoiced) »51p-5% har RiA 7awn npnat (voiced) 7510 NIk RIA
pYn%n 09O MY BTANIIND YINA PST .YMan 7rhahn hnatad a1 bT1n rhn
R17 070500 N0 YIThn L 93%0 wyan 29p8 7MY KA YPIRD MY 1aavn 1R
NR AXYIND IRITOA qabhia L rhpA 11aTh haR YW (pitch) tibYh ThaaaTthns
T1YH TIPN AR B DYI2R 12T MINIR 1A ,0vrhowh L, *5iph naynn
N730P UKD NTH1178% hona hT¥pale Y 117oRY ha Xan L (glottal source)
D7RIPI noaYnR Y ATIAhD TTh L vhIpn Aavah S® o ATiAnA hoYYh DR D2NOn
.0r0Ane

NTTH %01 L, 1BTa BRY? NADn 7127 MR RATRYS BSMYNAY AT21VR IR
173 0Y1aywy 20-40 msec DOYIRY Q298P BT 7Y0PA 12T hIDIRD 910700 DR
P52 1770RY SunY 2102 1T NYaa11ann 07ba by L jnTa Aviapd YMan hoaynb bhrnnd
TThB2 AYTPR 7TI0? MIThR OY D?731070 DINIRD 027519 7137 DINIR 1YY IaT
1?58 DrPONYAN L, YRIPR 177005 T12TH NAR DR B7ANTITHR O WRD 19 a3 .pitch-h
20-40 msec 171N 1ann NP YO Y3 BIRIT AMNTED L TNI1INOD-TIRIP 1PIAn HRD
211503 N17NAN 12T NIDIRD ANwpn N7A1511T0000 DA L Ta17%00 75 hhn pbno
2Un% 10 1R NPT 730 9y nrwyaw ar 1°ab ¥p T 7315 5y hUwyaw ATtrhark 17a
SIVIROIBTY nvb0pad nTrHaR 1vab P nth hebabpsd aTrLak 12 D7arhan
07 17 NAYD L8R IRT2 9137 nansRa Basteh anae np1nﬁ 1270 QX hn?p
N7270pab ATY2IR ny¥an ynwa NOIYR A5 017TH DINTIPY NITRTIY LYRD hihS1ha
arns 101-(b) qvry L [18,19] naRa 713y Hw 0ra UKD 07a%Wa 925 NP (nTh
ST2IP-OR 12T MR YR vHap 91327 DIR SY o Ayp nTh DIIURsD Y119pY 181K8A
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DTW7A AR AN 1312 N7590pSLA ATIL?HONRA YDMYYn DIYa .overlap and add -n
200 D17¥P310 YY BYRAT @rabn nrhronn hirkava winten nn 1M pv1ﬁnn
wINTY 2y NSIYNA 11791370 DR 93 191R1 1Y0PRY INTIR 1anbn L hinoRhnh
JUTIBN NARD NIDYRA NHnrath hAyras Oy L,7aihn hirbava

.-5dB-1 0dB ,5dB 5@ wyn7 pan dh? 2592 7137 DINIR 1A0A 1T ATIAY HYabhAa
MY PRI NIVI0RADA ATIVIZONRA TIWY WRS 1353 9N173 N12100 DIRYINA DR
"navionn-nobhnn! ayen oy Thta Syish sy = 0.2 ny (2.12) 7vywnn
1T D73 18RI AMIL AR OIT YT 2aphnw watinn niRa nio'R (o = 0.99 oy)
19 M5 Lypnn uyY SY o hravyn Afhana Xoann AT DISTR 91979 L @Y1ah DIRD Yy
Do DA hanw nraon MY R135a UATIBR NIRY LTYAR YOWA An11n Ypan ey
TI02 WYY N BRTA DA 1112 7T YHWI NIRG DPIR Y0P hd?153 vyah harh bhow
T2 Syat .y (2.16) ywni 1awnnwn MURD 1%aphn DNt TiRn BaR¥In L0dB be
(o = 0.98 ny) nha1idnR-n0YhAN YYD DY
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D7UPIT NAT MINAR DY TR 1Yna YAnon TR AvATh A5

2¥U MIDIRA M19°W beY 2 PI9a INNIOYW DPYAdLh BIWYA 1371 AT Hhea
-D7UPIT AD1D TRIND TAR NIWIRA HYIan Lanon TTpnn baphnh AThien 9137 RIR
RS nwyh awatnn . (ATC) adaptive transform coder hiqava TP NT OTIPR
T3 AT RUII Iy TITRR YRADD 0903 IR LA Bvhna T1TPR oy abivna
27272 02927 Py IRD IRAIY 1551 1T ATy Y 'S habia aahnna

.7.2-16 kb/s H¥ B7a%pa 7127 MR TIPS N1 Sy 13170 ATC-h 1TPn
7390 A3 NIDIRI 12T DR 1112 RID A R 16 kb/s Yw avpa
ANTRABA MIDTRI 2T MR 1M RIA 7.2 kb/s 5w iman axpa Ltoll quality
TV ¥ Wpha MY pha AT TTPN . communication quality a71apny bowpnd
79 mabn Y papnn by bbias inbays 1vpy L [1,2] wyan o7rpan 12T hanar
(A72T7033IR) 210751 YN MwInd (32 msec W qwn n5Ya 5M731) 912Th DR
JHANGE YN TY¥HY fNACT N1YA%D nR¥PNY ORNNA L7813 TR At 5o
.(DCT) discrete cosine transform -n nAphh havh ot TIPN2 BYWURNYHR Aa Rnhnn
RY?IP 153 N3IND ATITINR NIALA2 M12TA MR SW Thi 727595 B1TAvbhR DRYph
727590 TR 53 5@ DAIRTIN NYITY b LY nrwya L,17h 2257 5% r1pron Ty
V2PN BTITIVNY NAaon D2 NYI0RMS A1 QYDIYIUL 19K BY0ITINAT . hIhn
2y nryapa vanran HU Snranh Ty¥ar hivaron npibh 71N .78 hI¥NYI8ARO
DA AARIR 1T ARAR LA7DIRA B7A218% 113THh NIR YW TR 727599 Anahn qnb
Ponr08IRN APIYhh pan nbap nwh 985 L [1,2] T137h MR 5y n1ryyn hi2axha
TINION TYN NDIAPT 10 1D LT0IRY PR BY MIIY-2xp nr¥pI1o hR nrbyan
-[3} Max 5w (quantizer) hn3nn nx DY5¥an *5K208IRA SnT1anA

B27T197 17YI¥TAT 195K ABYASN BIRA wYI NIND1AD wrAN R¥na ATC-h Tpn
oia ('157 DPCM ,PCM &A1) 07908 53 Dy »71pnd 1nd KU LATD awna
TIWYR ZpYPa RLANBA QLI PrTTH LPBR WYY RO ,AR7XS qpiwn nbradn Wyl
72739 172 N172T00 DRAYN Ik ANYIND N0 272759 5w Dr0AARIIA Y Yaunasn
PR? DA AT Y1299 .0°WaRPn 97D %57 5% YHnrLaIRh Y1aY5n TYN 191 41N
-10732702% ARIOTRI 2T ATING DYRATS UR TTIPHN NIRA N1TI8YYN
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7y Yyisn ATC-n T1pp Y2 10H1Y9 919705 NYWORA O 130a 1T ATIAYA
¥ 3P mrk hodnopdbh TIvYonRA YR YHRTVSIR 1YY Y'Y LBYIT 97137 DIR
DCT-i »2754%%¥ 131701 .717pn y¥ahn 002 Dwyiaa ATRSH 111 11390 DR
MpRa nrHhopabia aTivYhonrn T1ve L, [2] nrSqopsb navay ahax DFT-n 2275959
AN R?A T Awra 13% LDCT-n 73757 5w amivvhanka 1YY oy anTTo Yho1ah
.T053120 Wpha ThiTha

5Tin 5y noboyan 11TAR MPRa NPHN0POLA ATIL?YOBRA TIYUD hN?TA
72757 Y N1r010ANYOR N13190 SYXan R ,2 953 NIRY nTh an1t 2ubrLLD
A1¥75 DYANYI wYAn Y@ 151 91277 IR 59 DCT-n 23759® bYR7an 1aR L 9Thi
R0 Uy nw N713 10 1D .nvodbroLd vy ibn 7nba DrrbINa BYYRAPNR DY ahwnd
DTainhe 7% 1rayn AR DYXYTIP DR MNATR DIRY T2T0ITR L 7711780
MY wYn 191RI DA NONA YATh IR DY Thn 7257 413y S'an ruorvvbi
TIYUNA AR 23p2 15K Mhana .07 vy nasw 1o [1,2] Zelinski and Noll
n7590pa0h NT72aNRA YY NYSnYiThn RYXINBA RTYIAYIA ARIAVA 13183 THNILSIRA
©uyIn LM12TR MR YW k-n DCT-n 17597 R Y -m D »X . =2 3001 :Ran 19IR]
D7YYIIA Thh 73759 jhina |xk| YU HnTLSIRA TTYYRR L ABRDNNA EPIYA 1IN

sty 11n3‘{Y0,Y1,..., Y1)
kal = E{ |xk| | Yoo¥qseoYy o}
= E{ [xkl [ Y
= |xk|P(Xk|Yk) ka (3.1)

73757 H¥ nrubrobbh mibn-rrh AR 135%1 (3.1) bw avawn 1M1w% 7ayna qURD
THndNa L a3ha ATYhar fMabn 5w DCT-n hanhha 9700 37597 98bn Ria M . AThh
:-w [4:3.546.2,3.562.4] nirnotan Y9%73 730 MIRNY 9P L7DINAD STinh by

R 3 v v
Rl = e Co + F e - iy, 6.2

{IURD

® (x) g—_zj e_t dt (3.3)
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(3.2)-n nbapnpni 1aann Drepars Lanrnna (2.3)-% (2.2) 7MY 0r9TAIn Ek"’ Vi
7IYUR3 1awphen ATC-a hovyna YMan iyeni 01wra L '7 nabi bw 2 13783 nARInn
K5 AYINY 771071 nb by Yapa o WwRe L (2.17)-3 11630 gk uyib naRa one

Uyt 2r0aw thbnnn Yopm Yrans TWW wyan Y¥ 9Thh 250 DITANIY L0750
.640 msec R 72130 MIppa 1DTIRYY Taba

Speech-specific ACT n112ni ACT-n ¥ abq?ah DR 1402 47 AT12Y haabna
713y 16 kb/s-1 12 kb/s Y@ nraxpa nt Tpn ¥a%ysn L [2]-3 v1w9a hawinnny
o 7Y 7Y .00 anY R wYAA Wk ,10dB-1 5dB 5% nbY153 wyab har vony
o = 0.94 :R1n (2.17) =7thp 2750 W wyad Rk bhr q9ywn DIYYA 1awnhvn 12
Yon1no 1vapa ndhynh rhonis AR .12 kb/s 919y o = 0.85 -1 16 kb/s 143y
7Y ATHIUNR MIRD BA5YR DR 9271 19983 AN8BY 1T ATIAY2 hy¥inn aeran L [2]-a
1TH NN A2INI ANTA TTRIYNRR NIRA WYYA DR L I0Thn DXPRA TR RIOY ON
LOYRD 10OYI WYIIN AThIYND NIRA R Y3770KR¥ NI7157¥70 7R 1591 ND?A5R NIRAW

NIRA NIDYRI Y1970 5¥ Mwsrkh DR DA 13N0a 17 ATY2Y RMabhnaw §7rya
CIND 13723 nwrA vty L uyhn Tl RIN CTIPHBY NDYASh DIR ERDY IThIvnh
nona LaThi vavawn‘x"a Y hnonh DRYXY Sy AwaTa mMPIyo 1ay¥a a1ivria
NTYIATIN ANTAVA 12103 THNT0SIR T1IYY 11YXD ORI L 7I07OR WYY hnt bR q0pnb
Uyn 275Bh 27390 7I0n 11370 MR 5w DCT-n 2°57 H¥ hrbnratah hyxinnh
N7XoNp-nT yxab nona [5] dither By YInY5h 13wnhwn A13WR AYIAY L 2InYD
oYyyan nat 5'™an hiwvah rhw DR hadwn nvweben AWTAR L TINTOn BYY1 hIRQ Y
nNTYYhURY NIURIN AWTAIW 112 Ldither Y¥anh hnonh DRTYT 5y hwATh N1YIYO
npni T o L [3] Max 59 131032 750T09IR 13K ANOHAYT ATIHA NY117Ah
TYWR TR MIYTA hwaw 1YY¥Y 123VB LTYAR ABONA Downhnwn 9T DYYh Twynn
Y@ 721300 A1278h nhn howa YW centroid-h X1 71270 NIR 5W DCT-n 279
Max S¥ 17 Dy 099%n0mn Da7rayn ARNAR THAT .21n%50 9197037R3A 5'an Ar5%N
NIXTINIVOIRA Max S8R DPIR . 79N700IRN TTAR RYH 7nonh 1135ha hbaphnh
TTAN 2707 DR 120°7¥Y TRDIIA DIWTIAR Q10a% 47183 .InTOh IYY BY DA nyxann
MT0 ROV 11170 ,15% hrhaopobn ATIVY2ORRA DR RPIT ARYT 715Th DR Hw
LAR¥ID ANIR BYANND DMaR 0O ywR 72w 10Y%1 priTna ¥17r DCT-A a0

DIRA MIDTRI 187wY nbrarn k2 Y'an wibwhp hwra R ayeh Aaand
7on7091RA oY AeYnk 1INIR hATPR 5Man APATAAY K10 195 BYRabAR ThR LTTIPNN
%v Brn3mna) evwn L [3]-aw 5 91v8n mRad Jnraw rad 0HIR .Max SY TINR kA
PIRW7 ARYIIYAD TYAR XY THNYL0IR AnSnd vanrwn Sapnanh (hyXI1nn NYYIAtY ANTAY
55% pa¥pInh h17aron Bbm 1A 135Y Aapna2 LPITA 117K TYAR 7HNYLOIR Anona
20%~> S¥ 77772 RIN 11030 YHnvomcnn 0wh L (2] 4 %Y a1y 137R Th aron
LOAYXINAN 1YYIATN AR AYA
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SPEECH ENHANCEMENT USING A MINIMUM MEAN SQUARE ERROR

SPECTRAL AMPLITUDE ESTIMATOR!

ABSTRACT

This paper focuses on the class of speech enhancement systems which
capitalize on the major importance of the shori-time spectral amplitude
(STSA) in speech perception. A system which utilizes a minimum mean
square error {(MMSTE) STSA estimator is propesed, and compared with other
widely used systems, which are based on Wiener filtering and the 'spectral
subtraction’ algorithm. The derivation of the MMSE estimator is based on
modeling speech and noise spectral compone‘nts as statistically jndependent

Gaussian random variables.

In this paper we derive the MMSE STSA estimator, analyze its perfor-
mance, and compare it with the Wiener STSA estimaltor. We also examine
the MMSE STSA estimator under uncertainty of signal presence in the noisy

observations.

For constructing the enhanced signals, the MMSE STSA estimator is
combined with the complex exponential of the noisy phase. It is shown here
that the latter is the optimal MMSE complex exponential estimator, which

does not affect the STSA estimation.

The proposed approach results in a significant reduction of the noise,

and provides enhanced speech with colorless residual noise. The complexity

'The research was supported by Technion V.P.R. Fund - Natkin Fund for Electrical En-
gineering Research. '
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of the proposed algorithm is approximately as that of other systems in the

digscussed class,

I. INTRODUCTION

The problem of enhancing speech degraded by uncorrelated additive
neise, when the noisy speech alone is available, has recently received much
attention. This is due to the many potential applications a successful
speech enhancement system can have, and because of the available tech-
nology which enables the implementation of such intricate algorithms. A
comprehensive review of the various speech enhancement sysiems which
emerged in recent years, and their classification according to the 'aspects
of speech production and perception they capitalize on, can be found in
[11.

We focus here on the class of speech enhancerment systems, which cap-
italize on the major importance of the short-time gpeclral amplitude
(STSA) in speech perception [1,2]. In these systems the STSA of the speech
signal is estimated, and combined with the short-time phase of the
degraded speech, for constructing the enhanced signal. The 'spectral sub-
traction’ algorithm and Wiener filtering are well known examples [1,3]. In
the 'spectral subtraction' algorithm, the STSA is estimated as the gquare
root of the maximum likelihood (ML) estimator, of each signal spectral
component variance [3]. In systems which are based on Wiener filtering,
the STSA estimator is obtained as the modulus of the optimal minimum
mean square error (MMSE) estimator, of each signal speclral component

[1,3]. These two STSA estimators were derived under Gaussian assumption.

Since the 'spectral subtraction’ STSA estimator is derived from an
optimal (in the ML sense) variance estimator, and the Wiener STSA estima-

tor is derived from the optimal MMSE signal spectral estimator, both are
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not optimal speciral amplitude estimators, under the assumed statistical
model and criterion, ’This observation led us to look for an optimal STSA
estimator, which is derived directly from the noisy observations. We con-
centrate here on the derivation of an optimal MMSE STSA estimalor, and on

its application in a speech enhancement system.

The STSA estimation problem is formulated here, as that of estimating

the modulus of each complex Fourier expansion cocflicient? of a given
speech segment. This formulation is motivated by the fact that the Fourier
expansion coefficients of a given signal segment are samples of its Fourier
transform, and by the close relation between the Fourler series expansion
and the discrete Fourier transform. The latter relation enables an efficient

implementation of the resulting algorithm, by utilizing the FFT algorithm.

To derive the optimal STSA estimator, the a-priori probability distribu-
tions of the speech and noise Fourier expansion coefficients should be
known. Since in praclice they are unknown, one can measure each proba-

bility distribution, or alternatively, assume a reasonable statistical model.

In the discussed problem, the speech and possibly alse the noise are
non-stationary processes. Therefore, they are non-ergodic processes as
well. This fact exeludes the convenient possibility of obtaining the above
probability distributions by examining the long-time behavior of each pro-
cess. Hence, the only way which can be used, is to examine independent
sampie functions belonging to the ensemble of each process. e.g., for the
speech process these sample functions can be obtained from different
speakers. However, since the probability distributions we are dealing with
are time-varying (due to the non-stationarity of the processes), their

measurement and characlerization by the above way is complicated, and

®The complex Fourier expansion coefficients are also referred here as spectral com-
ponents,
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the entire procedure seems to be impracticable.

For Lthe above reasons, a slatistical model is used here. This model is
based on asymptotic {7} statistical properties of the Fourier expansion
coefficients, Specifically, we assume that the Fourier expansion coeflicients
of each process can be modeled as staltistically independent Gaussian ran-
dom variables. The mean of each coeflicient is assumed to be zero, since
the processes involved here are assumed to have zero mean. The variance
of éach gspeech Fourier expansion coeflficient is time-varying, due to speech
non-stationarity. This Gaussian statistical model is motivated by the cen-
tral limit theorem, as each TFourier expansion coefficient is after all a
weighted sum (or integral) of random variables resulting from the process
samples. The fact that the central limit theorem is valid (under general
conditions) alse for dependent random variables, which may have different
distributions [4,5]. encourages the use of the Gaussian model in the dis-

cussed problem.

The statistical independence assumption in the Gaussian meodel, is
actually equivalent te the assumption that the Fourier expansion
coeflicients are uncorrelated. This latter assumption is commonly justified
by the fact that the normalized correlation between different Fourier
cxpansion coefficients approaches zero, as the analysis [rame length

approaches infinity [8].

.In our problem, the analysis frame length 7 cannoct be toe large, due to
the quasi-gstationarity of the speech signal. Its typical value is 20-40mseec.
This may cause the Fourier expansion coefficients to be correlated to a
certain degree. Nevertheless, we continue with this statistical indepen-
dence assumption, in order to simplify the resulting algorithm. The case of

gtatistically dependent expansion coefficients is now under investigalion.
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In practice, an appropriate window (e.g. Hanning) is applied to the
noisy process, which reduces the correlation between widely separated
spectral components, ;1t the expense of increasing Lhe correlation between
adjacenl spectral components. This is a consequence of the wider main
lobe, bul the lower side lobes of a window function, in comparison to the

rectangular window,

In conclusion of the above discussion concerning the statistical model
used here, we nole that since the true statistical model is inaccessible, the
'validity of the proposed one can be judged a-posteriori on the basis ol the
results obtained here. In addition, the term "optimal® attributed to the
estimator derived here, should be understood in connection with Lhe

assumed statistical model,

In this paper we derive the optimal MMSE STSA estimalor based on the
above statistical model, and compare its performance with that of the
Wiener STSA estimator. This comparison is of interest, since the Wiener
estimmator is a widely used STSA estimator, which is also derived under the

same statistical model.

The Gaussian statistical model assumed above, does not take into
account the fact that the speech signal is not surely present in the noisy
ocbservation. This model results in a Rayleigh distribution for the ampli-
tude of each signal spectral component, which assumes insignificant pro-
bability for low amplitude realizations. Therefore, this model can lead to
less suppression of the noise, than other amplitude distributioﬁ meodels
(e.g., Gamma) which assume high probability for low amplitude realizations.
However, using a stalistical model of the latter type, can lead to a worse

amplitude estimation when the signal is present in the noisy observations.
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One useful approach Lo the soluticn of this problem, is to derive an
optimal MMSE estimator which takes into account the uncertainty of
speech presence in the noisy observations [3,7,8]. Such an estimator can
be derived on the basis of the above Gaussian statistical model, and by'
assuming that the signal is present in the noisy observations with probabil-
ity p <1 only. The parameter p supplies a useful degree of freedom, which
enables to compromise between .noise suppression and signal distortion.
This is of course an advantage in comparison to the use of a Gamma type

statistical model.

The above approach is applied in this paper, and the resulting 5THA
estimator is compared with the McAulay and Malpass [3] estimator, in
enhancing speech. The latter estimator is an appropriately modified ML
STSA estimator, which assumes Lhat the signal is present in the noisy spec-

tral components with a probability of p =0.5.

In this paper we also examine the estimation of the complex exponen-
tial of the phase, of a given signal spectral component. The complex
exponential eslimator is used in conjunction with Lthe optimal STSA estima-
tor, for construcling the enhanced signal. We derive here the optimal MMSE
complex exponential estimator, and discuss its effect on the STSA estima-
tion. We show that the complex exponential of the noisy phase, is the
optimal complex exponential estimator which does not affect the STSA esti-

mation.

The paper is organized as follows: In Section Il and Appendix A we
derive the optimal STSA estimator, and compare its performance with that
of the Wiener STSA estimator. In Section 11l and Appendix C we extend the
optimal STSA estimater, and derive it under uncertainty of signal presence

In the noisy spectral components. In Section IV and Appendix D we discuss
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the optimal estimation of the complex exponential of Lthe phase. In Section
V we discuss the problem of estimating the variances of the speech and
noise spectral components, which are the pérameters of the statistical
meodel. In Section VI we describe the proposed speech enhancement gystem,
and compare il with the other widely used systems mentioned above. In

Section VII we summarize the paper and draw conclusions.

IL. OPTIMAL SHORT-TIME SPECTRAL AMPLITUDE LESTIMATOR

In this section we derive the optimal STSA estimator, under the statist-
ical model assumed in Section I. We also analyze its performance, and
examine its sensitivity to a key parameter of the statistical model. This
performance and sensitivity analysis is also done for the Wiener STSA esti-

mator, and the two estimators are compared on this basis,

Derivation of Amplitude Estimator

Let z(f{) and d(t) denote the speech and the noise processes, respec-
tively. The observed signal y (¢) is given by:

y(E)Y==(t) +d(t), O=t=T (1)
where without loss of generality we let the observation interval to be [0,7T].
Let X, 4 Acexp{ja,), D, and Y, A Feexp(j9,;) denote the k-th spectral com-
ponent of the signal z(t), the noise d{¢), and the noisy observations y{f),
respectively, in the analysis interval [0,7]. Y, (and similarly X, and D) is

given by:

T
Y o= szy(t)exp(—jz—;r—kt)dt k=0,41,42,... (2)

a
Based on the formulation of the estimation problem given in the previous
section, our task is to optimally estimate the modulus A,, from the

degraded signal {y (), 0<t<Ti.
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Toward this end, we note that the signal fy(¢), 0=t=<7} can be written

in terms of its spectral components ¥, by [6]:

y(t) = ljg;? ki}(}ﬁcexp (5 ?—;;r-kt) OﬁtsT (3)
where Lim means limit in the mean. Moreover, on the basis of the Gaussian
statistical model for the spectral components assumed here, the series (3)
converges almost surely to y(t), for every £¢[0,7]. Therefore, it can be
shown that {y(t), 0=£<T} and {Y,,Y;,...} bear the same information {up to
events whose probability is zerc) [9, Appendix D]. This means that the esti-
mation problem can be reduced to be that of optimally estimating A, from
the infinite countable set of observations {Y0,Y1....}. In addition, since the
spectral components are assumed to be statistically independent, the
optimal MMSE amplitude estimator can be derived from Y, only. In conclu-

sion, the optimal MMSE estimator 2,, of 4, is obtained as follows:

Ay = Bid ly(t), D<t<T} (4)
=B | Yo Y0, 0}

= F{A | Yid
w 2

f Jap (Y lag.o)p (o o )d oty day,
4]

/]
w 2

S Jp(%lo,.0.)p (ay.ap)d o, day,
Q [+]

where £} denotes the expectation operator, and P () denotes a probability

densily function (PDF).

Under the assumed statistical meodel, 2(Y; |og,0) and p(a,,o,) are

given by

P (Y |ag,0p) = E];(E')"expi -~ ';\';‘%}c—)—l Y —ay e?% [#3 (5)
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(p.y) = =2 { o ®
Oy, 0 ) = expi{—

PR e) = T Y P Kk

where ?\z(lc)éEile |?], and hd(.’c)éEﬂDk {?}, are the variances of the k-th
spectral component of the speech and the noise respectively, Substituting

(5) and (8) into {4) gives (see Appendik A):
A =T(1.5) i?_’ff‘- M(~0.5:1; = u) o, 7)
&

‘\f’U,;: U u v
=T(1.5) —= exp (= ) (1+ve)lo( ) +ve [ (2] R,
Tk 2 2 e
I'(-) denotes the gamma function, with I(1.5)=V7/2; M{a;c.z) is the
confluent hypergeometric function [4: A.1.14); () and /,(*) denote the
meodified Bessel functions of zero and first order respectively. v is defined

by:
A bk
'U.l; - 1+£k Vi (B)

where £, and ¥, are defined by;

A A (k)

€ = TTEY ‘ (9)
s B

Tk = E—(%G—)- /(710)

/
€x and 7, are interpreted (after McAulay and Malpass [3]) as the a-priori

and a-posteriori signal Lo noise ratio (SNR) respectively.

A similar expression to (7) was obtained in [11,12], when the amplitude
of a Gaussian sinusoidal random process buried in Gaussian noise is

optimally estimated.

It is of interest to examine the asymptotic behavior of Zk at high SNR,
Le., at £>>1. By considering lhe exponential distribution of w; {ie.,
p(ug)=1/ & exp(—ue/ £4)), it is easy to see that £, 51 implies v, >>1 with high
probability. Therefore, to examine ;ik at £,>>1, we substitute the following

approximation of the confluent hypergeometric function [4: A.1.16b] in (7).
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~ Ny
M(-0.5;1; ~y,) = f‘(_l_'.%)— U 2> 1 (11)
we geb:
~ o~ by .
Ay = T+, R, high SNR (12)
B gy

Bince we estimate the spectral component X, =A.exp (jap) Dby
3(k=2kexp(jﬂk), where exp(j¥;) is the complex exponential of the noisy
phase (see Section IV), we get from (12) the following approximation for

the k-th spectral component estimator:

5 o~ .
Xy = A Y, high SNR (13)

1

& xp

This estimator is in fact the optimal MMST estimator of the k-th spectral
component, i.e., the Wiener estimator. For this reason, (12) is referred as a

Wiener amplitude estimator.

It is useful to consider the optimal amplitude estimator Ek in (7), as
being oblained from £%,, by a multiplicative non-linear optimal gain func-

tion which is defined by:

-~

A A
Gapt('fk-‘)’k) = —1?::_ (14-)

From (7) we see that this gain function depends only on the a-priori and
the a-posteriori SNR, £ and ¥, respectively. Several gain curves which
result from (7) and {14) are shown in Fig. 1. y,—1 in this figure is inter-
preted as the ‘instantaneous SNR', since néﬁf/ha(&:). and R, is the

modualus of the signal plus noise resultant spectral component.

The gain curves in Fig. 1 show an increase in gain as the instantaneous

SNR 7;—1 decreases, while the a-priori SNR §, is kept constant. This
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Fig. 1. Parametric gain curves describing:
(a) - Optimal gain function Gy (£e.7¢) defined by (7) and (14),
(bold lines).
(b) - Wiener gain function G, (£, ,y:) defined by (15), (dashed line).
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behavior is explained below, on the basis of the fact that the optimal esti-
mator finds a compromise between what il knows from the a-priori infor-

mation, and what it learns from the noisy data.

Let £ result from some fixed values of A\; (k) and Ag{k). The fixed value
of A {k) determines the most probable realizalions of 4,, which are con-
sidered by the optimal estimator. This is due to the fact that A, {k) is the
only parameter of p{a;) (see (6)). On the other hand, the fixed value of
Ag{k) makes vy, to be proportional to ., since 7kéi?,f/ Ag(k). Therefore, as
7. decreases and ¢, is fixed, the estimator should compromise between the
most probable realizations of A, and the decreasing values of £,. Since 4,

is estimated by Ap= opt (€5 7% 1%, this can be done by increasing Go (£¢.7: ).

Figure 1 shows also several gain curves corresponding to the Wiener
gain funclion which results from the ampliltude estimalor (12). This gain

function is given by:

_ ke |
Go (€. 7)) = v, (15)
and it is independent of ;. The convergence of the optimal and the Wiener

amplitude estimators al high SNR, is clearly demonstrated in this figure.

It is interesting to note that the same gain curves as those belonging
to the optimal gain function G (€ ,7), Were obtained by a 'vector spectral
subtraction’ amplitude estimation approach [13]. In this appreach, the
amplitude estimator is obtained from two mutually dependent optimal
MMSE estimators, of the amplitude and the cosine of the phase error, (i.e.,
the phase ¥,—a,). Since an estimator of the cosine of the phase error is
used for estimaling the amplitude, this approach is interpreted as a 'vector

spectral subtraction’ amplitude estimation. The derivation of the amplitude

estimalor by the above approach, is presented in Appendix B.



- 49 -

Error Analysis and Sensitivity

The optimal amplitude estimator (7) is derived under the implicit
assumption that the a-priori SNR £, and the noise variance Ag(k) are
known. However, in the speech enhancement problém discussed here, these
parameters are unknown in advance, as Lthe noigy speech alone is available.
Therefore they are replaced by their estimators in a practical system. For
this reason it islof interest to examine the sensitivity of the optimal ampli-

tude estimator to inaccuracy in these paramelers.

We found that the a-priori SNR is a key parameter in the discussed
problem, rather than the noise variance which is easier Lo estimate. There-
fore, we examine here the sensitivily of the optimal amplitude estimator to
the a-priori SNR £, only. In addition, fof similar reasons, we are interested

here especially in the sensitivily al low a-priori SNR (i.e., £, <1).

We presént here a sensilivity analysis which is based on the calculation
of the mean square error (MSE) and the bias associated with the optimal
estimator (7), when the a-priori SNR £, is perturbated. This sensitivity
analysis provides also an error analysis, since the latter turns out to be a

particular case of the former.

A similar problem to the above one, arises in the Wiener amplitude
estimator, which depends on the a-priori SNR pardmeter (see (1R)). Since
the Wiener estimator is widely used in speech enhancemenl systems, we
give here a sensitivity analysis for this estimator as well, and compare it

with the optimal amplitude estimator.
Let {£; denote the nominal a-priori SNR, and Ekéf,ﬁAEk denote ils per-
turbated version. The optimal amplitude estimator which uses the pertur-

bated £, is obtained from {7), and is given by:
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ﬁk =T1'(1.5) ——\—{;—E—M(—O.E; 1, =V ) R (18)
&

where %, is defined by:

Vi = — Yk, (17)
Similarly, the Wiener amplitude estimator with the perturbated &, s

obtained from (12), and is given by:

%
AP = ——R, .
ST S (18)

To calculate the residual MSE in the optimal amplitude estimation (16)
for low a-priori SNR values, it is most convenicnt to expand M(z;cz) in

(18) by the following series [4: A.1.14}:

Mlacz)= S —r Z. (19)

oz afa+l) x?
¢ 1! cf{c+l) 2

where (cz),,éu.(a +1)-(a+r-1), (n,)oél. By so doing, and using Lhe fact that

= 1 +o

7. 18 exponentially distributed, i.e.,

R _ e .
ply) = Hek.eXP( 1+g,;) V=0 {20)

we get the normalized residual MSE sopt(.g,;.'ik) by:

et (B0 )R B4, A, 3/ B[ A —E(A)]E) (21)
ot Jm B 1@ (0s)(-05), 1 [l VYo,
"-__'__1?7"["‘4 I +?§k E.r:—rJ:O (1), (1); TR E +fgk (—€%) i:1—'(1"'-i-"1+1)
nf g % 1% & (-05)(-08), 1 [t ) .
4| 1+¢0 I_:‘_f—h_] E;c;_r,zziu (1) (1), T {1+, () (=) Trai41)

It can be shown by using Lebesgue monolonic convergence theorem, and
Lebesgue dominated convergence theorem [14], that the commutation of
the expectation and limit operations needed in the calculation of (21) are
valid for £°<1 and ¥<(1—£')/ 2¢°. Therefore, Lhe resulting expression in

(21) is also valid in that domain.
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The normalized residual MSE &,{¢;.€,) resulting in the Wiener ampli-

Lude estimation (18), can be calculated similarly, and is given by:

2l F )R ELA—AP1/ B~ (4,) 1 | (22)
_ 1 [1_'_ e Fliver
B 1-—1r/4l 1 +E, £

?k 1 o (“0-5)7' 1

which is valid for £°<1.

For low SNR the above expressions can also be used to calculate the
nominal residual MSE, which corresponds to the MSE when the a-priori SNR

is known exactly. This can be done by substituting #,=¢ in (21) and (22).

For very low SNR values, g4 (£:.£:) and &, (£,.£,) can be approximated
by considering terms of up to third erder only in the infinite sums of (1)
and {22). Iig. 2 shows the residual MSE obtained in this way, as a function
of the nominal a-priori SNR £, and for several values of A&,/ &, A number
of conclusions can be drawn now: First note from {(21) and (22) that the
nominal normalized MSE in the optimal estimation cannot be greater than
unity, while in the Wiener amplitude estimation, it can be as high as
1/ (1-n/ 4). Second, both estimators seem to be insensitive to small pertur-
bations in the nominal a-priori SNR £ value. Finally, it is interesting to
note that both estimators are more sensitive Lo under-estimates of the a-
priori SNR than to its over—éstimates. In addition, by using an over-
estimate of ¢ in the Wiener amplitude estimation, the residual MSE
decreases. This surprising fact can be explained by noting that the Wiener
estimator is nol an optimal amplitude estimator. Thereforl'e. using an

erroneous value of £, can either increase or decrease the MSE.
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Ea; - Optimal estimator (Eq. (18))
b) - Wiener estimator (Iiq. (18))
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We turn now to the calculation of the normalized bias of each estima-
tor, when the a-priori SNR is perturbated. The normalized bias is defined
here as the ratio between the expected value of the amplitude estimation

error, and the expected value of the amplitude,

The normalized bias By, (£4.£,) of the optimal estimator at low a-priori

3NR, is obtained by using (18), (19), and {20). It is equal to:

Bopt (&582) B B84 ~A,3/ BiAS (25)
L[ Ee 1 )P (-~0.6)r[ 1+ U o
) v o+E, & rzz:ﬂ (1), 1+, (~$e)

and is valid for f':f' <1. The normalized bias Bw(fk'."ék) of the Wiener ampli-

tude estimator, is easily oblained from (1B), and is given by:

He>

By (¢ k) & ELA—AYY/ B{4L} (24)

% [1‘*‘51\:]1/2

1l

! +¥, 74

Fig. 3 shows the bias of the oplimal and the Wiener amplitude estimators,
as a function of ¢, Bopt(.f,-:,“ék) in this figure is calculated by using terms of

up to the third order in the infinite sum in (23).

III. OPTIMAL AMPLITUDE ESTIMATOR UNDER UNCERTAINTY OF SIGNAL PRESENCE

In this section we derive the optimal MMSE amplitude estimator under
the assumed Gaussian statistical model, and uncertainly of signal presence
in the noisy observations. By so doing we extend the optimal amplitude

estimator derived in Section 11, as will be clarified later,

Signal absence in the noisy observations fy{t), 0=t<T} is frequent,
since speech signals contain large portions of silence. This absence of gig-
nal implies its absence in the noisy spectral components as well. However,
it is also possible that the signal is present in the noisy observations, but

appears with insignificant energy in some noisy spectral components,
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which are randomly determined. This is a typical situation when the
analyzed speech is of voiced type, and the analysis is not synchronized

with the pitch periocd.

The above discussion suggests two statistical models for gpeech
absence in the noisy spectral components. In the first one, speech is
assumed to be either present or absent, with given probabilities, in all of
the noisy spectral components. The reasoning behind this medel is that
gignal presence or absence shonld be the same in all of the noisy spectral
components, since the analysis is done on a finite interval. In the second
model which represents the olther extreme, a statistically independent ran-
dom appearance of the signal in the noisy spectral components is assumed.
As is implied by the above discussion, this model is more appropriate for
voiced speech signals, when weak signal spectral components are con-

stdered as if they were absent.

These two meodels, and the resulting optimal amplitude estimators
based upon them, are examined in details in [8]. We found that the estima-
tor whose derivation is based on the second model, is especially successful
in speech enhancement applications. Therefore, we present in this section
its derivation, and leave for Appendix C the discussion concerning the

optimal estimator which is based on the first model.

The idea of utilizing the uncertainty of signal presence in the noisy
spectral components, for improving spelech enhancement results, was first
proposed by McAulay and Malpass [3]. In their work they actually capitalize
on the above second ﬁodel of signal absence, and modify appropriately a
ML amplitude estimator. In Section VI we compare the McAulay and Malpass
amplitude estimator, with the one which we derive here, in enhancing

specch.
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Derivation of Amplitude Estimator Under Signal Presence Uncertainty

The optimal MMSE. estimator which takes into account the uncertainty
of signal presence in the noisy observalions, was developed by Middleton
and Esposito [7]. Based on our second model for signal absence, in which
statistically independent random appearance of the signal in the noisy
speclral components is assumed, and on the statistical independence of
the spectral components assumed in Section I, this oplimal estimator is

given by [8] (see Appendix C):

Ay = 2okl B A | Y S (25)

AV 9e) = py ——“""'"'“l—‘ (26)
with p.;cé(l—qk)/ 9. and g, is the probability of signal absence in the k-th
spectral component. A? and /! denote the two hypotheses of signal
absence and presence, respectively, in the k-th spectral component,
E{A: | Y HY is the optimal MMSE amplitude estimator, when the signal is
surely present in the k-th spectral component. This is in fact the oplimal
estimator (7). Therefore, in order to derive the new optimal estimator (25),
we need to calculate the additional function A(Y,q:) only. This can be
easily done by using the Gaussian statistical model assumed for the spec-

tral components, or equivalently, by using (5) and (8). We get:

A Yeqy) = py ——rm (R7)

¥ LR ' 28
Mg (k) (28)
This definition agrees with its previous definition in {9), since there the sig-

nal is assumed to be surely present in the noisy spectral components.
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It is more convenient to make A(Y:.q:) and the resulting amplitude
estimator, a function of méEiAkzi/ A¢(k) which is easier to estimate than

£c. M is related to &, by:

= Y (R9)

I
P
—
i
o
A
>
—
&
S

= (1—g¢) &
Thus, by considering A(Y,.q:) in {(27) as A(£..7..95). and using
EY A |y H = Gopt (£ 72 ) B, where Gy (£4.7%) is the gain function defined by

(7) and (14), the optimal amplitude estimator (25) can be written as:

~ M yer) !
Ak - 1 +A($k'7k'qk) Gopt (‘Ek !7&:)}?&: |£k=_1]£__ (30)

Gapt (e i Q) e

it

Note that if g, =0, then A/ (1+4) in (30) equals unity, and also 7, =£,. In
this case G;,?,,(nk Yr.Qe) turns out to be equal to Gopt (¢4 .7x). Thus the
optimal amplitude estimator (?) can be considered as a particular case of

the optimal amplitude estimator (30).

-Several gain curves which result from G@t(nk e qx) in (30), are
described in Fig. 4 for ¢,=0.2. Il is interesting to compare Lhese gain
curves with those of Gy (éy.7x) which are depicted in Fig, 1. Especially it is
intersting to see how the trend of the gain curves in each pair, correspond-
ing to the same value of the a-priori SNR, changes, as this value increases.
The decrease in gain as 7y, decreases and 7, is high, for the case in which
q5 >0, is in contrast to the increase in gain for the case in which g =0 (i.e.,
for Gop(£x.7¢)). This is probably a result of favoring the hypothesis of sig-

nal absence by the amplitude estimator {30) in such a situation.
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We conclude this section by noting that the estimator (25) which takeé
into account Lthe signal presence uncertainty, could be obtained from the
estimator (4} which as:sumes that the signal is surely present, if p(a;.a.) in
(4) is chosen appropriately. This can be done by using

P (ag.0p) = (1-q,)p (e, 0 | HY Yy 60y 0 ), (31)
where p(og,0p /') is the common PDF of 4, and @, when the signal is
surely present and &{g,.a;) is a Dirac function. Under the Gaussian
assumption used here, p(a;.a; |H!) is given by (8). This is an interésting
interpretation of the estimator (25), which was originally derived in [7] by
minimizing the mean square eslimation error (see Appendix C). It also indi-
cates thal the estimator derived by using (4) with the above p(u;,a,), (or
equivalently (25)), is optimal for a class of a-priori PDFs which differ in the

probability assumed for signal absence.

. OPTIMAL MMSE COMPLEX EXPONENTIAL ESTIMATOR

In the previous sections we gave the motivation for using ;he optimal
STSA eslimalor of the speech signal, and derived it. In this section we con-
centrat.e on the derivation of an optimal MMSE estimator. of the complex
exponential of the phase. This estimator is combined with the optlimal
STSA estimalor for constructing the enhanced signal. We base the estima-
Lion on the same statistical model assumed in Section I, which was used in

the derivation of the STSA estimator.

We show thal the optimal complex exponential estimator has a non-
unity modulus. Therefore, combining it with an optimal amplitude estima-
Lor, results in a new amplitude estimator which is no longer optimal. On the
other hand, the optimal complex exponential estimator whose modulus is

constrained to be unity, is the complex exponential of the neisy phase.
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We also show in this section that the optimal estimator of the principle
value of the phase, is the noisy phase itself. This result is of inlerest,
although it dées not provide another estimator for the complex exponen-
tial than the aboﬁe constrained one. Its importance follows from the fact
that it is unknown which one, the phase or its complex exponential, is more
important in speech perceplion. Therefore, the optimal estimators of both

of them should be examined.

Derivalion of Optimal Complex Exponential Estimator
Based on the stalistical model assumed in Section I, the optimal MMSE
estimator of the complex exponential eja", given the noisy observalions
ty (L), 0<t<T}, is given by:
T% = [ie? |y (4), D<t=T} (32)
=Ete’™ | Yo Y1}
= Bie’ ™ | 7,3
= Efe ™| Y, 3e

P s j ¥

= [Efcosepy | i} — jE{sing, | Y }le’
where ¢, is the phase error which is defined by ;akéﬂk -, and ¥, is the
noisy phase. IFising,| Y] and Ffcosg, | ¥} were calculated for the Gaus-
sian statistical model assumed here. By using (5) and (6) we obtain (see

Appendix D):

Efsinge | Y] =0 (33)
and
Tay, _ iy,
e’ * = Ficosg, | Y le ‘ . (34)

— i
= T{1.6)v, M(0.5; 2 —u,)e? "

= T(1.5)vvg exp (—v,. / ) Jolvy 7 2) 401 (w7 2)]e’ ™
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= cosgg e’ ¢

The combination ?f the optimal estimator e?&"’ with an independently
derived amplitude estimator Ek, results in the following estimator .}\.(k for
the k-th spectral component:

Xe =4, cosﬁg:,, e’k (35)

The modulus of the spectral estimator ?(,c represents now a new amplitude

ok, N -~
estimator which equals to A,cosp,. If A, is an optimal estimator, (e.g.,

(7)). then the resulting new amplitude estimator is no longer optimal.

It is worthwhile to further investigate the estimator (35), when Z,c is
the optimal estimator from (7). We show now that this estimator is nearly
equivalent to the Wiener spectral estimator X¥, which is given by {13). On
the one hand, this fact implies that ?(,c is a nearly optimal MMSE spectral
estimator, since the Wiener spectral estimator is an optimal one. On the
other hand, this fact enables to estimate the degradation in the amplitude

estimation, by using the error analysis of the previous section.

To show that X, in (85) and X in (13) are nearly equivalent, we com-
pare their gain curves for the SNR values which are of interest here.
Several of these gain curves are shown in I'ig. 5. The closeness of the gain
curves which correspond to the same value of &, implies that the two esti-

maters X, and X are nearly equivalent.

Due to the major importance of the STSA in speech perception, it is of
interest Lo derive an optimal estimalor of the complex exponential of the

phase, which does not affect the amplitude estimation.

To derive the above estimator, which we denole by e'f"", we solve the

following constrained optimization problem
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Fig. 5.  Parametric gain curves resulting from:

(a) - Optimal amplitude estimator combined with optimal complex
exponential estimator (Bg. (35)).
(b) - Wiener gain function (fiq. (15)).
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NP L 2 P
ggﬁ—ﬂile R (36)
e
subject to |’ ™| =1

Using the Lagrange multipliers method, we get (see Appendix D):
o~ R .
Tog g“"‘ (37)
That is, the complex exponential of the noisy phase, is the best MMSE com-

e

plex exponential estimator which does not affect the amplitude estimation.

Optimal Phase Fstimator

The optimal estimator of the principle value of the phase is derived
here by minimizing the following distortion measure [16]:

E{1 — cos{ag —az )} | (38)
This measure is invariant under modulo 27 transformation of the phase ¢,
Lthe eslimated phase a,c, and the estimation error ay »ak. For small estima-
tion errors, (38) is a Lype of lecast square criterion, since 1-cosﬁ;ﬁ3/2 for

g<<t.

The optimal estimator &k which minimizes (3B), is easily shown to

salisly:
~ Eisinoyg | Y}

|4 =

§ % = Fioose | 7} (36)
By using a; =0, —¢;. and Elsing, | ¥, }=0 (see {33)), it is casy to see thatl:

Eisinag | Y, ] = sint; cosp, (40)

Eicosay | ¥} = costcosg, (41)
On substituting (40) and {41} into (39), we get:

tg a, =ty o, (42)

or alternatively &k = .



- 64 -

V. VARIANCE ESTIMATION OF SPECTRAL COMPONENTS

In this section we address the problem of estimating the variance of a
signal spectral compoﬁent. and of a noise spectral component. The estima-
tors of these variances are used for estimating the a-priori SNR, which is a
paramueter of the oplimal and Wiener STSA estimators. Due to non-
stationarity of the speech signal and possibly also of the noise process,
these variances are time varying, and therefore they should be re-

estimated for each analysis frame.

We examine here the estimation of the variance of a signal spectral
component only. The easier problem of estimating the variance of a noise
spectral component is well treated in the literature (e.g., [18,17]), and
therefore it is not discussed here. The general appreach is to estimale the
neise speclral components variances from non-speech inlervals, which are
most adjacent in time Lo the analyzed frame. This approach is of course
suitable only if the noise is 'stationary’ over a sufliciently long time inter-
val.

Two approaches for estimating a signal spectral component variance
are considered here. The first is based on a ML estimation approach, and
the second is based on a 'decision-directed’ estimation method. We present
here the derivation of cach estimator, and leave for the next section the
discussion concerning its application and performance in the proposed

speech enhancement system.

Maximum Likelihood Estimation Approach

The ML estimation approach is most commonly used for estimating an
unknown parameter of a given PDF (e.g., A, (k) in (8)), when no a-priori
information about it is available. We derive now the ML estimator of the k-

th signal spectral component variance in the n-th analysis [rame. We base
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the gstimalion on L consecutive observations
Yk(n)éiYk(n).}’,‘c(n-l), .. Y (n—L+1)], which are assumed to be statisti-
cally independent. 'I‘hi:s assumption is reasonable when the analysis is done
on non-overlapping frames. However, in the system used here overlapping
is done (see Section VI). Nevertheless, we continue with this assumption,
since the statistical dependence is difficult to be modeled and handled. We
also assume that Lthe signal and noise k-th spectral component variances,
Az (k) and Ag(k) respectively, are slowly varying parameters, so that they
can be considered constant during the above /, observations. Finally, we

assume that the k-th noise spectral component variance is known.

The ML estimator ?\x(lc) of Az(k), which is constrained to be non-
negative, is the non-negative argument which maximizes the joint condi-
tional PDF of Y, (n) given A, (k) and Ay(k). Based on the Gaussian statisti-
cal model and the stalistical independence assumed for the spectral com-

ponents, this PDF is given by:

PO EINED = 1t op(- s ) )

where K, (l)— [V (). A, (k) is easily obtained from (43), and equals to:

15z . .

=¥ BE(n—1)-Ag(k if non-negative
~ . 2 lé_, i ( a{k) J g (44)
Ag (k) = 0 otherwise

This estimator suggests the following estimator for the a-priori SNR £, .
1 i e(n—~1)—1 if non-negative

- (45)
£ = 1o otherwise

where 7k(z):|yk(1)|3/)\d(k) is the a-posteriori SNR in the I-th analysis
frome. Note that the estimator (45) assumes the knowledge of Ay (k). which
iIs needed to calculate 7, (). In practice Ay(k) is estimated independently

(as discussed above), and substituted in (45).
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It is interesting to consider the ML estimator (44) when L=1. In this
case we get the 'power spectral subtraclion” estimator derived in [3]. The
application of the c;)rrcspond'ing ¢, cstimalor (45) (with L=1) to the
optimal estimator (7), results in a gain [unction which depends on 7, only.
Surprisingly, this gain [unctlion is almost identical to the 'spectral subtrac-
tion' gain function for a wide range of SNR values. The 'spectral subtrac-
tion' gain functien is given below by (48) [1]. and the above nearly

equivalence occursg when g=1.

Gsp(7k) A —{‘3’%}’"_)_ (48)

= \/1 - 7:Ek , g=1

This fact is demonstrated in Fig. 6. Tor comparison purposes, the same
figure shows also the gain curve for the Wiener amplitude estimator, which

results from (12) and the same a-priori SNR estimator (i.e., (45) with L=1).

In practice, the running average needed in (45), is replaced by a
recursive averaging with a time constanl comparable Lo the correlation
time of 7,. Thal is, Lthe estimater of £ in the n-lh analysis frame is

obtained by:

Pe(n) = ayp(n—1)+(1-a) Z"f'é?")" O=a<l, B=1, (47)
- Ye(n)—1 P (n)—1=D
fln) = 0 otherwise

f is a correclion factor, and it plays here the same role as in the 'spectral
subtraction’ estimator (48). The values of a and g are determined by infor-

maol listening, as is explained in Section VI

‘Decision-Directed’ Fstimalion Approach

We consider now the cstimation of a signal spectral component vari-

ance by a 'decision-directed’ method. This estimator is found to be very
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useful when it is combined with either the optimal or the Wiener amplitude

estimator.

As done previously, we assume that the variance of each noise spectral
component is known, and therefore we discuss the equivalent problem of
eslimating the a-priori SNR of a spectral component. In practice, an esti-

mator of the noise variance is used in the resulting estimator.,

Let £.(n), A(n), Mgk n), and 7.(n), denote the a-priori SNR, the
amplitude, the noise variance, and the a-posteriori SNR, respectlively, of
the corresponding k-th spectral component in the n-th analysis fame. The
derivation of the a-priori SNR estimator is based here on the definition of

£x{n), and its relation to the a-posteriori SNR 7, (n), as given below:

_ E{AB(n)}
fe(n) = “X;(%;};T (48)
br(n) = Efyp(n)—13 (48)

Using (4B} and {19) we can wrile:

_ a1l AE(R)
teln) = £t oaTr ) -1 (50)
The proposed estimator #,(n) of £x(n) is deduced from (50), and is given
by:
t(n)=a Af(n 1) +(1-0)Plye(n)-1]1, O=a<i (61)
= e — — <o
k Ak ,n—1) ALYy '

where ﬁk(nul) is the amplitude estimator of the k-th signal spectral com-
ponent in the (n-1)-th analysis frame, and P[] is an operator which is
defined by:

x if p=0
Pla] = /

0] otherwise (52)

By comparing (50) and (51), we see that ‘g,c (n) is obtained from (50) by
dropping Lthe expectalion operator, using the amplitude eslimator of the

(n-1)-th frame instead of the amplitude ilself in the n Lh fame, introducing
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A weighling factor between the Lwo terms of £ (n), and using the operator
P[] defined in {52). P[-] is used to ensure the positiveness of the proposed
estimator in case 7 (n')—l is negative. It is also possible to apply the opera-
tor P on lhe right hand side of (51) rather than on y,(n)—1 only. However,

from our experience both alternatives give very similar results.

The proposed estimator for £,(n) is a 'decision-directed’ type estima-

tor, since Ek(n) is updated on the basis of a previous amplitude estimate.

By using ﬁk(n)z(}(:f,,, (n)7e(n))R.(n), where G{-,-)} is a gain function
which resulls from either the optimal or the Wiener amplitude estimalor,
(61) can be written in a way which emphasizes its recursive nature. We get
from (61):

£:(n) = aG @ (n=1)7p (0 =1y (1) +(1-a) Pl (n) ~1] (53)
Several inilial conditions were examined by simulations. We found that
using £,(0)=a+(1-a)P(y,(0)-1) is appropriate, since il minimizes initial

trangilion efiecls in the enhanced speech.

The theoretical investigation of the recursive eslimator (53) is very
tfomp].icate due to its highly non-linear nature. Even for the simple gain
funclion of the Wiener amplitude estimator it was difficult to analyze.
Therefore, we examined it by simulation only, and determined in this way

the 'best’ value of «.

VI. SYSTEM DESCRIPTION AND PERFFORMANCE EVALUATION

In this section we first describe the proposed speech enhancement
system, which was implemented on a general purpoée computer (Relipse S-
250). Then we describe the performance of this system, based on informal
listening, when each of the STSA estimators discussed in this paper is

applied.
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System Description

The input to the prdposed system is an BkHz sampled speech of 0.2-
3.2kHz bandwidth, which was degraded by uncorrelated additive noise.
Kach analysis frame which consists of 266 samples of the degraded speech,
and overlaps the previous analysis frame by 192 samples, is spectrally
decomposed by means of a discrete short-time Fourier transform {DSTFT)
analysis [1B,19], using a Hanning window. The STSA of the speech signal is
then estimated, and combined with the complex exponential of the noisy
phase. The estimated DS'TFT samples in each analysis frame are used for
synthesizing the enhanced speech signal, by using the well known weighted

overlap and add methed [18].

In applying the optimal amplitude estimators (7) and (30) in the pro-
pesed system, we examine their implemenlation through exact calculation
as well as by using look-up tables. Each 1ook~up.table containg a finite
number of samples of the corresponding gain function in a prescribe
region of (£,7). We found, for example, that when the input 3NR is in the
range [-5, 5]dB, and the "decision-directed” a-priori SNR is utilized, it
suflices to use 961 samples of each gain function, which are obtained by
uniformly sampling the range:

—15=[(¢,7-1) or (n.y—1)]=15d5. As judged by informal listening, this sam-
pling of Lhe gain functions results in a negligible addilional residual noise
Lo the enhanced sigﬁal. Therefore, the proposed system operating with the
oplimal amplitude estimator, can be implemented with a similar complexity
to that of other commonly used systems, although a more sophisticated

amplitude estimator is used here.

The proposed system is examined here for enhancing speech degraded

by stationary noise. Therefore the variances of the noise speclral com-
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ponents are estimated only once, from an initial noise segment having a
duration of 320 msec. The estimated variances are used in the estimation

of 7¢, and £; by either (47) or (51).

Performance Tvaluation

In this section we describe the performance of the above speech
enhancement systems, when each of the STSA estimators considered in this
paper is applied. Both a-priori SNR estimators (i.e., the ML and the
"decision-directed”) are examined. The values used here for the parame-
ters & and g in (47) and (51), are the best ones found by simulations. Fig. 7

describes a chart of the comparison tests made here,

In each test, speech signals which were degraded by stalionary
uncorrelated additive wideband neise with SNR values of 5, 0, and -5dB,
were enhanced. The speech material used includes the following sen-
tences, each spoken by a female and a male:

Joe brought a young girl

An icy wind raked the beach

A lathe is a big tool
In addition the sentence "we were away a year ago” spoken by anolher
male is examined. Four listeners participated in the comparison tests. In
each test a pair of the enhanced speech signals were presented to the
listeners, (through earphones), and they were asked to compare them on
the following basis: amount of noise reduction, the nature of the residual

noise (e.g., musical vis uniform), and distortion in the speech signal itself.

Let us consider first the tests in which STSA estimators whose deriva-
tion is based on the assumption that the speech is surely present in the

noisy observaions are used.
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Case I: Using either the optimal estimator (7) or the Wiener estimator (12),
when the a-priori SNR is estimated by the ML estimator (47) with
«=0.725, 8=2, gives a very similar enhanced specch quality. A significant
reduction of the noise is perceived, but a 'musical noise’ is introduced.
The power of this ‘musical noise' is very low at the 5dB SNR value, and it
increases as the inpul SNR decreases. The distortions caused to the speech
signal seem to be very small at the high SNR value of 5dB, and increase as
the input SMR decreases. Nevertheless, al the SNR value of ~-5dB, the

enhanced speech is still very intelligible.

Case II' The enhanced speech obtained by using the 'spectral subtraction’
amplitude estimator (46) with =2, suffers from a strong 'musical noise’.
This 'rmmusical noise’ is of higher power level and wider band, than the 'musi-
cal noise’ obtained in the above optimal and Wiener estimations (Case 1).
This is es.pecially prominent at the low input SNR values of 0dB and -5dB.
For this reason, the quality of the enhanced speech obtained by using
either the optimél or the Wiener estimator, is much better than that

obtained by using the 'spectral subtraction’ estimator.

Case JII: Using the optimal estimator {7), when the a-priori SNR is estimated
by the 'decision-directed’ estimator (51) with x=0.98, results in a great
reduction of the noise, and provides enhanced speech with colorless resi-
dual noise. This colorless residual noise was found to be much less annoy-
ing and disturbing, than the 'musical noise’ obtained when the a-priori SNR
is estimated by the ML estimator (47). As could be judged by informal
listening, the distortions in the enhanced speech obtained by using the
optimal estimator with either the ML or the 'decision-directed’ a-priori SNR

estimator, are very simiiar.
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CASE 1V: Using the Wiener amplitude estimator with the 'decision-directed’
a-priori SNR estimator and «=0.98, resulls in a more distorted speech than
that obtained by using the recently described optimal amplitude estimator.
However, the residual noise level in the Wiener estimalion is lower than
that in the optimal estimalion. Lowering the value of &, reduces the distor-
Lions of the enhanced speech, but introduces a residual 'musical noise’ as
well, This ‘'musical noise’ is prebably contributed by the second term of the
'decision-directed’ estimator (i.e., P[y,(n)-1] in (51)), whose relative
weighl increases as the value of  decreases. We found that using «=0.97
results in an enhanced spe'ech whose distortion is similar to that obltained
by using the optimal estimator. In addition, the level of the residual 'musi-
cal noise' obtained then, is lower than that obtained by using the ML a-

priori SNE estimator.

CASE V: The optimal amplitude estimator (30), which takes inte account the
" uncertainty of signal presence in the observed signal, results in a better
enhanced speech quality than that obtained by using the optimal estimator
{7). Specifically, by using (30) with ¢,=0.2, and ‘the decision-directed’ a-
priori SNR estimator (51) ( when £,(n) is replaced by 7,(n)) with a=0.99,
we gel a further reduclion of the residual noise, with negligible additional

distortions in the enhanced speech signal.

CASE VI: The enhanced speech obtained by using the above optimal estima-
tor ((80) with g,=0.2, and (51) with «=0.99), was compared with the
enhanced speech obtained by using the McAulay and Malpass amplitude
estimator [3] (see Section I1I). The latter estimator was operated with the
‘best’ value (as judged by informal listening) of the a-priori SNR parameter,
which was found to be 12dB in our experiment. It was found that the main

difference between the two enhanced speech signals is in the nature of the
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residual noise. When the optimal estimator is used the residual noise is
colorless, while when the McAulay and Malpass estimator is used, musical

residual noise results.

VII. SUMMARY AND DISCUSSION

We present in this paper an algorithm for enhancing speech degraded
by uncorrelated additive noise, when the neisy speech alone is available.
The basic approach which was taken here, is to optimally estimale the
short-time spectral amplitude (STSA} and complex exponential of the
phase, of the speech signal. We use this approach of oplimally estimating
these two components of the short-time TFourier transform (STFT)
separately, rather than optimally estimating the STI'T itself, since the STSA
of a speech signal rather than its waveform, is of major importance in
speeéh perception. We showed that the STSA and the complex exponential
cannot be estimated simultaneously in an optimal way. Therelore, we use
an optimal MMSE STSA estimator, and combine it with an optimal MMSE
estimator of the complex exponential of the phase which does not affect
Lhe STSA estimation. The latter constrained complex exponential estimator

is found to be the complex exponential of the noisy phase.

In this paper we derive the optitnal STSA estimator and analyze its per-
formance. We showed that the optirnal STSA estimator, and the Wiener
STSA estimator which results from the optimal MMSFE STFT estimator, are
nearly equivalent at high SNR. On the other hand, the oplimal STSA estima-
Lor results in significantly less MSE and bias when the SNR is low. This faet
supporis our approach to optimally estimate the perceplually important
STSA,

An optimal MMSE STSA estimator which takes inlo account the uncer-

Lainty of signal presence in the noisy spectral components is also derived
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in this paper, and examined in enhancing speech.

The optimal STSA‘esl;imator depends on the paramelers of the statisti-
cal model it is based on. In the proposed algorithm these are the a-priori
SNR of eac.h spectral component, and the variance of each noise spectral
component. The a-priori SNR was found to be a key parameter of the STSA
estimator. It is demonstrated here that by using different estimators for
the a-priori SNR, different STSA estimations result. For example, using the
‘power spectral subtraction’ methoed for estimaling the a-priori SNR,
resuits in an STSA estimator which is nearly equivalent Lo the ‘spectral

sublraction' STSA estimator.

We preposed here a 'decision-directed' method for estimating the a-
priori SNR. This method was found to be useful when it is applied to either
Lhe optimal or Lthe Wicner S1'SA eslimalor. By combin ing Lhis eslimalor wilh
the optimal STSA estimator which takes into account the uncertainty of
signal presence in the noisy observations, we oblained Lhe best speech
enhancement results. Specifically, a significant reduction of the input

noige is obtained, and the residual noise sounds colorless.

We believe that the full potential of the proposed approach is not yet
exploited, although very encouraging results were obtained. Better results
may be obtained if the a-priori SNR estimation could be improved. This

issue is now being investigated.
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Appendix A

In this Appendix we derive the oplimal amplitude estimator (7). On
substituting (5) and (8) into (4), and using the integral representation of

the modified Bessel function of zero order [10: 8.431.5],

2
L(z) = —él;r—fexp(z.cosﬂ)dﬁ {A.1)
we obtain:
w 2 ——
. [ afexp(~ Itz‘_,t')_)fo (2ay '\/ 5\"(7’;‘)—)0[%
A = (A.2)

@

Jonoxp(= )b (2o v/ oL

where v, is defined by (8), and A(k) satisfying:

1 1 1
MNE) TR (EY T Rg(R) (A.3)

By using [10: 6.631.1, 8.406.3, 9.212.1] we get from (A.2):

Hk = A RLBYM(0.5; 1; 1) (A.4)
Ek as given by (7) is obtained from (A.4) by using (A.3) and (8-10). The

equivalent form of Ek as given in (7}, is obtained by using {4: A.1.31a].

Appendix B VECTOR SPECTRAL SUBTRACTION

This Appendix deals with the estimation of the short-time spectral
amplitude (STSA) of the speech signal, by the “"Vector Spectral Subtrac-
tion” approach. The motivation for deriving this estimator was to extend
the popular "spectral subtraction” STSA estimator [1]. We use here the
same notation of section II, and consider the estimation of 4, from Y.

which is given by:

Yj: = Xk +Dk (Bl)
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In explaining the basic approach, it is useful to consider the "phasor
representation” of (B.1), as shown in Fig. B.1. The “vector spectral sub-
traction” amplitude esltimator results from two mutually dependent estima-
Lors, of the amplitude A, and the cosine of the phase error ¢, . Specifically,
it is derived in three steps. First, we derive an optimal MMSE estimator Zk
of 4y, from the observation (/3. 9,), assuming that ¢, is known. We get an
estimator which depends on /3, and cosg. Then, we derive an optimal MMSF.
estimator co“égak of cosg,. from the observation (&, B, ), assuming that A,
is known. We get an estimator which depends on K, and 4. The "vector
spectral subtraction” amplitude estimator 2,,, is finally obtained from the
solution of the two estimation equations for Zk and cor‘égpk, when each

assumed known random variable {cosg, or 4, }is replaced by its estimator.
According to the above approach, :\4‘;,. is given by:
Ap = ElA | B By .01} (B.2)

= E{Ag | 75 8y oy )

J o (e 8 |, )p (g, 0 )day,
a

S (re 3 o .op)p (e 0 Yday,
4]

Substituting (5) and (8) into (B.2), gives:

p PR L U U
A = 1+£k [1+y§ A(V}c)]ﬁk(‘.OSfpk (B.B)
where,
Vk é .\/2 I—f‘}%—k—"}’kcos¢k (Bq)
VT, (0.5+erf (v, 2,0 '

Ay & YER 05t (n))oxp(ut 2 5o
14+V&mv, (0.5+erf (1, ))exp(vE/ 2)
A g

erf (v) £ *\—%:;{ex_p(“tz/z)dt (1.6)

Ek depends on the cosine of the phase error which will be estimated next,
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Fig. B.1: Phasor representation of (B.1).
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and on £ and y, which are defined in (9) and (10) respectively. A(v,) is a
monotonically decreasing function, approaching zero as the SNR value

increases (i.e., as v »o),

Assuming that the observed phase 9, is given, g, is a function of ay
enly. Therefore, the optimal MMSE estimator of cosg,, given (R,.¥,), and

assuming that 4; is known, is:

~

cospy = Elcosey | K 9y 4} (B.7)
23
Jeose,p (R 9y |ay.00)p (a0 ) o
- ¢
- 2n

S By | ag 0y, )p (0 sy )
2]

Substituting {§) and (6) into (B.7), and performing the integration, gives:

cosg, = %E—;:%— (B.8)

where p, is defined by:

A A
P 2 2y, 7 (B.9)
X

The desired estimator Ek of A, results from the solution of the two
non-linear equations (B.3) and (B.8), when cosg, in (B.3) and A, in (B.B),
are replaced by co“égok and Z,c, respectively. Except for high SNR values, it
is difficult to obtain or to prove the existence and uniqueness of a closed -
form mathematical solution. This problem is still open. However, a numeri-
cal epproach resulted in a single solution for Lhe gain function
G .7k)éﬁk/ R, and its gain curves were found to coincide with those of
Lhe oplimal gain function Gy (£k,7:). We conjecture that this coinciding is
a consequence of the statistical independence assumption of the real and
imaginary parts of each Fourier expansion coeflicient, which results in the
statistical independence of the amplitude and the phase. This probably

enables to obtain the optimal amplitude estimator, by cross-coupling the
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two partial optimal estimators, of the amplitude and the cosine of the

phase error.

The interpretation of the proposed amplitude estimator as a "vector
speciral subtraction” amplitude estimator, follows from the fact that 4, in
the "triangle" shown in Fig. B.1, is eventually estimated from the observa-
tion K, the variance of the noise [),, and by utilizing an estimate of eX: 108
(see (B.3)). This is in contrast with the "spectral subtraction” amplitude
estimator {i.e. Ekz\/ﬁm), which is oblained from the observation R,
and the variance of the noise [, by applying the Pythagorean relation to
the triangle in figure B.1, which is considered to be a right triangle. Since
the optimal gain curves coincide with those of the “vector spectral sub-
traction” amplitude estimator, the above interpretation holds for the

optimal amplitude estimator (7) as well.

We Lurn now to examine the asymptotic behavior of the "vector spec-
tral subtraction” amplitude estimator at high SNR. Substituting A{v,)=0 in
(B.3) and paralleling the procedure described above for obtaining Ek. we
arrive at the following single equalion:
~ fe L(@vmAr/ R)

A, =
T LR AL /R
The solution of (B.10) for £, =, gives the exact ML estimator of 4 {11,20].

R high SNE (B.10)

The corresponding gain curve which results from a numerical solution, is
shewn in Fig. B.2. This figure demonstrates also the close relation between

the ML and "spect'ral subtraction" amplitude estimators.

By letting £ == in (B.10), using the relation /,(p;)=81,(p, )/ 8p,. and the

following asymptotic approximation for I,(p,) [21].

b/ e . >>1 B.11

we get the McAulay and Malpass {3] approximation for the ML amplitude
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Fig. B.2: Gain curves deseribing:
(a) "Spectral Subtraction” gain function (Bq. (46) with g=1).
(b) ML amplitude estimator (Eq. {B.10) with £-w),
{c) Approximated ML amplitude estimator (Bq. (B.12)).
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estimator:

Ek = %[11—-\/1-—:}-}—1—]& high SNR (B.12)
k :
The gain function which results from this estimator is also shown in Fig.

B.2.

Note Lhat although the'gain curves of the optimal and the "vector
spectral subtraction” amplitude estimators coincide, we get mathemati-
cally that they converge to different estimators (i.e., Wiener and ML respec-
tively) at high SNR. This is of course a consequence of the different approx- 7
imation made in each case, in order to get the asymptotic behavior. How-
ever, as is well known, both estimators result in similar performance at

high SNR.



- 84 -

Appendix C

In this Appendix we derive the optimmal MMSE STSA estimators, under the
two statistical models of signal absence in the noisy observations. This deriva-

tion is based on [7].

We begin with the first model in which signal is assumed to be either
present with probability 1—q, or absent with probability ¢, in all of the neisy
spectral components. We base the estimation on a finite number of speclral
components l’é(Ya,Yl, ..., Yg). K is chosen to satisfy K=BT+1, where B

denotes the signal bandwidth, and 7 is the analysis interval length.

The risk to be minimized is given by:

J = E{C(Ay. Ay H)} (C.1)
where C(-) is the cost function, and # is a binary random variable representing
the two hypotheses. The PDF of H is given by:

plh) = qb6(h -H°)+(1—q)6(h —H") (C.2)
where 6() is a Dirac function, and #/° and #' denote the hypotheses of signal

absence and presence respectively. When a quadratic cost function is used, C{-)

is given by:
- (4 —Ax)?  p=m
C(Ak'Ak'H) = [;1’5 H = Hu (CB)
By using (C.2), we can write (C.1) as:
J=[f p(¥ia h)p(a |h)p(R)C(ay.ae.h)dhda dY (C.4)
=q [ fp(¥ |2 H)p(a |H)C(ay ap H*)da dY
+-q) f fp(Y 12 H)p(a | H)C(a, 00 H )da 4
where o é(ao.ul....,a]() is a realization of the vector (40.4,,...,4:). By using

K
the fact that p{a ,|H°)=1I_Ild(u.;), and (C.3), we obtain from (C.4):

J= [tap (Y [H)af+(1~q) fp (Y la . H)p (@ |H') (0 —as)?da JdY  (C.5)
The minimization of (C.5) with respect to a,, is dene in the usual way, and
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results in:
~ _ AMY.gq)
Ap = "i'jrA(‘i,———)"EMk Rl (C.8)
where A( .4 ) is the generalized likelihood ratio which is defined by:
- Y |H?
A(Y q) = Lo B .7
- g p(Y|H)

E{A; lz,HI} is the optimal MMSE amplitude estimator when the signal is surely

present in the noisy observation.

Based on the statistical model used in this paper, in which the spectiral
components of each process are assumed to be statistically independent,

A{Y .q) equals to:

L= K Py |5
9 1=0p(y; | HY)
and E{A | Y HY=FE{A )Y, [}, In (C.8) H? and H,! denote the two hypotheses

MY .q) = (C.6)

of signal absence and presence respectively in the k-th spectral component,

and g, =¢ is the probability of signal absence in the k-th spectral component.
On the basis of the Gaussian slatistical model assumed here, it is easy to

see that:

p(Yy | HY)  exp(y)

= co
P (% ) 1t (©:9)
as explained in Section IIl. Combining {C.8), (C.8), and (C.9), we obtain:
X exp(w;)
. AT
-~ =0 ]_+
Ap = = b E{Ax | Ye JL1 (C.10)
ko 1+

E{A; | Ye '} is the estimator derived in (7).

The amplitude estimator (C.10) operating with the "decision-directed” a
priori SNR estimator (51), was not found to be useful while applied in the
speech enhancement system of Section VI. Specifically, we found that the addi-

tional gain function A/ {1+A) which appears in (C.10) affects mainly the non-
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speech intervals. As a consequence, a switching effect of the enhanced speech,
and an emphasis of the residual noise in the speech intervals, is perceived. Fig.
C.1 demonstrates the above effect. It shows the gain function A/ (1+A) (for
g =0.5) which is superimposed on the normalized energy contouf of a noisy

speech signal. Each point in this figure corresponds to a specific analysis frame.

Fig. C.1 éuggests however a potential application of the gain function
A/ (1+A) {or equivalently of the likelihood ratic A). As can be seen, it has a good
polenlial in post-detecting non-speech intervals in the observed signal This
advantage can be utilized, for example, when data is to be transmitted during

nen-speech intervals of a noisy speech signal.

We turn now to the derivation of the optimal MMSE STSA estimator (R5),
which is based on the second model of sighal absence. According to this model,
statistically independent random appearance of the signal in the noisy spectral

components is assumed. The risk to be minimized is now given by:

T = E{C(Ap Ay )]} | (C.11)
= ff[fp(¥ Iz .o h)pia.a h)pt)C(ay.o,h)dhdedady
where H =(H, H,,...,H) is a vector of binary random variables, representing

the two hypotheses of signal absence and presence in each of the noisy spectral
components. The vector h which appears in (C.11) is a realization of H. The
vector a is defined similarly to the vector a. Now by using the statistical
independence assumption of the spectral components of each process (ie.,

speech and noise), and the above model of signal absence, we can write:
E
p(Yle o h)= Hp(Y|e.ah) (C.12)

pla o |

=

k
) = lglp (2.0 1hy)

p(r) = lp )

On substituting {C.12) into {(C.11) we get:
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T=f [ ][0 (Y low .o 2 )P (ar 0 | g )P (e ) C(a g o g Yo dagdodY, (C.13)
By using a similar cost function to (C.3), and a similar PDF for H, to (C.2), we

easily obtain the estimator (25) from (C.13). Note that due to the statistical
independence assumptions speciﬁéd by (C.12), the resulting estimator for
A (k=K) does not depend on K. Therefors, in this case the estimator can be
considered as if it is obtained from an infinite number (K-w=) of spectral com-

ponents.
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Appendix D

In this Appendix we derive the optimal MMSE complex exponential estima-

tors (34) and (37), under the assumed Gaussian statistical model.

To derive (34), we have to calculate Ficosgy | Y} and Eising, | ¥} only,
which appear in (32).

2w
Efcospg | ¥} = fCOS('@k —ae )p (o | Yy )d ey (D.1)
/]

w 2

S [eos(B—ap )p (Vi | ap .o )p (ar 0 ) o day
0 0

w 297

ff’ﬂ (Y e o )p (g 0 o oy day,
9 ¢
On substituting () and (6) into (D.1), and using the integral representation of

the modified Bessel function of n-th order [10: 8.431.5],

2n
IL(z) = E]"n_—fcosﬁn exp(z cosB)d 8 {D.R)
we oblain: |
w© ] —_—
fﬂ"k exP(“X%E‘j‘)In(zﬂk ij(iz')")dﬂ'k
Efcosgy | %} = 2 5 __'1_)__ (D.3)
_{ oy, GXP(“‘X(—;:*'S“) To(Ru X‘(‘E‘j“)dflk

where v is defined by (8), and A(k) satisfies:

1 _ 1 1
NIRRT (D.4)

By using [10: 6.631.1, 8.406.3, 9.212.1), we get from (D.3):

Elcosge | Vi) = T{1.5)Vu, M{0.5:2:—u ) (D.5)
The equivalent form of Efcosg, | Y] as given in (34), is obtained by using [4:

A.1.31d].
To show that Efsing | ¥, §=0 we substitule (5) and (8) into:

w 2w
i 1 ..
Fising, | Y} = ;)“(“?;)—f_/ sin(By —0 )p (Vi fay 0 )p (0p 0 ) oy day, (D.6}
o o
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We obtain:

ﬂz .
Eisingy | Y] ~ fak exp( —~—(~—) )jsm (Y ak)exp(-g---(-’—c—)——cos(ﬂk - ) oy dog

(D.7)
where ~ denotes proportionality. Now it is easy to see that the inner integral in

(D.7) equals zero.

To derive the estimator (37), we solve Lthe following problem:

gwﬁﬁﬂe -9 (Ye) | : (D.8)

subject to: |[g(Y)| =1

where g(¥,) is the constrained complex exponential estimator. Equivalently,

we have to solve the foll(;wing problen:

S8 E{|e’™ g (%) 2] %} (D.9)

subject to: [g(¥)] =1

By using the Lagrange multiplier method, our problem turns out to be:

, in Ef|e?™ g (%) 1] ¥l + e (9 (%) | =1) (D.10)

By denoting g(Yk)=gR(Yk)+jg](Yk), and équating the derivatives of (D.10) with

respect to gz(-}.g7(-), and p, to zero, we obtain:

b = 0 => ga(%)(R+pe)=2E cosay | %} (D.11)
55?(%:}_ =0 => /(¥ )(2+py ) =2 {sinay, | ¥} (D.12)
AL =0 => (ARG ARN? = 1 (D.18)

The solution of the above three equations (D.11-D.13) gives:

Bie’® | Y,
e’ | v
Now by using (40) and (41) we obtain from (I.14) the estimator (37).

g (%) = (D.14)
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We note that since (D.14) is the solutien of (D.B) without referring to a
specific  slalistical model, we can draw suflicienl conditions for which
g (Ye)=exp(jd:) 1t can be casily shown Lhat if FEising, |y,{=0 then
g{Ye)=exp(j®¥;). This can happen for example if the noise is Gaussian (as
assumed here), and o is uniformly distributed on [0, 2] and statistically
independent of a,. In this case it is easy to see that F{ising, | ¥} is propor-
Lional to:

2

- a;
E{singy | Y i”f:p(ak)eXP(—Ad“("“)fsm(ﬂk ak)eXp( COS('% —oe ))d o dag
4]

?\ (k)
(D.15)

and the inner integral in (D.18) equals zero.
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SPEECH ENHANCEMENT USING A MINIMUM
MEAN SQUARE ERROR LOG-SPECTRAL

AMPLITUDE ESTIMATOR

ABSTRACT

In this paper we derive a short-time spectral amplitude (STSA) estimator
which minimizes the mean square error of the log-spectra (i.e., the original
STSA and its estimator), and examine it in enhancing speech. This estimator is
also compared with the corresponding minimum mean square error (MMSE)

STSA estimator derived previoustly.

It is found that the new estimator is very efiective in enhancing speech,
and it results in a better enhanced speech quality than that obtained by using

the MM3E 3TSA estimator.
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1. Introduction

Recently [1,2] we proposed an algorithm for enhancing speech degraded by
uncorrelated additive noise, when the noisy speech aleone is available, This algo-
rithm capitalizes on the major importance of the short-time spectral amplitude
(STSA) in speech perception, and utilizes an optimal minimum mean square

error (MMSE) STSA estimator for enhancing the speech signal.

While the distortion measure of mean squére error of the spectra { i.e., the
original STSA and its estimator) used in {1,2] is mathematically tractable, and
leads also to good results, it is not the most subjectively meaningful one. For
example, it is well known that the mean square error of the log-spectra is a
more suitable distortion measure for speech processing, and it is extensively
used for speech analysis and recognition [3]. For this reason, it is of great
interest to examine the optimal STSA estimator, which minimizes the mean
square error of the log-spectra, in enhancing speech signals. The derivation of
Lthe above oplimal STSA estimator, and its comparison with the MMSE STSA

derived in [1,2], are the subjecls of thig paper.

We use here the same formulation of the estirmation problem, and the same
statistical model, as in [2]. Specifically, the estimation problem of the STSA is
formulated as that of estimating the amplitude of each Fourier expansion
coefficient of the speech signal fx(t), 0<ft<T}, given the noisy process
fy(t), 0=t=T{. The Fourier expé.nsion coefficients of the speech process, as well
as of the nolse process, are modeled as statistically independent Gaussian ran-
dom variables. The ‘validity of this model for the discussed problem is given in

detail in [2].

We also extend Lhe above optimal estimator, and derive it under uncer-
tainty of signal presence in the noisy observations. The resulting estimator is

compared with the corresponding one from [2].
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The papér is organized as follows: In Section Il we derive the optimal STSA
estimator. In Section IIl we derive the optimal STSA estimator under uncer-
tainty of signal pr'esencie in the noisy observations. In Section IV we first briefly
describe the application of the optimal STSA estimator in the speech enhance-
mént system used in [2]. Then we compare its performance by informal listen-
ing with that obtained by using the MMSE STSA from [2]. In Section IV we sum-

marize the paper, and draw conclusions.

IL. Derivation of Optimal Estimator

Let X,=Aye’™, D,, and Y.=R.e ™, denote the k-th Fourier expansion
ceeflicient of the speech signal, Lhe noise process, and the noisy observations,
respectively, in the analysis interval [0,T]. According to the formulation of the
estimation problem given in the previous section, we are looking for the optimal
estimator Zk which minimizes the following measure:

E(log A, —log A.)? (1)
given the noisy observation {y (t), 0<t<7}. The estimator is easily shown to be:

Ai = explEIn 4 |y (t), 0<t=<T]} (2)
and it is independent of the basis chosen for the log in (1). As noted in [2],
under the assumed statistical model, the expected value of A4, given
fy (1), 0<t<T} equals to the expected value of 4, given ¥, only. Since this state-
ment remains true when A; is replaced by In 4,, the optimal estimator (2)
equals to:

Ay = expiBIn 4 | Y1} (3)

The evaluation of E[In 4 | ¥, ] for the Gaussian model assumed here, is con-
veniently done by utilizing the moment generét'mg function of In A4, given ¥,.
Let Z,=In A;. Then the moment generating function Pz, |y, (1) of Z, given ¥,

equals to:
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8z, 1%, (k) = Elexp(nZ;}| %} (9

= E{AL| Yfgf
E{ln 4 | ¥, ] is obtained from bz, 1y, () by

o
E{ln 4, |%,3 = '&"ﬁ'@z“r’,c(ﬂ)l,x:u (5)

Therefore, our task is now to caleulate & |y, () and then to obtain Ffin 4 | ¥}

by using (6). &z, |y, (i) is given by:

@y, 1%, (1) = ELAL] Y3 (6)

w 2

J Jedp (Y lag.o0)p (a0, )d oy day,
a2

- 0

v 2%

f T2 (Y lag i )p (0 0, )d o day
a o
On the basis of the Gaussian model assumed here, p (Y, |a; o) and p{a,.a,) are

given by [2]:

P(Yhlon) = motmcexpt= s | Yo —ape’™ |3 (7)
2
p(oe.op) = ;)\-Z‘%c—)—expi* ;i%c—)-f (8)

where Ag(k) QEHD,G |*}, and Az (k) A E{|X; |?}, are the variances of the noise
and the signal k-th spectral component. On substituting (7) and (8) into (8),
using the integral representation of the modified Bessel function of zero order

1,(-) [4: 8.408.3, B.411.1], and using [4: 8.631.1, 8.408.3, 9.212.1], we obtain:

ZAADESVENCERIVICE SRS (9)

where I'(") is the Gamma function; M(aic;x) is the confluent hypergeometric

function [4: 9.210.1]; A, satisfying the following equation:

1 _ 1 1
VWS M W (10)

and v, is defined by:
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Vg 4 'I'f'i?":‘?k {11)

where £; and y, are defined by:

6822l (12
2
Ve 4 X.%’GT (13)

i and 7, are interpretated as the a-priori and a-posteriori signal to noise ratio

(SNR) [2]. Note that ®7,1% (1) is the formula of the u-th moment of a Rician ran-
dom variable.
The derivative of @z |y (1) with respect to u is obtained as follows: First we

note that M{a;c;z) is defined by [4: 9.210.1]:

S o)y =7
Mlaem) = 3, ==~ 14
(a ¢ x) rgo (C}f 7! ( )
where (a)rél.u,.(a+1). ... {a+r—1), and (a)oél. M(~p/ 2;1;-v,,) which appears

in (9) can be differentiated term by term for |44| <2, since the series of the
derivatives converges uniformly on that interval. The derivative of

M(~p/ 2;1;,—v,) at u=0 is obtained by using (14) and it equals to:

D s ol () 1
GMM( 1/ 251 ~u) | o = 2r2=)1 e (15)

The derivative of T'(u/R2+1) is conveniently calculated by using the following

series expansion of In I'(u/ 2+1) [4: 8.342.1] for |u|<2:

In T{p/ 2+1) = —cﬁ'-'i-i tp')—rar (16)
2 ) R'r _
where
A 1 .
o83 % (17)

and ¢=0.577 215 664 90 is the Euler constant. Differentiation of (18) term by

term, gives:
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_IL_P (E41)| 0 = 12&1-1) —=—In T( &+1) | a0 (18)

Ay )

Now, by using (15), and (18), we obtain from (9):

14 (“U.rc)

E“J‘I’ka(#) | s = é‘lﬂ Nc—‘“( +E T ;.“) (19)
-1 1 ret
= 21n)\,,+2(lnvb+;‘{ )

where the last equation is obtained from [4: 8.211.1, 8.214.1]. The integral in
(19) is known as the exponential integral of v, and can be efficiently calculated
[6]. On substituting (19) into (5) and using (10)-(12), we get from (3) the oplimal
amplitude estimator:

2,., = I—E_%ﬂ—expf-é—{-e—;dtfﬁk ] (20)
It is useful to consider ﬁk as being obtained from Rx: by a multiplicative non-
linear gain function which depends only on the a-priori and the a-posteriori

SNR £, and 7, respectively. This gain function is defined by:

G(Ex 7)) = éi"-* (21)

I
and it is described by parametric gain curves in Fig. 1. This figure shows also
the corresponding gain curves which result from the MMSE estimator for A
derived in [R]. The behavior of these gain curves is explained in detail in {R],
and this explanation holds as well for the new gain curves. It is interesting to
note that the new gain function (which results from (20)) always gives lower

gain than the one which results from the estimator of [2]. This is easy to prove

by using Jensen's inequality:

Ay =explE[in 4, | Y, ]} < explin L[4 | Y]} = (22)

= B[ A | Y2]
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Fig. 1: Parametric gain curves describing:

(a) STSA estimator (20) (hold limes)
(b) MMSE-STSA estimator (7) in [2] {dashed limes)
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Iil. Derivation of Optimal Estimator Under Signal Presence Uncertainty

In this section we derived the optimal amplitude estimator which minimizes
(1) under the assumed Gaussian statistical model, and the additional assump-
tion thét the signal is not surely present in the noisy observations, The result-
ing estimator is an extension of the estirnators (20) and both estimators coin-

cide as the probability of signal absence approaches zero.

- By utilizing the statistical model for signal absence used in [R]. which
assumes statistically independent random appearance of the signal in the noisy

spectral components, it can be shown that the optimal estimator is given by:

i A(Y’-c'qk) 1 .
Ap =exp TYA(Y, 40 Elin A | Y Hy ] (23)

where A(Y;.q,) is the generalized likelihood ratio which is defined by:

1-qp p (Y |H)
% P (Y |H)
with g, being Lhe probability of signal absence in the k-th neisy spectral com-

A(Yy.q) = (R4)
ponent, and H? and 7! denote respectively the hypotheses of signal absence
and presence. K{In A, | ¥, .H}{ is the optimal estimator of In 4, given ¥, assum-
ing that the signal is surely present in the noisy spectral component Y. This

estimator was already derived and is given by (20).

The generalized likelihood ratio A(Y,,q,) was calculated for the assumed

Gaussian model in {R], and equals to:

1~q exp(u)
A(Y.q,) = L £

Qe T+& (25)
where now £, is defined by:
A B X% 7| A
Ek - Ad (k ) (86)
_ Et1 % 1%
=) e

We note that the estimator (23) cannot be described by a gain function simi-
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lérly Lo the description of the estimator (20), since now the resulting gain func-
tion does not depend only on § and 7, but rather on the additional variable

Re.

IV. System Description and Performance Evaluation

Each of the two spectral amplitude estimators (20) and (23) was imple-
mented in the speech enhancement system described in [2]. In this section we

first briefly describe the above system, and then its perfermance,.

System Description

The input to the speech enhancement system used here, is an 8kHz sam-
pled speech of 0.2-3.2kHz bandwidth, which were degraded by uncorrelated
additive noise. Each analysis frame of that input signail. which consists of 256
samples (32 msec) and overlaps the previous analysis frame by 192 samples, is
spectrally decomposed by means of a discrete short-time Fourier tr'ansfl:)rm
(DSTIFT) analysis [8], using a Hanning window. The amplitude of ea:hee];STFT
saniple is then estimaled, and the complex exponential of the noisy phase is
used to produce the estimate of that DSTFT sample. The estimated DSTFT sam-

ples in each analysis frame are used for synthesizing the enhanced signal, by

using the well known weighted overlap and add method [8].

In order to apply the amplitude estimators derived here, the variance
Ag(k) of the k-th spectral component of the noise, and the a-priori SNR &,
should be estimated. In the described system, Ay(k) is estimated once only {for
a slationary noise process) from an initial non-speech segment of 320 msec of
duration. This estimator of Ay(k) is used for calculating ;k gf?ka/?\d (k) fvhich is
the estimator of 7. (see (13)). The a-priori SNR ¢, is estimated by the

"decision-directed"” estimator proposed in [2]. It is given by,
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- AR(n - -
bun) = ago P b (1) P, (n) 1] (27)
where, Ek(n),ﬁk(n).‘id(ﬁc 7 ) and 7.y,c('n.). are the estimators of £;,4, A4(k) and

7k respectively, in the n-th analysis frame. Plxz]is defined by:

Al x=0

Plz]1=10  otherwise (28)

Its function is to prevent (27) from being negative in case ;k,(n)—l is negative,

The value of a was determined by informal listening, and its recommended

value is 0=0.98.

The calculation of the exponential integral which appears in the optimal
estimator (R0), is done efliciently by using appropriate polynomial approxima-

tion as explained in [5).

Performance Evaluation

The speech enhancement system described above was examined by infor-
mal listening in enhancing speech degraded by stationary uncorrelated additive
white noise, with SNR values of 5dB, 0dB, and -5dB. The resulting enhanced
speech was compared with that obtained in [2]. Fig. 2 shows a chart of the com-

parison tests considered here,

Cose I'In this case we compare the STSA estimator (20) with the MMSE STSA
estimator derived in [2, formula (7)]. The enhanced speech obtained by using
(R0) suffers much less residual noise, while no difference in the speech itself
was noticed. The nature of the residual noise obtained with (R0), sounds a little
less uniform than when the MMSE STSA estimator is used. However, becaﬁse of

the lower residual noise level, this effect appears insignificant.

Case /I: Here we compare the STSA estimator (20), with the estimator (23) which
takes into account the signal presence uncertainty. With the latter estimator, a

further reduction of the residual noise is obtained, but some effect of low pass



- 105 -

LOG-STSA+
LOG-STSA (20) uncertainty (23)
* €« > e
M I M
I IV i
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MMSE-STSA [2-(7)] MMSE-STSA+

uncertainty [2-(30)]

Fig.2:  Chart of comparison tests.
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filtering of the speech.signal was perceived. This effect is reduced as gy is
lowered, but then the amount of residual noise reduction gained by using this
estimator ((23)), is also reduced. We found that using g =0.05 minimizes the
above low-pass filtering eflect, and still enables Lo reduce the residual noise

level in comparison to that obtained by using the estimator (20).

Case JII: In this case the two estimators (23) ( with g, =0.05) and (30) from [2],
which take into account the speech presence uncertainty, are compared. _We
found that the residual noise level obtained when (23) is used, is lower than
that obtained when the estimator from [2] is used. However, with the former

estimator the above described low pass filtering effect was perceived.

Case IV: Here we compare the STSA estimator (20), with the MMSE STSA (30)
from [2] which takes into account the signal presence uncertainty. We found
that the enhanced speech obtained by both estimators sounds very similar, with
the exception that with the first estimator the residual noise sounds a little less

uniform.

V. Summary and Conclusions

In this paper we derive a STSA estimator which minimizes the mean square
error of the log-spectra (i.e., the original STSA and its estimator), and examine
it in enhancing speech. We found that this estimator is superior to the MMSE
STSA estimator derived in [2], since it results in a much lower residual noise
level, without further affecting the speech itself. In fact, the new estimator
results in a very similar enhanced speech quality, as that obtained with the
MMSE STSA estimator of [2], which takes into account the stgnal presence
uncertainty. Since the new estimator can be implemented in a simpler way, it

appears to be preferable,
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SIGNAL TO NOISE RATIO ESTIMATION
FOR ENHANCING SPEECH

USING THE VITERBI ALGORITHM

ABSTRACT

This paper deals with the problem of estimating the signal to noise ratio
(SNR) of a noisy speech spectral component. Such an estimator is needed in the
application of minimum mean square error estimators (e.g., Wiener). In this
paper a maximum a-posteriori (MAP) estimator is proposed and compared with
a maximum likelihood (ML) and a "decision-directed” SNR estimators. The pro-
posed MAP estimator is implemented by using the Viterbi-algorithm. It is found
that the MAP estimator resulls in a slightly better enhanced speech quality
than Lhe "decision-directed” estimator. Both estimators are superior in com-

parison to the ML one,

1. Intreoduction

Recently [1,2] we proposed an algorithm for enhancing speech degraded by
uncorrelated additive noise, when the noisy speech alone is available. This algo-
rithm capitalizes on the major importance of the short-time spectral amplitude
( STSA ) in speech perception, and utilizes an optirnal minimum xﬁean square

error (MMSE) STSA estimator for enhancing the speech signal.

The estimation problem of the MMSE STSA estimator as formulated in [R]. is
that of estimating the amplitude of each Fourier expansion coefficient of the
speech signal {x(f), 0<t<7}, given the noisy speech {y(t), 0O<t=<7}. The deriva-

tion of the MMSE STSA estimator is based on the assumption that the spectral
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components of the speech signal as well as of the noise process, can be modeled
as statistically independent Gaussian random variables. The validity of this

model for the discussed problem is given in detail in [2].

On the basis of the above statistical ruodel, the estimation problem reduces
to be thal ol estimating the amplitude of each Fourier expansion coefficient,
given the corresponding noisy spectral component. The resulting estimator
obtained in that way depends on two parameters, namely, the variances of the
speech and noise spectral components. In the speech enhancement problem
these parameters are unknown a—priori. as only the noisy speech is available. In
addition, they are also time-varying due to the non-stationarity of speech sig-
nals, and possibly also of the noise process. Therefore, in order to apply the
above STSA estimator, the variances of the speech and noise spectral com-

ponents should be re-estimated in each analysis frame.

The estimate of the noise spectiral component variance used in a given
analysis frame, is commonly obtained from non-speech intervals which are most
adjacent in time to that frame. This estimate is generally the average of
periedograms belonging to these noise intervals [3,4]. Of course, this way of
estimating the noise spectral component variance is suitable only for a station-

ary or at least a quasi-stationary noise process.

The estimation of the signal spectral component variance turns out to be a
much more difficult problem, mainly due to the non-stationarity of the speech
signal. In [2], the estimation of the signal spectral component variance, by a
maximum likelihood (ML) method and a "decision-directed” approach, is con-
sldered. The “decision-directed” approach was found to be especially useful in
the context of the discussed problem. In contrast with the ML, estimation
approach which results in musical residual noise in the enhanced speech, the

“decision-directed" approach results in colorless residual noise, which is found
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to be much less annoying and disturbing to the perception of the enhanced sig-

nal,

In this paper we deal with the problem of estimating a speech spectral
component variance, and propose a maximum a-posteriori (MAP) estimator. The
MAFP estimation approach is an extension of the ML estimation method, as it
incorporates a statistical model for generating each signal spectral component
variance. Since the true model! is inaccessible, the validity of the proposed one
is judged a-posteriori, on the basis of the enhanced speech quality obtained
when the MMSE STSA estimator is operated in conjunction with the MAP vari-
ance estimator. The MAP estimatioﬁ approach results in a gset of non-linear
equations, which are solved here recursively by using the Viterbi-Algorithm (VA)
[5.6].

Allhough the complexity of the above approach is high, its examination is
of interest, since it provides a very flexible and syslematic estimation approach
for solving the difficult problem of estimating a speech spectral component

variance. The MAP estimation approach is compared in this paper with the ML

and the "decision-directed" estimation approaches,

The paper is organized as follows: In section Il we formulate the MAP esti-
mation problem of a speech spectral component variance, and deseribe its solu-
tion by the VA In section 1 we compare the ML, "decision-directed”, and the
new MAP approaches. In section IV we summarize the paper and draw conelu-

gions.

1. MAP Specch Spectral Component Variance FEstimation

In this section we develop the MAP estimator of a speech spectral com-
ponent variance, and describe its calculation by the VA. We fist present some

preliminary material from [2], which is needed here.
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Let Xen éAk_nexp(jak_n). Deq and Y, éﬁk,nexp(jﬂk.n). denote the k-th
Fourier expansion coefficient of the speech signal, the noise process, and the
noisy observation, respectively, in the n-th analysis frame, Under the Gaussian
statistical model assumed in this paper, the optimal MMSE amplitude estimator

ﬁk.n is given by [2]:

Aen = Gopt(bkm Ve n ) B (1)
where,
A Vg,
Gopt (£ Yo ) = T(1.5) jﬁ—“—M(—o.ﬁ: 1 Vi n) (2)
I~

s a multiplicative gain function which depends on £rn and ¥g ., which are

defined by:
8 Aglkm)
Ek.n - Ad(k.ﬂ-) (3)
é H!cz.n .
Yen = ‘h—d—(_k-;m_)— (4)

Ak .n)éEi | X n |3, and Ag(k .’n)gE’i | D; » [?} are respectively the variances of
the k-th spectral component of the speech and noise in the n-th analysis frame.
fen and 7y, are interpreted as the a-priori and a-posleriori signal {o noise

ratio (SNR) respectively. v, is defined by:

Ven = T_:g;_"?!cm (5)
I'(-} is the Gamma function with I'(1.5)=I'n/2. M(~0.5; 1: —Uiy is the confluent
hypergeometric function. For high SNR, it can be shown Lhat Gopt (ke Yiem)

approaches the Wiener gain function Gy(#; n. 7k n) given by [2]:

Gylben Yen) = T3 (6)

The optimal gain function is described in [2] by means of parametric gain
curves and its properties are discused there in detail. As noted above this gain
function depends on the variances of the signal and noise spectral components,

or equivalently, on the a-priori SNR £, and the noise spectral component



- 113 -

variance Ag(k,n). In this paper we assume that the noise is stationary and that
the variances of its spectral components aré known. Under this assumption
Mgk n)=xg(k) for all 'n..‘and the problem of estimating the k-th speech spectral
component variance Az(k,n) can be considered in terms of the a-pricri SNR

Ek.n .

A very important result to the subject of this paper, is that a finite number
of samples of the optimal gain function Gopt (£,7) can be used, with a negligible
loss in performance [2]. For example, when the SNR of the input speech is
between -5dB and 5dB, it suffices to consider 981 values of Gope (£.7) obtained
from a uniform sampling of the square region —16dB=<§{, y—~1=<15dB. This means
that the estimation problem of £en can be eased, and that only a finite set of its
quantized values should be estimated. This observation leads to a very efficient
lmplementation of the MAP estimator, by using the cfficient dynamic program-

ming algorithm of Viterbi [5,8].

MAP Estimation

The estimation problem of a speech spectral component variance A, (k.n),
expressed in terms of the a-priori SNR £r n, 18 formulated here as follows: Given
a sequence of noisy observations Zk,Né(')’k,l-?’fa.eu o Yen)s find the MAP esti-
mate of the sequence_{bwé(gk_l,gkla, ... +£k,n). This is the problem of maximiz~
ing the a-posteriori probability density function (PDF) of_f_,c,N given 7 k- The

MAP sequence estimate E,,‘N is obtained by:
£y =urg feﬂkaifpf_f_ kN7 en) ' (7)

= arg Iglkﬂﬁp(_?’_ kv € 6D (€ on)

where org max f (z) is the argument which maximizes S (z), and the last equa-
E

tion follows from the fact that the maximization is done for a given sequence

_’_}'_ k.-
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To solve the above problem, p(y iy |£ #.v) and p (£ x ») should be known,
p"('_y_ EN |_§_ &) i easily obtained from the assumed Gaussian model and the addi-
tional assumption that ‘the random variables constituting 7 &~ are statistically
indepen_dent. The last assumption is reasonable when the analysis (i.e., the
spectral decomposition of the noisy speech) is done on non-overlapping frames.
However, in:the system proposed in [2] the analysis is done with overlap.
Nevertheless we continue with this assumption since the statistical dependence

is difficult to be modeled and handled.

To obtain the PDF p(_ﬁ k.N). some knowledge on the process by which the
k-th speech spectral component variance Az(k.n) is generated, is needed. We
consider here a very simple model which reflects our belief in how A (k)
could be generated. We assume the following Markov model;

Aellen+1) =2, (k,n) + wlk.n) (8)
where w{k.n) is a sequence (in n ) of statistically independent random vari-
ables. The PDF of w(k ,n) is chosen so that given A, (&,m), which is assumed to be
in the range [AmmnAmax), Az (k7 +1) has a prescribed probability p, of remaining
in a neighborhood of A;(k,n), and probability of 1—pi to be in the rest of the
range [AminAmax] The values of A (k m+1) within each of the two regions, are
assumed Lo be equally likely, The values used for Amin and Ap,, are for example
those which result in the a-priori SNR values of -15 and 15dB respectively, in
£he system from [2]. The boundaries [A,,Ag] of the neighborhood of A (k.n) are
chosen to be proportional to A,(k,n), and are determined as folIow_s:

N R N S S S
1= ain otherwise

(9)

0281 tay s (kim) i byEh
27 Amax otherwise

where o, , depends on A, (k m) and satisfies Ogeay ,<1. Its specific value was

determined on the basis of informal listening, as will be described in section III.
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Fig. 1 shows three typical cases of the PDF Pa tent)|r, 6n)(A) of Az(k,n+1)
given A, (k,n).

It is interesting to note that the above PDF (of A, (k,n+1) given Az (k.mn))

can be considered as a weighted sum of two uniform PDF given by:

Amox~Amin  AminSASAmay (10)
pi(A) = 0 otherwise

3

|

)\g —'Al Alﬁ)\i)\g
pa(A) = 0 otherwise

\

where pag.atn)a, (k)N is given by:

Patenen) i) A) = G2 1 (A +(1-q)pa(N). O=q,<1. (11)

This interpretation of the proposed FPDF is very useful in explaining our motiva-
tion for cheosing that specific form. By so doing we assume that given
Az(kn) Az (km+1) is generated in accordance with one of two possible
hypotheses, whose probabilities are g, and (1-g,) respectively. The first
hypothesis is defined by a situation in which a transition has cccurred like from
voiced speech in the n-th frame to unvoiced in the n +1-th frame, or from non-
activity of speech (silence) to speech activity, etc. When this hypothesis oceurs,
it is reasonable to assume thal A (k,n+1) takes any value in the range
[AminAmax] With equal probability, and that this value is independent of the pre-
vious value Az{k.n). The second hypothesis is defined by a situation in which
speech activity of the same type (e.g., voiced, unvoiced) takes place during the
n-th and the n+1i-th frames. When this hypothesié happens, it is plausible to
assume that A;(k,n+1) strongly depends on A (k n) and therefore should
remain in its neighborhood. The probabilities g and pg are related as can be
easily seen. The value of p, is chosen by informal listening as explained in sec-

tion 1lL
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It is worthwhile noting that other PDF types for Mz (k,n+1) given A {kn)
were examined. For example, a Gaussian PDF centralized at A, {k.n) with vari-
ance proportional to A;{(k,n). However, the PDF given in (11) was found to be

most successful in our application.

i Now we are in a position to pursue the derivation of the a-priori SNR
sequence estimator, It should be clear that since the noise variance Aglk )
equals to Ayg(k) (i.e., time-invariant) and assumed to be known, the above model
for generating A,(k,n) is valid for the generation of £pn. When A {k,n) is

appropriately normalized by Ay (k).

On the basis of the above assumptions, i.e., the independence of the ran-

dom variable (e, ....7.w) given (&.,.... +&xn), and the Markov model
assumed for the generation of (&, ... -fk.N)-P(_Z N |_$_ k) and p(ﬁk_,\r) are
given by:
N
PO enl€en)= 11 pnlten) (12)
N
P xn) =nglp(£b,n|£k.n—l) (13)

where p ({¢ |£k‘0)ép (£x,1). Without any other a-priori information, ;.1 is chosen
to  be uniformly distributed on some prescribed region (i.e., on

[Amin/ Mg (k). Amax/ Ag (k)]). On substituting {12) and (13) into (7) we obtain:
-~ N
£ e =arg max I p(yenléxn)P (rml€enar) (14)
- Epnmn=l

N
= arg max E lnp('}'k.n lfk.n)'*'lnp (Ek.‘n |$l¢,n—l)
£rn nal
On the basis of the Gaussian statistical model assumed for the spectral com-

ponents, it is easy to see that,

VY= A Yk
P (7.'5.11 If.’c.’n) = 145 n CXP( 1+£k.n Ven=0 (15)

In addition, p (& n |£r.n 1) is specified above by {11) (with the suitable normali-

zation by Az{k)). So in principle the problem of the MAP estimation as defined
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by (14), is completely specified.

The Viterbi Algorithm

The maximization of (14) by simply taking the partial derivative and equat-
ing to zero, results in a set of non-linear equations which are difficult te solve.
However, by taking advantage of the fact that for our purposes it 'suffices to
estimate finite set of quantized values of £ ,, we can apply here the eflicient
Viterbi algorithm to solve this maximization problem. For this reason, from now
on we consider the estimation of a discretized version of §,,. We assume that
each £, can take M equally spaced values in the range of [£,, &émax]. In the
system discussed in [B), &mnpn and £,,,; correspond to -15dB and 15dB respec-
tively, and #=31. Since £, is discretized, the PDF p (¢, |éxn_1) should be
replaced by an appropriate probability measure. This can be done, for example,
by discretizing the PDF p (€45 |€xn—1) as follows [8]: Let p (&5 |€xn—1) denote
the probability of £ » to be equal to some value B, given that & ,., equals 8;.
Then p (€5 | £x.n—1) can be obtained from p (£ » |£x.n-1) by

ﬁ"(ka =B N b n1=01) = 6,0 (£p 2 =B | b 1 =B1) (16)

where 0; is chosen to satisfy:

35 (trn =B ltsnn =) = 1, L=12...H (17)
By this way of discretization, p (£, | € n-1) is complelely defined by an MxM
Markov matrix.

To show how (14) can be solved by the VA, we define a target function:

N —_
Ty 2 2D (Yen & n)H N D (fen | €om) (18)

n=1

and re-write the maximization problem (14) as:

max e n
AL (19)

where {£;nid= = £ py. Since
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_—_ Te watlng (ve v L n)¥Inp (G| £ v} N>t (20)
PN T \np (7,11 €6.0) +1np (&1 1E40) N=1
the maximization problem for N>1 can be written as [6]:
max § max Iy y.+Inp (7 x| e n)+Ing (& x| €k v-1))
Wendney-1 [ nddcf (21)
where
Inp (Ven | €6 0) 0D (€ vl Ee no1) (BR)

iz called the path-metric in the VA terminology. This form yields the basis for
the VA. According to (21), the maximizing trajectory {ék.nf,{‘;l while passing
through %k_N_l on its way to ’.\f,,,,N, should arrive at ’%k.Nﬁ, along a route f?k.n;,{’;?
that maximizes I} y_,. Otherwise, :?k,N_, and Ek,N could be retained, and
{Ek,ﬂifgf could be replaced with a different sequence which would increase the

value of I', ».

The maximization procedure by the VA is well documented in [5,6], and
therefore will be explained here very briefly. The algorithm begins by calculat-
ing Ty ; (see (20)) for each of the M states of k1, based on the first noisy meas-
urement ¥,1. p (€x.1 )€k 0) is connecled with the initial conditions, and if no a-
priori information in favor of a specific state of £, is known, all states are
assumed to be equally likely, and therefore p (£, 118, 0)=1/ M. After completing
this stage, the measurement 7, , is not needed anymore, and therefore can be
discarded. As the new measurement ¥, arrives, the algorithm calculates | P
for each terminating state 8,. 1=1,... at N=2, and every beginning state 8,, al
N=1, Let the resulting values be denoted by Ty 2{B81.8m) Then the algorithm
selects M sequences (ﬁ;,ﬁm(l)) (called survivors) which are terminating at

fi.l=1,..M, and starting at f?m(l)éwrg max It 2(B,.8r). All other sequences
m

(Be..Bo): B ;é?!m(t) are discarded, as they are not candidates for the maximizing
trajectory. The above procedure can of course be done for each state 8

separately, where for each I one survivor is chosen. At the end of this stage, the
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measurement ;s can be discarded. The procedure is continued in a similar

fashion as each new measurement 7 , arrives,

It is well known that the estimated sequence
{ék.n;;:’:12(2;@'1(1\1),'Ekrg(N),...,Afk‘N(N)) obtained by VA on the basis of N measure-
ments, may differ from the estimated sequence
(£ 03804

measurements for all n=1,...N [5-7]. However, if the decision on an estimated

(>

(Era(N+1)E, o(N+1)... F1 u{N+1)) obtained on the basis of N+1

value is done with delay (say n, ), then with high probability this estimated value
will be the true MAP estimate. This is due to the fact that for high values of N,
the "tail" of all survivors tend to merge. Therefore it is a common practice to
use the VA with a delayed. decision, i.e., the estimated value obtained at time n

is:
Ek.n—na(ﬂ'): n=n,+1, n,+2,... (23)

IIT. System Description and Performance Evaluation

The MAP estimator of the a-priori BNR £, (assuming the noise spectral
component.variance is known and is time-invariant} described in this paper,
was examined in the speech enhancement gystem used in [2] It is utilized for
estimatling the a-priori SNR when either the MMSE-STSA estimator (1) or the

Wiener STSA estimator (8) is used.

In this section we first briefly describe the above system. Then we give the
exact conditions used for the application of the VA. Finally, we describe the per-

formance of that system and compare it with the one described in [2].

System Description

The input to the speech enhancement system used here, is an BkHz sam-
pled speech of 0.2-3.2kHz bandwidth, which were degraded by uncorrelated

additive noise. Each analysis frame of that input signal, which consists of 258
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samples and overlaps the previous frame by 192 samples, . is spectrally decom-
posed by means of a discrele short-time Fourier transform (DSTFT) analysis [8],
using a Hanning window. The amplitude of each DSTI'l' sample is estimated, on
the basis of the estimated values of the noise spectral component variance and
the a-priori SNR. Each estimated spectral amplitude is combined with the com-
plex exponential of the noisy DSTFT sample, to produce the estimate of the
speech DSTFT sample. The estimated DSTFT samples in each analysis frame are
used for synthesizing the enhanced signal, by using the well known weighted

overlap and add method [8].

In the experiments done here, a stationary while noise is used. The vari-
ances of its spectral component are estimated only once, from an initial non-
speech segment of 320 msec of duration. In addition, the input SNR examined

here was 5 and 04B.

The VA is applied for estimating the a-pricri SNR of each DSTFT sample,

under the following conditions:

- Lower bound for a-priori SNR value £,;,= —15dD5.

- Upper bound for a-priori SNR value §,,,,=10d 5.

- Number of linear quantization levels in the range [£,n Emax] 18 M=51.
- Delay of decision is n,=2.

- The value used for the parameter gy, in (9), is determined ras follows:

Uy = 0.8+ iﬁ—"—"—%—"’——(snﬁn—&.ﬂ) (24)

fmax"" min

and there are M different values, since §;, can take M values only.

- The probability p, pf A,{(km+1) to remain in the neighborhood [A, Az] of
A, (k,n) equals 0.5,

The above parameters were chosen on the basis of informal listening, and

are the best ones found here. We found that both parameters oy, and p, are
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very dominant here. For example, if p;»1 and o, <1, that is if Az{kn+1) is
constrained to remain in some neighborhood of Az{k.n), then a very rever-
beranl enhanced speech results. On the other hand, if & ,~+1 then the distribu-
tion of A {k n+1) given A {k ,n) approaches a uniform one, and the MAP estima-
tor turns out to be a ML estimator. As was noted in section 1, the latter estima-
tor results in rusical residual noise in the enhanced speech, which is very

undesirable.

Performoance Fualuation

The above system was examined in enhancing speech degraded by uncorre-
lated white additive noise with SNR of 5 and 0dB. The optimal MMSE STSA esti-
mator (1) and the Wiener estimator {8), operating with the MAP estimator of the
a-priori SNR, were examined. The resulting enhanced speech was compared with
that obtained in [2], where a “decision-directed" a-priori SNR estimator is used

with each of the two STSA estimators.

In general, when the MAP estimalor is used rather than the "decision-
directed” one, with either the optimal MMSE or the Wiener STSA estimators, a
slightly better enhanced speech quality is obtained. Specifically, a lower resi-
dual noise level is obtained in some cases. In addition, that residual noise
sounds more uniform {white) in all cases examined here. The speech itself

sounds very similar when both a-priori SNR estimators are used.

IV, Summary and Conclusions

In this paper we deal with the problem of estimating the variance of a
speech spectral coﬁlponent. Buch an estimator is needed in the application of
MMSE estimators, like that of the STSA (1) or of the STFT (6). The MAP estima-
tion approach proposed here, incorporates for the first time a model for gen-

erating the time-varying variance of a speech spectral component. While this
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model has a heuristic basis, it is found to be reliable, in light of the geod
enhanced speech quality obtained here. The above approach is basically
different from the methbds used so far in the context of speech enhancement
(e.g., the power spectral subtraction method [4] and its extension in [2]), which
inherently belong to spectral estimation methods which are based on the
pericdogram [4,9]. In this paper we develop the MAP estimator and describe its

efficient implementation by the VA,

Utilizing the above estimator rather than a previcusly developed
"decision-directed” estimator, does not provide a significant improvement in
the enhanced speech quality. This fact implies perhaps on some limit of our
basic model {in which the spectral component of speech and noise are assumed
Lo be statistically independent random variables), which was already reached by
the very simple "decision-directed” estimator. We conjecture that removing the
statistical independence assumplion may improve the speech enhancement

results.



~ 124 -

References

[1]

(2]

(e

(7]

[8]

Y. Ephraim and D. Malah, "Speech Enhancement Using Optimal Non-Linear
Spectral Amplitude Estimation”, in Proc. IEEE Int. Conf. Acoustics, Speech

and Signal Processing, pp. 1118-1121, Apr. 19883,

Y. Ephraim and D. Malah, "Speech Enhancement Using a Minimum Mean
Square Error Spectral Amplitude Estimator", submitted for publication in

IEEE Trans. Acoust., Speech, Signal Proc., May 1983,

4.5, Lim and A.V. Oppenheim, "Enhancement and Bandwidth Compression of

Noisy Speech", Proc. IEEE, Vol. 87, pp. 1586-1604, Dec. 1979,

R.J. McAulay and M.L. Malpass, "Speech Enhancement Using a Soft Decision
Noise Buppression Filter”, IEEE Trans. Acoust., Speech, Signal Proc., Vol.
ASSP-28, pp. 137-145, Apr, 1980.

G.D. Forney, “The Viterbi Algorithm", Proc. IEEE, Vol, 61, No. 3, pp. 268-278,

March 1973,

L.L. Schart, D.D. Cox, J. Masreliez, "Modulo- 25 Phase Sequence Fstimation”,

IEEE Trans. Inform. Theory, Vol. IT-26, No. 5, pp. 615-82Q, Sept. 1980,

C.R. Cahn, "Phase Tfacking and Demodulation With Delay", IEEE Trans.

Inform. Theory, Vol. IT-20, pp. 50-58, Jan. 1974.

R.E. Crochiere, "A Weighted Overlap-Add Methoed for Short-Time Fourier
Analysis/Synthesis”, IEEE Trans. Acoust., Speech, Signal Proc., Vol. ASSP-
28, pp. 99-102, Feb, 1980,

W.B. Davenport and W.L. Root, An Introduction to the Theory of Random Sig-

nals and Neise, McGraw-Hill, 1958, New York, pp. 105-108,



- 125 -

oreysa At URHALY ¥ 9T DIhha 2anon TVTIRPY NwATR 310w - ' naba



-126-

COMBINED ENHANCEMENT AND ADAPTIVE

TRANSFORM CODING OF NOISY SPEECH,

Abstract

This paper deals with the problem of improving the quality of recon-
structed speech, obtained by using an adaptive transform coder (ATC)
which operales on noisy speech. We propose to estimate the short-time
spectral amplitude of the speechlsignal. and to utilize the noisy phase,
prior to the encoding process. The appropriate minimum mean square
error estimalor is derived in this paper. The above approach significantly
improves the quality of the reconstructed speech, althéugh it loses some of
its crispness. The input noise is suppressed, and the irregularities charac-

teristic to the reconstructed noisy speech almost disappear.
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I. Introduction

This paper deals with the problem of improving the quality of recon-
structed speech, obtained by using an adaptive transform coder (ATC)
which operates on noisy speech. The ATC is a waveform coder which was
found to be very efficient for éncoding speech at rates of 7.2—16kb/s. AL
the rate of 18kb/s or above it gives toll quality, while at the rate of

7.2kb/ s it results in communication quality [1-3].

The ATC quantizes the speech spectral components in each analysis
frame, in accordance with a dynamic bit allocation and a variable quantiza-
tion step-size. Thus, the perceptually more important spectral components
can be traced and better quantized. The bit assignment and the step-size
used for each spectral component are determined on the basis of
knowledge of its variance. These variances of the speclral components are
obtained from a parametric estimated spectrum of the speech signal in
that frame. This parameterized spectrum is encoded and transmitted as

side-information to the receiver.

Although the ATC belongs to the class of waveform coders, which are
supposed to be robust, it turns out that it is sensitive to background noise.
Unlike other speech wavefdrm coders (e.g. PCM, DPCM, etc) in which the
input noise is reflected to the reconstructed output speech, here the noise
has additional effect: It adversely influences the extraction of the parame-
ters representing the speech short-time spectrum. This results in wrong bit
allocation and quantization step-size, which cause further degradation of

the reconstructed speech.

The structure of the ATC calls for a very convenient way for improving
the quality of the reconstructed speech, obtained under noisy environ-

ment. Specifically, since the encoding is already done in the frequency
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domain, we can optimally estimate the perceptually important short-time
spectral amplitude (STSA) of the speech signal, and use the noisy phase,
prior to the encoding process. This way is similar to that taken in [4], but
here the transform is the discrete cosine transform (DCT) rather than the
diserete Fourier transform (DFT). This fact does not change the perceptual
significance of the STSA, since as is well known [3] both transforms have

the same spectral envelope. However, the appropriate estimator should be

re-derived.

The paper is organized as follows: In section 11 we briefly describe the
ATC scheme used in this work. Then in section III we formulate the estima-
tion problem of the STSA, and derive its minimum mean square error
(MMSE) estimator. In secfion IV we describe the performance of the ATC
operating on noisy speech, with and without the above enhangement. In
section V we discuss the results obtained here, and briefly describe some

experiments we have done to reduce also the quantization noise level.

II. Adaptive Transform Coding

The ATC has been extensively investigated and several schemes were
proposed [1-3]. In this work we focus on the so-called "speech-specific" ATC
which is well documented in [3]. Before describing that scheme, we briefly
discuss the DCT and some of its properties. The DCT is used by the ATC
rather than other transforms like the DFT, since on the basis of a mean
square error (MSE) criterion, the DCT was found to be nearly coptimal for
apeech encoding, relative to the optimal Karhunen-Loeve transform [1,5].
In addition, on an experimental basis, the DCT was found to perfofm better
than the DFT [1]. Finally, the DCT reduces block-end effect problems as

-explained in [3].
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The DCT of a real ¥ point sequence #, is defined by:

M-1
X, = ), xpcpcos{(Bn+1)nk/BM] k=01, -1 (1)
n=0
where
1 k=0
% = {\/"3“ k=12, ,HM~1 )

The inverse DCT is defined similarly as:

Ly, = Ill—fz;::)@ckcos[(zn+1)nk/2ﬁl] n=0,1,...,. -1 (3)
The DCT can be efficiently calculated by using an FFT of M points [6]. How-
ever it can also be oblained by applying a 2# point DF'T on the sequence iy,
defined by:

A {Tn n=0,1,..M-1
Un = {o n=M,..2H-1 (4)

By so deing it can be shown that the DCT X and the DFT U, are related by:
Xe =cp | U Jcos(S—mk/2M) k=01, HM-1 (5)

where ¥, represents the phase of Ug. This form supplies an interesting

spectral interpretation of the DCT. It shows that the DCT and the DFT have

the same spectral envelopes {up to the constant ¢r) [3].

The speech-specific ATC scheme is depicted in Fig. 1. According to this
figure, each frame of the input speech is first cosine transformed. Then the
parameters representing the estimated spectrum of the speech in that
frame are extracted and gquantized. These parameters include the linear
prediction coefficients (LPC), the pitch period, and the gain, which appear
in the basic model of speech production. These parameters are obtained by
using an estimate of the speech autocorrelation function. This function is
obtained by inverse transforming the square of the DCT components, and
thus the fact that the DCT and the DFT have the same spectral envelope is

utilized.
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The LPC and the gain are used for estimating the speech spectral
envelope, while the pitch period and the so-called "pitch-gain” [3] are used
for estimating the fine details of Lhe spectrum, called the pitch patlern,
The spectral envelope and the pitch pattern are combined (via multiplica-
tion) to produce the estimated speech spectrum. This spectrum is ysed in
the transmitter for allocating the 5 bits available for encoding each frame,
and for normalizing the DCT components prior to their optimal quantiza-

tion.

The optimal bit allocation and quantization of the DCT components are
based on the observation that they are approximalely Gaussian distributed
[1.3]. The bit assignment rule results from the solution of the following

optimization problem:

K-1
min — 3} wW.g, . 6
Ll (6)

H=1
subject to: ), 5, = B
k=0

where B is the number of bits assigned to the k-th DCT component, g, is
the resulting distortion in that component, and Wy is a positive weighting
function. B, and &, are related by the rate-distortion function of a Gaus-

sian source:

2
_ 1 Ok
By, = P loga o (7)

where of is the variance of the k-th DCT component. The optimal bit alloca-

tion and the resulting distortion are given by:

2
— W, 0
B, =p + L logy kTl
= o 211/ M (8)
[11;11 w0f)
g M
er =2 MwofTV¥ wi' k=01, .41 (9)

where E-Q-B_/M. of is obtained as the k-th component of the estimated
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spectrum. A useful weighting funclion was proposed in [3]. It is given by:

W, = o7 —1<y<D (10)
where arfk is the estimated spectrum without the pitch pattern, i.e,, it is the
estimated spectral envelope. Since g, is proportional to w;l (see (9)), this
weighting function results in a quantization noise spectrum which follows
that of the speech. As a consequence, low energy spectral components will

not be masked by the quantization noise.

The quantization of each DCT component is done by first normalizing it
by its estimated standard deviation, and then by using the optimal normal-

ized quantization step-size for a Gaussian source derived by Max [7].

At the receiver the bit stream is decoded, and the spéctrum is recon-
structed from the side-information, With this gpectrum available, the
receiver can follow the bit allocation and the DCT normalization dene in

the transmitter,

In this work we examined the ATC at 12 and 16kb/s. The specific
parameters of the coder used here, are those recommended in [3].
Specifically, the transform size M is 258: speech sampling rate is 8kHz;
block overlap equals 16 samples, using a trapezoidal window; maximal
number of quantizer bits is 4; quantizer loading parameter (to multiply Max
quantization slep-size) equals 1.3 for 12 kb/s, and 1.5 for 18 kb/s; noise
shaping parameter y= —125; number of LPC is 9. In this work the side
information parameters are not quantized but the number of bits needed
for their quantization (44) was taken into account. We avoided from quan-
tizing these parameters, as our main objective here is to examine the
enhancement of the reconstructed noisy speech. In addition, very efficient

ways for quantizing these parameters are available.
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1I1. MMSE Spectral Amplitude Estimator

As explained in section I, we propose to improve the quality of the
reconstructed noisy speech, by using a MMSE estimate of the Speech STSA
prior to the encoding process. In the context of the ATC this means that we
have to estimate the amplitude (i.e., the absolute value) of each speech

DCT component, given the noisy DCT compoenents.

The above estimation problem can be simplified by taking advantage of
asymplolic statistical properties of the DCT components. Specifically, we
can reasonably assume that the DCT components of the speech signal, as
well as of the noiée process, can be modeled as statistically independent
Gaussian random variables. The Gaussian assumptlion is motivated by the
central limit theorem. The statistical independence assumption results
from the Gaussian model and the fact that the correlation between the DCT
components reduces as the analysis interval length increases. It is satisfy-
ing to note that Zelinski and Noll [1.3] arrived at the same statistical model
for the speech signal, on an experimental basis. This fact was already util-
ized in section 11, where we discussed the optimal bit allocation and quanti-
zation of the speech DCT components. For the noise process one can obtain
the above model or simply assume that the noise is Gaussian.

On the basis of the above statistical model, it is easy to see that the
estimation problem reduces to that of estimating the amplitude of each
speech DCT component, given the corresponding noisy DCT component. Let
X .y, and Y, denote respectively the DCT component of the speech, the

noise, and the noisy process. Then the MMSE estimator of | X | is given by:

|Xe] = B41X% ]| YouY0, . o Yiga) | (11)

=E{[X% || %}
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= 1z | (2 lys Yoy
On the basis of the above Gaussian assumption, and by wusing

[6:3.562.4,3.5646.2], it can be shown that:

VI EE exp -2l 3. (12)

where () is defined by:

|
%
k

A 2 5 2
()= —= [ et dt {13)
=)= G5 J
U is defined by:
Vg 8 i‘%ﬁ")’k (14)

2
o & HELL (15)
H]
"=y 9

where )\d(k)éE‘ilD,clzi. {; and 7, are interpreted as the a-priori and a-
posteriori signal Lo noise ratio {SNR) respectively. The MMSE estimator (12)

is conveniently described by a gain function defined by:

G{& .7 ) 4 '!I“%'IL (17)

This gain function is described in Fig. 2 by parametric gain curves. The
behavior of these gain curves is similar to that of the gain curves obtained
in {4], where the amplitude of a DFT component is estimated. The explana-
tion given there for the shape of the gain curves holds as well for the prob-

lem discussed here,

The estimate of the k-th speech DCT component is obtained by combin-
ing the above MMSE amplitude estimator (12), with the phase (i.e., the sign)

of the k-th noisy spectral component. That is,
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Fig. 2: Parametric gain curves describing the spectral amplitude estima-

tor (12) of the DCT.
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Tl o~ Y
X, =1X,] ~,—};’°-|~ (18)
= Gk Ye) Y

To implement the above estimator, the noise variance Ay(k) and the a-
priori SNR £ should be known. In the experiments we carried out here we
examined stationary noise, and estimated its variances once only from an
initial non-speech interval of B640msec in duration. The a-priori SNR is
estimated by the "decision-directed” estimator proposed in [4]. This esti-
mator is given by:

Ben = a5t s (1-a) Pl 1] (19)
where §pn, [Xem | Aa(k.n), and 7, are respectively the a-priori SNR, the
speech spectral amplitude, the noise variance, and the a-posteriori SNR of
the corresponding k-th DCT component in the n-th analysis frame. P[] is

an operator defined by:

Plz] = g :tigrme (20)
and its function is to prevent Ek.n from being negative, if (7&n—1) is nega-
tive. & is an averaging parameter which is determined on the basis of infor-
mal listening. It was found that its best value for 16 kb/s is 0.94, whereas

for 12 kb/s it is 0.85,

IV, Performance Evaluation

The STSA estimator (12) was applied in the "speech-specific” ATC
described in section I, and the system was examined in encoding noisy
speech. Speech signals which were degraded by uncorrelated additive

wide-band noise, with SNR of 10 and 8dB, were examined.

When the ATC was operated on the noisy speech but no enhancement is

done, a noisy reconstructed speech results. In addition, it has some
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noticeable irregularities which strongly influences its quality and intelligi-
bility. These irregularities are probably a result of using a wrong bit allo-
cation and an incorrect quantization step-size, due to the poor estimate of
the speech spectrum from the noisy input speech. By applying the STSA
estimator (12) to the above ATC system, the quality of the reconstructed
speech is greatly improved, although it loses some of its erispness.
Specifically, the input noise is suppressed, and the above mentioned irre-

gularities almost disappear.

V. Discussion

In this paper we examine the operalion of the ATC under a noisy
environment. It was noted that its performance significantly degrades when
the input speech is noisy. By utilizing a MMSE STSA estimator, which is
applied prior to the encoding process, we achieve a greal improvement in
the ATC performance. Since the ATC is already operated in the frequency
domain, the above enhancement method is well suited to its structure and
can be easily implemented. For example, a look-up table which contains a
finite number of samples of the multiplicative enhancing gain function can

be used.

It is worthwhile noting that in the course of this work we also exam-
ined the possibility of improving the ATC performance when it operales on
clean speech. Specifically, we examined three alternative approaches. In
the first, we tried to reduce the quantization noise level in each quantized
DCT cemponent, by estimating the speech DCT component. In the second
alternative, we tried to decorrelate the speech and the quantization noise
in each DCT component, by using dithered quantization [9,10]. In the third
alternative, we unified the above two approaches and tried to estimate the

speech DCT component from the dithered quantized noisy one. The first
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and third approaches are reasonable of course, only if the quantizer used
is not optimal (in Max sense [7]). However, this is the case here since a uni-
form quantizer is used. In both cases we obtained that the estimated
speech DCT component given the quantized noisy component, is the cen-
troid of the area of the probability density function of the speech DCT
component, in the quantizer step-size interval. This is an interesting result
since it coincides with that obtained by Max in designing the optimal non-
uniform gquantizer. However, in his work the optimization is also done on
the quantization step-size interval. We note finally, that at this problem we
estimate the speech DCT component rather than its absolute value, since
in this application the sign of the DCT component is known exactly, and

both approaches are identical.

Unfortunately, the above three approaches do not improve the ATC
performance. One possible explanation is that on the basis of MSE eri-
terion, the expected improvement is bounded by that which can be
obtained by using Max optimal non-uniform quantizer. However, as can be
seen from Fig. 5 of [7], the non-uniform guantizer can reduce the MSE (in
comparison with the uniform quantizer) by at most 20%, if the number of

bits is less than or equal to four {as is in the discussed case).
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Abstract

This research deals with the problem of enhancing speech degraded by
uncorrelated additive noise, when the noisy speech alone is available. The basic
approach taken here capitalizes on the major importance of the short-time
gpectral amplitude (STSA) in speech perception. We develop minimum mean
square error (MMSE) STSA estimators and examine them in enhancing speech
sigﬁais. The estimators considered are a MMSE-STSA estimator and a MMSE log-
STSA estimator. In addition, we extend these estimators to take inte account
the fact that the speech signal is not surely present in the noisy observations.
These estimators are derived on the basis of a statistical model which utilizes
asymptotic properties of the spectral components. Specifically we assume that
the spectral components of the speech process, as well as of the noise process,

can be modeled as statistically independent Gaussian random variables.

For constructing the enhanced signal, we examine the MMSE estimation of

: the complex exponential of the short-time phase. It is shown thal the resulting
estimator has a non-unity modulus, and therefore its combination with a MMSE

STSA estimator, affects the STSA estimation. On the other hand, the MMSE com-

plex exponential estimator which is constrained to have a unity modulus, and

therefore does not affect the STSA estimation, is the complex exponential of the

noisy phase. For the above reason, the noisy phase is utilized in the proposed

system.

The problem‘ of estimating the signal to noise ratio (SNR) of each spectral
component, which is needed in the application of the above mentioned STSA
estimators, is extensively investigated in this work. We propose maximum iikeli—
hood, decision-directed, and maximum a-posteriori estimators. The latter esti-

mator is implemented by using the Viterbi-algorithm.,



IT

The proposed system was examined in enhancing speech degraded by
wide-band noise with §NR of 6, 0, and -5dB. This system significantly improves
the quality of the noisy speech, by suppressing the background noisg level. The
résidual noise sounds colorless and was found to be much less annoying than
the "musical noise” obtained In other commeonly used 'systems. The complexity

of the proposed sysfem is similar to that of other currently used systems.

The above method of enhancing speech was also successfully applied to
improve the quality of the reconstruced speech, obtained by using an adaptive
transform coder whose input is noisy speech. In this application the STSA of the

speech signal is optimally estimated, before the encoding is done.





