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Abstract 

In Hybrid DPCM image sequence coders, every block with high variance in the corresponding difference block is 
replenished even if it belongs to a stationary background region, as could be the case for coarse textured blocks. We 
present an improved Hybrid DPCM image sequence coder, which includes a block classification unit. This unit detects 
stationary textured background blocks and allows copying such blocks instead of replenishing them, thus reducing the 
bit-rate of the coder. The unit consists of three parts. The first part is a statistical-based change detector. Segmentation of 
each image into textured and smooth regions, a fast converging deterministic relaxation procedure and a multi-resolution 
approach are used to obtain the final moving/stationary segmentation. In the second part, a Gaussian AR model-based 
texture matching test is proposed. The third part detects edges in stationary blocks. To avoid edge related artifacts, 
blocks that contain an edge are unconditionally coded. The coder which incorporates the proposed change detector was 
found, in simulations, to provide a substantial reduction in bit-rate, while maintaining the quality of the reconstructed 
sequences, in coding image sequences which contain large areas of coarse textured background. 
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1. Introduction 

In standard image sequence coders such as H.261 
[1, 2], the current frame is predicted from the pre- 
vious reconstructed frame using local motion com- 
pensation, and the prediction error is coded. Such 
coders do not take into special consideration the 
situation where the images contain coarse random 
textured background regions. Such regions may 
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cause large amplitude fluctuations in the difference 
frame, because of jitter (both in the camera position 
and in the sampling process), although no change is 
detected by the human observer. Detecting station- 
ary textured background blocks and copying such 
blocks from the previous frame instead of coding 
them can substantially reduce the bit-rate of the 
coder while maintaining good quality of the recon- 
structed frames. 

One possible method for performing this detec- 
tion is suggested by Papathomas  and Malah in 
[22]. According to their method, the detection of 
stationary textured blocks is performed using a 
decision tree, based on thresholds obtained from 
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psychophysical experiments. The tests in the deci- 
sion tree include the evaluation of the mean and 
variance of the difference block with and without 
local motion compensation, and the comparison of 
these values to the above-mentioned thresholds. 
Blocks that are considered candidates of belonging 
to stationary textured background regions undergo 
various verification tests before being labeled as 
such, in which case they are actually copied from 
the previous reconstructed frame. 

This method has the disadvantage that some of 
the verification tests are heuristic in nature and are 
performed on the difference between original and 
reconstructed frames, so that quantization errors 
may influence the results. 

In this paper, a different approach is presented. 
This approach is based on statistical models for 
detecting stationary textured blocks, with the clas- 
sification task being performed in several steps. The 
first step is change detection. The segmentation of 
images into changed and unchanged regions can 
help in more accurate calculation of motion para- 
meters [11]. It also improves the selective coding of 
information, by copying background blocks that 
normally would be coded because of high variance 
in the difference block, and thus substantially re- 
duces the bit-rate of the coder [15]. In addition, this 
approach is superior to the method of classifying 
moving and stationary regions according to 
motion vectors (which are usually obtained by 
block matching). Typical problems in using motion 
vectors for such classification are, on one hand, 
stray motion (particularly in textured background 
regions), and on the other, no apparent motion if 
the actual motion is beyond the search region of the 
block matching algorithm, or when a new object 
appears in the scene. Thus, motion vectors may not 
be reliable enough for the classification task. 

The simplest change detector is obtained by thre- 
sholding the difference of two consecutive frames. 
Pixels with absolute value above a certain thre- 
shold are considered as moving, whereas the others 
are considered as stationary [10]. The results ob- 
tained by this method are rather poor when the 
images contain wide-band coarse texture. This is 
because of the jitter mentioned above. Hence, pixels 
which belong to such stationary textured regions 
might be considered as moving. On the other hand, 

using low-pass filtering, as in [10], may cause over- 
smoothing of the difference frame. 

Another approach for change detection is sug- 
gested by Karmann et al. [16]. They use Kalman 
filtering of certain reference frames in order to 
adapt to changing image characteristics. The ad- 
aptation, however, is much too slow for image 
sequence coding, where adaptation within each 
frame is required. 

A different class of algorithms is the class of 
statistical model-based algorithms, to which our 
algorithm belongs. Such an approach appears to 
help in alleviating some of the problems character- 
izing the threshold-based approach. This is mainly 
because spatial interaction between neighboring 
pixels can be taken into account. Cafforio and 
Rocca [9] assume that pixels in the difference frame 
are statistically independent and each pixel is a 
zero-mean Laplacian stochastic variable. The dif- 
ference between moving and stationary pixels is 
reflected in the value of the standard deviation a for 
each type. The segmentation field was modeled as 
a first order Markov chain along rows and the 
solution was obtained by solving a Maximum 
Aposteriory Probability (MAP) problem using the 
Viterbi algorithm. 

An extension of this model into a bi-dimensional 
second order causal Markov chain is suggested by 
Mori et al. [20] and also by Driessen et al. [11]. 
The two methods differ only in the Probability 
Distribution Function (PDF) assumed for the 
pixels in the difference frame. In both methods 
transition probabilities have to be empirically ob- 
tained. 

A more sophisticated model is suggested by 
Lalande and Bouthemy [18]. They use a spatio n 
temporal Markov Random Field (MRF) model 
through Gibbs distribution and construct a cost 
function which is minimized using a deterministic 
iterative algorithm. Their method is intended for 
traffic control and hence is not directly applicable 
to coding applications. This is because in their 
scheme, uncovered background is considered to be 
a stationary region and hence will not be coded. 

All the above methods use deterministic relax- 
ation algorithms that are very sensitive to the initial 
segmentation. In addition, no consideration is 
given to the characteristics of the images, which 
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may assist in a more accurate change detection (see 
Section 2.1). 

Since after a block is copied from the previous 
reconstructed frame, possible errors cannot be cor- 
rected, more tests are needed to ensure that the 
decision to copy the block is correct. One possible 
test is to check if the textures in the two stationary 
blocks, in the current and previous original frames, 
are similar enough, Another test needed, is to detect 
edges in stationary blocks, since the Human Visual 
System (HVS) is very sensitive to edges. Blocks 
with edges should be unconditionally coded, in 
order to avoid possible artifacts in the reconstruc- 
ted frames. 

The proposed change-detection algorithm is an 
extension of a previous algorithm that we suggest 
in [24]. The algorithm uses a Markov Random 
Field (MRF) model, through Gibbs distribution, to 
describe the segmentation field. A Laplacian distri- 
bution function is used to model the difference 
frame. A cost function, based on these distribution 
functions, is constructed and a Maximum Apos- 
teriory Probability (MAP) problem is solved. The 
algorithm has several advantages over previous 
algorithms which use similar techniques [9, 11, 15, 
18, 20]. The first advantage is adaptation to image 
characteristics, which is achieved by segmenting 
each image into smooth and textured regions. The 
second one is that the strong dependence of the 
deterministic relaxation algorithm on the initial 
segmentation 1-7] is reduced by performing several 
iterations of the basic minimization procedure, 
where each one is initialized by a segmentation field 
based on the parameters obtained in the previous 
iteration. The result with the lowest cost-function 
value is chosen to be the final segmentation. 

The segmentation results are further improved 
by using a multi-resolution approach. This ap- 
proach is used in image coding applications [8] 
and also in texture segmentation I-7]. In segmenta- 
tion applications, this approach enables improved 
results when used within an iterative minimization 
process. A substantial reduction in the computa- 
tional cost of the minimization process is also 
achieved, since most of the operations are per- 
formed on a coarse resolution image which con- 
tains less pixels than the original image at a higher 
resolution. 

The texture matching test and the detection of 
edges in stationary blocks, are based on a method 
for cluster validation suggested in [7]. This method 
uses statistical models of the data and the similarity 
of the blocks is evaluated via the Akaike Informa- 
tion Criterion (AIC) measure [3]. 

Details of the texture matching test and the edge 
detection are given in Sections 3 and 4, respectively, 
after the description of the change-detection algo- 
rithm in Section 2. A description of the block classi- 
fication unit is given in Section 5 and simulation 
results are presented in Section 6. Conclusions are 
drawn in Section 7. 

2. Change-detection algorithm 

The algorithm can be separated into two main 
parts. In the first part, a Texture/Smooth Segmen- 
tation (TSS) of the image is performed. In the sec- 
ond part, a MAP problem is solved by minimizing 
a cost function which takes into account the TSS. 
The minimization is performed using a multi-res- 
olution approach, i.e., applying it on several resolu- 
tion levels of the images, as will be explained in 
Section 2.3.3. 

2.1. Texture~smooth segmentation 

The motivation for this segmentation is the fact 
that pixels in the difference frame belonging to 
smooth moving regions may have a smaller standard 
deviation than pixels belonging to textured station- 
ary regions and thus, erroneously, smooth moving 
regions may be considered as stationary, or tex- 
tured stationary regions may be considered as hav- 
ing been changed. The TSS allows the character- 
istics of each region to be taken into consideration 
in the change detection process. In this context, 
textured regions can be regarded as non-smooth 
regions and as such may contain edges, lines, etc. 

The TSS is performed using blocks of size 16 × 16 
pixels. Each original image block is modeled as 
a causal Gaussian Auto Regressive (AR) process [7] 
with four coefficients. These coefficients relate each 
pixel in the block with four of its nearest neighbors. 
The choice of the block size is a compromise 
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between good statistical behavior of the AR model 
(preferring larger blocks) and accuracy of the seg- 
mentation (preferring smaller blocks). If we define 
v~,s as the value of the (i,j) pixel in the block, after 
subtracting the block's average, we get that the 
prediction error of the (i,j) pixel, vl.s, is given by 

Ui,j = Ui.j Ar alvi , j-1 + a2vi- l,j+ l + a3vi- l,j 

+ a4vi- 1,j- 1, (1) 

where ai are the AR model coefficients. 
Let V be a vector containing all the M pixels in 

the block arranged according to a raster scan of the 
block (starting at the top left corner of the block 
and moving along rows), and let 17 be the vector 
containing all the prediction errors in the block 
arranged in the same order as in V. In matrix form 
we can write I7 = AV, where A is an M x M lower 
triangular matrix, which contains the AR model 
coefficients. For demonstration, A is shown below 
for a block of size 4 × 4 (i.e. M = 16): 

function of V can be shown [7] to be 

pv(V) = x/det(AA T)pf(17) 

( 1 M ~ I  ( 1 g?.} 
= exp - ,,s (3) 

where M is the number of the pixels in the block B, 
det(AA x) is the determinant of AA T (which equals 
here to 1) and ~.2 is the variance of the prediction 
error in the block, p~(17) is the probability density 
function of the prediction error vector V. 

The parameters of the model (al, i = 1, 2, 3, 4; 6 2) 
are estimated using Maximum Likelihood Estima- 
tion (MLE) [-7], where the pixels outside the block 
are considered to be with zero value. The TSS is 
performed using an empirically obtained threshold 
TA. The threshold can be made adaptive by using, 
for example, the distribution of the block variances 
in each region type (textured or smooth) in the 
previous frame. If the variance of the prediction 

A = 

1 0 .0 0 0 0 0 0 0 
a 1 1 0 0 0 0 0 0 0 
0 a I 1 0 0 0 0 0 0 
0 0 al 1 0 0 0 0 0 
a3 a2 0 0 1 0 0 0 0 
a4 a3 a2 0 al 1 0 0 0 
0 a~ a3 a2 0 al 1 0 0 
0 0 a4 a3 0 0 al 1 0 
0 0 0 0 a3 a2 0 0 1 

0 0 0 0 a4 a3 a2 0 al 
0 0 0 0 0 a4 a3 a2 0 
0 0 0 0 0 0 a 4 a 3 0 
0 0 0 0 0 0 0 0 a3 
0 0 0 0 0 0 0 0 a4 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
1 0 0 0 0 0 0 

a 1 1 0 0 0 0 0 

0 al 1 0 0 0 0 
a2 0 0 1 0 0 0 
a3 a2 0 ax 1 0 0 
a4 a3 a2 0 al 1 0 
0 a4 a3 0 0 al 1 

(2) 

It is observed from (2), that A has an all l 's main 
diagonal and it is clear that its determinant equals 
to 1. Using these characteristics of A and the as- 
sumption that the elements in V are a sample from 
an i.i.d. Gaussian process, the probability density 

error of a block in each of the two consecutive 
frames is below TA, then the corresponding block in 
the difference frame is considered to be smooth, 
otherwise it is considered non-smooth, i.e., textured. 
The resulting TSS map is denoted as S. Following 
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the TSS, each region type may contain both mov- 
ing and stationary pixets. 

2.2. Statistical models 

Two statistical models are used in the second 
part of the change-detection algorithm. Let Y de- 
note the difference frame and let X denote the 
Moving/Stationary Segmentation (MSS) field. 

We use a Laplacian Probability Distribution 
Function (LPDF) to describe the statistical behav- 
ior of the pixels in Y. We assume that the difference 
pixels are statistically independent. The conditional 
probability density function of the difference pixel 
y E Y is given by 

p(Y= y lX  = x, S = s ) -  x/27ax,sexp ( trx.s)" 

(4) 

The four possible standard deviation values ax.s of 
each difference pixel depends on its being moving 
or stationary and its assignment to either a smooth 
or a textured region. 

The MSS field X is modeled as an MRF with 
a second order neighborhood system [7, 18-1. To 
describe p(X) we use a Gibbs distribution, where 
only two pixel cliques are considered in order to 
reduce the number of necessary parameters. We 
distinguish between diagonal cliques and vertical 
or horizontal ones, as done in [7]. Using the local 
characteristics of the MRF, p(X) is given by 

1 
p(X) = ~ e x p { -  U(X)} 

1 { }  
= ~ e x p  - 2 VC(xc) 

al l  c l i q u e s  c 

1 
-- ~ exp{- ( f l l , s t l  + flz,st2)}. (5) 

U(X) is the energy function which is defined as the 
sum of local potentials VC(x~) and Z is a normaliz- 
ation constant, t~ is the total number of vertical/ 
horizontal cliques and t2 is the total number of 
diagonal cliques, which contain each, two differently 
labeled pixels, fll,s and fl2,s are the parameters of 

the Gibbs distribution function and satisfy the rela- 

tion fll ,s = N ~ f l 2 , s  (i l l .s ,  flZ.s > 0). Different sets of 
parameters are assigned to textured and smooth 
regions. These parameters control the effect of the 
spatial interaction between a pixel and the other 
pixels in its neighborhood on p(X). 

Our problem is to find the best MSS field 
X given the data in the difference frame Y and the 
TSS field S. Using the MAP criterion, Bayes' for- 
mula, and the fact that X is statistically indepen- 
dent of S, we get 

X m a  p = argmaxp(X[  Y,S) 
x 

= argmax ~P(YI X, S)p(X)~ (6) 
x ~ p(YIS) J" 

Taking into account the assumption that p (Y]S) is 
independent of X, we get 

Xma, = argmin{-ln[p(YIX, S)p(X)]}. (7) 
x 

The desired segmentation field is obtained by 
minimizing the above cost function. From (4) (7) 
we obtain 

Xmap = arg min . ~  ~ + In ax,s 
X • " 

+ Bl,stl + ~2,st2}. (8) 

Note that increasing the value of i l ls  or flz,s re- 
sults in giving more weight to spatial interaction in 
the MSS field X than to the magnitude of pixels in 
the difference frame Y. 

2.3. Optimization procedure 

A global minimum can be obtained by minimiz- 
ing over the entire segmentation field using the 
method known as simulated annealing [14]. Since 
this method is not practical in our application, we 
use the Iterated Conditional Modes (ICM) minim- 
ization algorithm proposed by Besag [6] and ap- 
plied in [-7, 15] as well. The basic idea behind the 
ICM is to replace pixels in the segmentation field 
X with a value which maximizes the conditional 
density function at each pixel, while fixing the 
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remaining pixels in X. Each time a replacement is 
performed, the cost function is assured to decrease 
(or at least not to increase). This deterministic re- 
laxation algorithm requires a relatively small 
amount of computations and converges fast, but 
may converge to a local minimum. We apply the 
following two-level iterative procedure. 

2.3.1. Inner-loop procedure 
Beginning with an initial MSS field Xini,, which is 

calculated in the outer-loop procedure (see Sec- 
tion 2.3.2 below), we minimize the cost-function in 
(8) using the ICM method, until no change occurs 
in X. The updating of X can be done pixel by pixel 
in a raster scan, but the result is found to be 
sensitive to the scan mode [7]. Therefore, X is 
divided into several groups, each containing pixels 
that are independent of each other, given the pixels 
in the remaining groups. When such a division is 
applied to a field defined with a second order neigh- 
borhood system, four different groups are created. 
In Fig. 1, the pixels are divided among the four 
groups which are denoted by K, O, U, and V. Pixels 
which belong to the same group do not belong to 
the same neighborhood and thus are statistically 
independent given the pixels in the remaining 
groups. 

This division of X reduces the sensitivity to the 
scan mode and allows parallel computation since 
the pixels in each group are independent of each 
other. A similar division is used in [7, 15]. 

After convergence is achieved, the ax,s values of 
the L P DF  in (4), for each of the four segment types 
('moving texture', 'moving smooth', 'stationary tex- 
ture' and 'stationary smooth'), are reestimated us- 
ing MLE as in the right-hand side of (10) below. 
The minimization step is repeated, with the new a's 
and the last obtained X as an initial segmentation, 
until the change in the cr~,s values is below a certain 

K O K O K O K O  
U \r [TVU V U V 
K 0 K O K 0 K O 
U V U V U V U V 

Fig. 1. Division of the field X into four groups (K, O, U, V) of 
independent pixels. 

threshold. This is actually a simultaneous minimiz- 
ation and estimation procedure but different than 
the one suggested by Besag [6], by the fact that 
according to Besag's method the estimation should 
be performed after each ICM cycle, whereas we 
perform the estimation after the ICM process is 
completed. This estimation procedure was found to 
give a lower cost-function value than Besag's 
method for the tested sequences, at a lower com- 
putational cost. During this procedure the cost 
function is assured to decrease. 

2.3.2. Outer-loop procedure 
In the outer-loop procedure, the inner-loop pro- 

cess is performed several times, each time with 
a different initial segmentation Xin,. Each Xi. . is 
obtained by MLE of X using only the information 
in the difference frame, the segmentation field S and 
the ~rx,s values. Xi.it is given then, pixel by pixel, by 

(Xinit)i,j = argmax { p (Y =  y IX  = x, S = s)} 
X 

=argmin~ ,~f2FlYi ' j l+ lna , . s l} .~  ~ L°'~.s (9) 

An exception is the first time the inner-loop pro- 
cess is performed, because the initial a's are yet 
unknown. At that time these are obtained by thre- 
sholding the difference frame Y, to obtain a seg- 
mentation field Xo, and performing an MLE of 
a~.s for each of the four possible segment types 
according to 

x /2  ~ lYl, (10) am,e = max, {p(Y[Xo,S,a)} = II Wl-~l y,w 

where Wdenotes the segment type and II wII is the 
number of the pixels in that segment. 

In determining Xo we use different thresholds for 
the smooth and textured segments, since the charac- 
teristics of these segments are different. 

Each outer-loop iteration consists of one com- 
plete inner-loop process. The cost-function value at 
the end of each outer-loop iteration is evaluated 
and the iterations continue until this value stops to 
decrease. The segmentation field X corresponding 
to the lowest cost-function value obtained in this 
process is the final segmentation. 

The use of several initial segmentations reduces 
the effect of the value of the initial threshold on the 
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final segmentation result, thus making it more 
robust. 

2.3.3. Multi-resolution approach 
The idea behind the multi-resolution approach is 

to perform the segmentation algorithm at several 
resolution levels, starting with the coarsest resolu- 
tion. The segmentation obtained at each resolu- 
tion level serves as the initial segmentation for the 
next level. This way, the segmentation at each res- 
olution level 'guides' the next level. 

Each resolution level corresponds to a particular 
level in a quad tree, so that a pixel at a given 
resolution level corresponds to four pixels at the 
next finer resolution level as is shown in Fig. 2. 

Since the algorithm is based on statistical mod- 
els, we are interested in the statistical behavior at 
different resolution levels. Using the fact that the 
pixels of the difference frame Y are assumed to be 
independent, we can generate a difference pixel at 
a certain resolution level by summing the four 
appropriate difference pixels in the finer resolution 
level. This summation is equivalent to low-pass 
filtering, which is typically required in every deci- 
mation process. 

Using this structure, the independence of the 
difference pixels is maintained in each of the resolu- 
tion levels. 

The same minimization method is applied to all 
the resolution levels. This implies that we must 
assume that the distribution of the pixels at each 
resolution level can be approximated by a Lap- 

RESOLUTION LEVEL 2 .~. 

. : ' 

RESOLUTION LEVEL 1 ~ . . . .  

........... 2 

Fig. 2. Schematic description of the multi-resolution pyramid. 

lacian distribution. Since by the central limit theo- 
rem, the distribution of the sum of N i.i.d, variables 
tends to be Gaussian as N tends to infinity, the 
assumption of Laplacian distribution is certainly 
not valid when we move to very low resolution 
levels. Actually, according to our experiments, the 
Laplacian approximation is valid only for two res- 
olution levels, i.e., the original resolution level and 
the next lower one. However, the contribution of 
using even one additional resolution level is con- 
siderable as is shown in Section 5. 

After the segmentation process is completed at 
a certain resolution level, the resulting segmenta- 
tion field X is projected to the finer resolution level 
by copying its label to its four generators at the 
finer resolution level. 

The TSS is performed at the finest resolution 
level only. The classification of a pixel at a certain 
resolution level into smooth or textured region is 
then done by checking the classification of all its 
generators at the finest resolution level. Since this 
segmentation is performed using blocks of size 
16 x 16 pixels, using even four resolution levels in 
addition to the original resolution, ensures that the 
generators of a pixel at the coarsest resolution level 
are classified in the same way (this is because at the 
fifth resolution level a pixel is generated by sum- 
ming the 16 x 16 corresponding pixels at the orig- 
inal resolution level). Since we use only two resolu- 
tion levels, the classification ofa  pixel at the coarser 
resolution level as belonging to a smooth or tex- 
tured region is uniquely determined. 

Since the final segmentation at each resolution 
level 'guides' the next level, by serving as its initial 
segmentation field, the outer-loop procedure is 
performed only at the lowest resolution. At other 
resolution levels only the inner-loop procedure is 
performed. For this reason, a large part of the 
computations is performed only at the lowest res- 
olution level, in which the number of pixels is small, 
as compared with the original resolution level, thus 
reducing the overall computational cost. 

2.3.4. Summary of the change-detection algorithm 
General notes: 

- The proposed change-detection algorithm uses 
2 resolution levels (level 0 indicates the finer 
resolution and level 1 the coarser one). 
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~ no 

END 

5 

6 

7 

8 

Fig. 3. Schematic diagram of the proposed change-detection 
algorithm. 

- The outer-loop iteration is performed at least 
twice, to make sure that the cost-function value 
stopped decreasing. It is performed only at the 
coarser resolution level (level 1). 

- The texture/smooth segmentation is performed 
only at the finer resolution level (level 0). 

- The initial segmentation Xo is computed using 
a simple thresholding of the frame-difference 
using different threshold values for smooth and 
textured regions. 

The proposed algorithm is summarized below and 
in the block diagram of Fig. 3. 
1. Initialization: Set the initial cost-function value 

to a very large number (e.g., 10 t°) and set the 
resolution level to 1. 

2. Perform the texture/smooth segmentation on 
the current flame and classify each block to be 
either smooth or textured, determining the seg- 
mentation field S. 

3. Compute the flame-difference for resolution 
level 1 by first transforming the current and 
previous frames to resolution level 1, as de- 
scribed in Section 2.3.3, and then subtracting the 
current frame from the previous one, to obtain 
the necessary flame-difference at level 1. Per- 
form thresholding on this flame-difference (us- 
ing different threshold values for smooth and 
textured regions), to obtain Xo. Calculate initial 
ax.~ values using (10) and Xo. 

4. Outer-loop iteration: Perform MLE of X using 
the estimated crx,s values to obtain Xinit accord- 
ing to (9). 

5. Inner-loop iteration: Find Xmap according to (8), 
using the ICM minimization algorithm. The 
frame-difference is the data used in the minimiz- 
ation process. 

6. Estimate new ax.~ values using (10). If they 
change by more than a given amount (e.g., 
0.5%), end the current inner-loop iteration and 
return to step 5. Else, go to step 7. 

7. Evaluate the cost-function in (8). If the resolu- 
tion level is 1 and the evaluated cost-function 
value is smaller than the previous value, end the 
current outer-loop iteration and return to step 4. 
Else, go to step 8 and the final segmentation field 
X at the current resolution level is the one ob- 
tained in the previous outer-loop iteration, cor- 
responding to the lowest cost-function value. 

8. If the resolution level is 1: Project the last ob- 
tained segmentation field X on resolution level 
0 as described in Section 2.2.3, set the resolution 
level to level 0, calculate ax.s values using (10) 
and return to step 5. 
If the resolution level is already 0: END. 
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3. Texture-matching test 

This test is intended for increasing the probability 
of correct block classification. When the image se- 
quence contains a moving random-textured region 
on a textured background with different texture 
features, the change detector may classify such 
a moving region as stationary, because the differ- 
ence frame contains similar amplitude fluctuations 
as in the case of stationary coarse textured back- 
ground. To avoid misclassification in such a case, 
a test for texture similarity is needed. 

The texture-matching test is based on the pro- 
cedure for texture segmentation proposed in I-7] 
with some modifications. In [7], the Akaike In- 
formation Criterion (AIC) is used to decide whether 
two regions are similar enough, so they can be 
combined into one. The analogy to the texture- 
matching problem is straightforward. We wish to 
test if two corresponding blocks contain similar 
textures, so that the block in the current recon- 
structed frame can be copied from the previous 
reconstructed frame. If the blocks contain similar 
textures, then, in a hypothetical segmentation pro- 
cedure, they could have been combined into one 
region. Using this terminology, the texture-match- 
ing test can be performed in the same way as is 
done in [7]. We evaluate the AIC for the case in 
which the two blocks are assumed different and for 
the case in which the blocks are assumed similar (in 
this case they are combined into one bigger block). 
The smaller AIC value of the two determines the 
result of the texture matching test. 

The AIC is given by 

AIC(k) = - 2 In p {Maximum Likelihood(k)} 

+ 2k', (11) 

where k is a running index explained below, 
p{Maximum Likelihood(k)} denotes the probabil- 
ity density function (PDF) of the data samples, k' is 
the number of identifiable parameters used in the 
model which describes the data and N is the num- 
ber of data samples. The parameters of this model 
are estimated using MLE. 

One problem in using the AIC is its statistical 
behavior. Kashyap proved in [17] that the AIC 
estimator is not consistent statistically. He also 

proposed a modification of the AIC in order to 
make it consistent. The Modified AIC (denoted 
MAIC) is given by 

MAIC(k) = - 2 In p {Maximum Likelihood(k)} 

+ k ' ln(N) .  (12) 

When the AIC or MAIC are used for the deter- 
mination of AR model order, k indicates a possible 
order for the AR model (0 < k -%< K0, where Ko is 
an upper limit for the AR model order), k' equals 
k in this case. 

In the texture-matching test we use k = 1 for the 
case where the two blocks are similar enough (they 
can be considered as one bigger block). In this case 
k' = 6 as it includes the four AR model coefficients, 
the prediction error variance and the mean of the 
block. For the case where the two blocks are con- 
sidered as two different blocks, k = 2 and k' in- 
cludes now two sets of AR model coefficients, two 
prediction error variances, two mean values and 
a weighing coefficient, i.e. k ' =  13. The weighting 
coefficient for k = 2 is used in the calculation of the 
PDF. This P D F  is a weighted combination of the 
PDFs  of the two blocks [7, 19]. Since the sum of 
the two weighting coefficients should be 1, they are 
dependent, and only one should be taken into 
account. 

To construct the P D F  of the data samples we use 
the Gaussian AR model described in Section 2.1. 
The estimation of the model parameters is per- 
formed using MLE in the same way as in [7]. 

4. Detection of edges in a block 

As stated before, the HVS is very sensitive to 
edges. Very small movements of edges in the frames 
may not be detected by both the change detector 
and the texture-matching test. If a stationary block 
which contains an edge is continuously copied, 
such movements can accumulate and eventually be 
detected, resulting in the coding of the block. This 
update of the block may be perceived as a sudden 
change, to which the HVS is very sensitive. To 
avoid such a situation, it was decided that every 
block that contains an edge should be uncondi- 
tionally coded. An algorithm for the detection of 
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Fig. 4. Description of the pairs of blocks tested in the first 
sub-test for edges in block O. (a) Blocks inside the image. (b) 
Blocks in a corner of the image. (c) Blocks on the border of the 
image. 

edges in a block is therefore needed. In this section 
a method for detecting edges in a block is pres- 
ented. 

The proposed method is composed of two sub- 
tests. The first level is based on the method sugges- 
ted by Fan [13]. The idea is that ifa block contains 
an edge which separates two different regions, then 
blocks from different sides of the tested block will 
be different in nature. We therefore regard the 
problem of detecting an edge in a block as a sim- 
ilarity test between two blocks and hence, the pre- 
diction error variances from the texture matching 
test can be used. In this way, the computational 
cost of the test is reduced. If we check all four 
possible pairs of blocks for similarity, the existence 
of an edge will be reflected in the results of the 
similarity test. In Fig. 4(a) the four pairs (al, a2), 
(bl, b2), (el, c2), (dl, d2) and the tested block O are 
shown. For border and corner blocks this test can- 
not be performed as stated. Here, the similarity test 
is performed between the tested block O and its 
three closest neighbors a, b and c, as is shown in 
Fig. 4(b) for corner blocks and in Fig. 4(c) for bor- 
der blocks. 

The similarity of the blocks is evaluated via the 
MAIC measure using the texture parameters cal- 
culated in the texture-matching test with one differ- 
ence. The average of the block is not subtracted 
from the pixel's value. This is because a difference in 
the DC value of the two blocks is relevant to the 
similarity test in this case. If at least one pair con- 
tains different blocks, the block O in Fig. 4 is sus- 
pected of containing an edge and the second sub- 
test is applied. The need for a second test arises 
from the fact that blocks near an edge are also 
declared as containing an edge [13, 23]. 

The second sub-test is also based on the idea of 
comparing two blocks to check similarity, but the 

nature of the parameter estimation of the AR 
model for the blocks is somewhat different from the 
first sub-test (in which the parameters estimated 
during the texture-matching test are used). Since 
the main problem in the first sub-test is the coarse 
resolution of the test (blocks are of size 16 × 16), 
a reasonable way to overcome the above-men- 
tioned problem is to perform the test at a finer 
resolution, i.e., using smaller blocks. 

The second sub-test is therefore considered as 
a homogeneity test of the block. Each tested block 
is divided into four sub-blocks of equal size, which 
are compared to each other to test their similarity. 
However, since the sub-blocks are of smaller size 
(8 × 8), estimating the AR model parameters using 
the MLE method proposed in [7], gives unsatisfac- 
tory results. 

For the estimation process, only pixels for which 
all the needed information exists within the block 
are considered (so that boundary pixels are not 
used). In addition, we use Least Squares (LS) es- 
timation instead of MLE, because the probability 
function of the block cannot be written as in (3). 

This is because d e t ( ~ )  is not equal to 1 any- 
more. 

The similarity testing itself is now carried out 
using the Itakura distance measure, which is used 
mostly in speech but also in images [21]. The 
Itakura distance Dxl between block 1 and block 2 is 
given by 

[ a2  R 11~ T- ] 
D,1 = In La,R,aTj >/0, (13) 

where til and el2 are the AR parameters vector of 
blocks 1 and 2, respectively, and Rx is the autocor- 
relation matrix of block 1. 

This distance measure is not symmetric, so both 
D h and DI2 are calculated. In addition the distance 
between the blocks is calculated according to an- 
other simpler measure defined by 

In [ e ~ ] l  (14) 
D = L JI' 

where ~2 and c7 z are the prediction error variance 
of blocks 1 and 2, respectively. This distance 
measure is symmetric. 
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The final similarity measure used, is calculated 
using the previous three distance measures accord- 
ing to 

Dr = max{Dil, DI 2, D}. (15) 

Dr was chosen in this way, because we wish to 
emphasize the difference between the blocks, mak- 
ing sure that if an edge is present it would be 
detected. The value of Dr is compared with an 
empirically obtained threshold TB, to decide if the 
blocks are sufficiently similar. TB can be made 
adaptive in a similar way to TA in Section 2.1. 

To reduce the computational cost, only stationary 
blocks classified as containing an edge in the previous 
frame and their eight nearest neighbors are checked 
for edges, in addition to blocks which were classified 
as moving in the previous frame, but are classified as 
stationary in the current frame. The corresponding 
eight neighboring blocks are examined because very 
small movements of thin edges may not be detected 
by the change detector. Hence, an edge near the block 
boundary may move to a neighboring block. 

5. Block classification unit 

In Fig. 5, a block diagram of the block classifica- 
tion unit is shown. In the first stage the change 
detection is performed at the pixel level. In the 
second stage the results are evaluated and if a block 
contains enough moving pixels (e.g., 10% of the 
pixels in the block), it is sent to the coding unit. To 
avoid the possibility of a moving region which is 
large enough, but divided between adjacent blocks 
such that the total number of moving pixels in each 
block is less than the 10% requirement for coding, 
another test is performed. If the number of moving 
pixels in a block is less than 10% but more than 5% 
of the total number of pixels in a block, the bound- 
aries of the block are tested for motion continuity 
with respect to its four closest neighboring blocks. 
The test is performed using the moving/stationary 
segmentation field. If motion continuity exist, the 
block is sent to the coding unit. Otherwise it is 
processed by the next stage of the block classifica- 
tion unit. This motion continuity relates to the case 
where a moving region spans over two or more 
neighboring blocks, such that each block contains 
only a part of the moving region. 

CHANGE DETECTION 

r ,s  lock statioua  ?1 °° 

yes 

Texture similarity no 

test passed ? 

l yes 

Block contains yes 

an edge ? 

lno 
Compute and update , ~  

DC difference 

CODEBLOCK 

COPY BLOCK 

Code DC diff. 

Fig.  5. Schema t i c  desc r ip t ion  o f  the  b lock  c lass i f ica t ion  uni t .  

In the third stage, corresponding stationary 
blocks in consecutive frames are tested for texture 
matching and if they are not similar, the relevant 
block is sent to the coding unit. If the blocks are 
similar, the block in the current frame is checked 
for edges in the fourth stage. If it contains an edge, 
it is again sent to the coding unit. In the fifth stage 
the blocks which are to be copied are checked for 
DC difference with respect to the corresponding 
block in the previous frame. The DC level is up- 
dated and coded if necessary. 

The described classification unit is for scenes with- 
out 91obal motion, since all the tests check for local 
changes only. If the coder is intended for coding also 
scenes with global motion (e.g., zoom and pan), 
a Global Motion Compensation (GMC) unit should 
be incorporated within the coder. We used such 
a unit, which operates at, zording to the algorithm 
suggested in I-4, 12]. The GMC algorithm for 3-D 
scenes suggested in [4, 5-] requires segmentation of 
the scene according to the global motion parameters 
of each region in the scene. Since at present it pro- 
vides block-based segmentation, it is not accurate 
enough for the proposed coder. It could be incorpor- 
ated within the proposed coder, for coding 3-D 
scenes with global motion, once the segmentation 
will be at the pixel level. 
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Fig. 6. Block diagram of the proposed coder with the block classification unit and the GMC unit. C denotes the quantized DCT 
coefficients, P the classification data and D denotes the local and global motion parameters. 

Another problem associated with G M C  is the 
accuracy of the estimated global motion para- 
meters. Since the Global Motion Parameters Esti- 
mation (GMPE) is performed using only two 
frames at a time, the accumulation of errors is 
inevitable when a forced copying of blocks is per- 
formed in scenes with GMC,  as is the case in the 
proposed coder. A possible solution to this problem 
is to perform the block classification using a special 
reference frame. The reference frame is then updated 
according to the block classification-unit decisions. 
The initial reference frame is identical to the first 
frame in the coded sequence. The updating is per- 
formed by copying blocks from the current original 
frame if the corresponding blocks were coded and 
leaving the other blocks unchanged. In this way, 
only the relevant errors are. taken into account, 
since when a block is coded the effect of G M P E  
error on that block can be assumed to vanish. This 
reference frame replaces the previous original frame 

in the next G M C  process. There is almost no com- 
putational cost involved in using this method but 
an additional frame storage for storing the refer- 
enceframe is needed. 

A block diagram of the improved coder, which 
incorporates the block classification unit and 
a G M C  unit is shown in Fig. 6. In this figure, 
C denotes the DCT coefficients, D the local and 
global motion parameters and P denotes the block 
classification information. The information de- 
noted by P is similar to the macro-block mode 
information used in H.261 [2]. 

6. Simulation results 

We performed three kinds of simulations. The first 
one concerns the change detector. In this simulation, 
both synthetic and real data were considered. The 
next two simulations are concerned with the corn- 
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plete proposed coder. We checked the performance 
of the proposed coder for a scene which contains 
local motion only and also for a scene with global 
motion ('zoom-out'). The coding results were ob- 
tained using the coder shown in Fig. 6. 

6.1. Change-detector performance 

In all the following simulations, the values of fll 
in (5) were chosen empirically to be 1.8 for textured 
and 1.0 for smooth regions. The value of the thres- 
hold for the texture/smooth segmentation was 
chosen to be TA = 15. 

6.1.1. Simulation results for synthetic data 
In Fig. 7, simulation results based on synthetic 

data are shown. A difference frame with a Laplacian 
statistical distribution, containing four regions that 
differ in their standard deviation, was constructed. 
Initial thresholds equivalent to MLE can be cal- 
culated since the a values are known. In Fig. 7(a) 
the four region types are shown, where ST denotes 
'stationary texture' (a = 13), MT the 'moving tex- 
ture' (a = 50), SS 'stationary smooth' (a = 2) and 
MS denotes 'moving smooth' (a = 11). Fig. 7(b) 
shows the results of a simple threshold-based seg- 
mentation (with a threshold of 15), where a black 
dot indicates a moving-pixel decision. The poor 
result is due to the relatively high standard devi- 
ation of the stationary textured region. Fig. 7(c) 
shows the results obtained according to the method 
suggested in [9], also with a threshold of 15. It can 
be seen that the algorithm fails to recognize the 
moving smooth region and in addition, many pixels 
which belong to the stationary textured region are 
classified as moving. The effect of scanning along 
rows is also noticed. Fig. 7(d) shows the results 
obtained by the method suggested in [20] with 
a threshold of 15. There are almost no errors in the 
stationary textured region but again, the smooth 
moving region is not detected. Fig. 7(e) shows the 
results obtained by the proposed algorithm with 
a single resolution level. The initial thresholds used 
are 3 for smooth regions and 17 for textured re- 
gions. As can be seen, the algorithm separates almost 
exactly the moving (MT, MS) regions from the sta- 
tionary (SS, ST) regions and it was found that vary- 

ing the initial thresholds (used to determine Xo) 
had very little effect on the results. In Fig. 7(f) the 
results obtained by the proposed algorithm with 
two resolution levels are shown, The initial thres- 
holds used, are as for a single resolution level. As 
can be seen, the segmentation is even better than 
the one in Fig. 7(e). The advantages of using two 
resolution levels, from the point of view of the 
cost-function value and the computational cost, are 
shown in Table 1. In both cases the algorithm was 
initialized with the same non-optimal thresholds 
(3 for smooth region and 17 for textured region). 
The computational cost is calculated as the 'aver- 
age number of visits per pixel' as was done in [7]. 

In Fig. 7(g) the results obtained by the proposed 
algorithm with two resolution levels and without 
the texture/smooth segmentation are shown. It is 
clear that the moving smooth (MS) region is not 
detected, thus proving the usefulness of the TSS in 
the change detector. It can also be seen that even 
without the TSS, the results of the proposed change 
detector are better than those obtained by the algo- 
rithm suggested in [-20] (shown in Fig. 7(d)). This is 
due to a better optimization process in the pro- 
posed change detector. 

6.1.2. Simulation results for real data 
In Fig. 8 the results obtained for real data, in 

comparing the proposed change-detection algo- 
rithm with other known change detectors, are pres- 
ented. The source frames are frames 10 and 11 from 
the ISO test sequence 'table-tennis'. The poor seg- 
mentation in Fig. 8(a), obtained by the threshold- 
based method using a threshold of 8, is the result of 
the coarse textured background in the scene. Again, 
black indicates moving pixels and white indicates 
stationary pixels. In Fig. 8(b) the results obtained 
by the method suggested in [9] are shown. It can be 
seen that quite a large portion of the stationary 
background is labeled as moving and moving 
smooth regions on the sleeve are not detected. 
Again, the effect of scanning along lines in this 
model is noticed. In Fig. 8(c) the results obtained 
according to the method proposed in [20] are 
shown. The segmentation is smoother and the effect 
of lines is less noticeable in comparison with 
Fig. 8(b), but still a significant part of the back- 
ground is labeled as moving. In Fig. 8(d) the results 
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Fig. 7. (a) Different region types in the synthetic difference frame. ST indicates 'stationary texture', SS 'stationary smooth', MT 'moving 
texture' and MS "moving smooth'. (b) Threshold-based segmentation results. (c) Results obtained by the method suggested in [9]. 
(d) Results obtained by the method suggested in [20]. (e) Results of the proposed algorithm with one resolution level• (f) Results of the 
proposed algorithm with two resolution levels. (g) Results of the proposed algorithm with two resolution levels but without the TSS. 
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Table 1 
A comparison between minimization results and computational  
cost for one and two resolution levels 

Number  of Cost-function Number  of visits 
resolution levels value x 10-2 per pixel 

1 3057 10.94 
2 3042 5.78 

of the proposed change detector with one resolu- 
tion level are shown (with initial thresholds of 6 for 
smooth regions and 8 for textured regions). Better 
results are obtained with two resolution levels as 
can be seen in Fig. 8(e) (initial thresholds are 20 for 
smooth regions and 40 for textured regions). Since 
the proposed algorithm is less dependent on the 
initial thresholds for the initial segmentation than 
other algorithms, fixed thresholds values can be 
used for sequences of images with different charac- 
teristics. This was shown to be true when the 
change detector was tested on other sequences such 
as 'beach and flower' and 'flower-garden'. 

6.2. Coding results for  scenes without global motion 

For testing the proposed block classification unit 
within an image sequence coding scheme, we con- 
structed a coder which is based on the RM8 coder 
[1, 2]. The main advantage of incorporating the 
block classification unit into the coder is its ability 
to avoid the coding of stationary textured blocks. 
Such blocks are coded by the conventional RM8 
coder because of the high variance in the corres- 
ponding difference block. The coder was used in 
coding the luminance part of the first 24 frames in 
the 'table-tennis' sequence, which contain local 
motion only on a coarse textured background. The 
value of TB was chosen to be 1.3. 

The classification results for frame No. 11 in the 
'table-tennis' sequence are shown in Fig. 9(b). The 
corresponding original frame is shown in Fig. 9(a) 
for reference. White regions in Fig. 9(b) indicate 
blocks that are copied from the previous recon- 
structed frame, gray indicates blocks that are coded 
as a result of the texture-matching test and edge 
detection, and black indicates blocks that are coded 

as a result of the change detection. The small white 
bars in some of the blocks indicate the existence of 
a non-zero motion vector for the block (the length 
of the bar corresponds to the size of the motion 
vector and its orientation is proportional to the 
direction of the motion vector). As can be seen, 
blocks which belong to moving regions (like the 
arm, hand, bat and ball), along with blocks which 
contain edges are coded. Blocks that belong to the 
textured stationary background (which covers 
a major part of the frame) are copied, even when the 
corresponding difference block contains relatively 
high values. Some of the background blocks are 
characterized by non-zero motion vectors, as a re- 
sult of stray motion. The copying of such blocks 
shows the ability of the proposed block classifica- 
tion unit to overcome the stray-motion problem. 

Results obtained with the proposed coder in 
comparison with an RM8-type coder are sum- 
marized in Table 2, where qs is the fixed quantiz- 
ation step used in comparing the coders. 

As can be seen, a large reduction in the bit-rate is 
obtained using the proposed coder. The lower 
PSNR obtained by the proposed coder, as com- 
pared with the RM8-type coder with the same 
quantization step, is the result of copying those 
blocks which are classified as textured background 
blocks, even if they have a high prediction error. 
The difference in the PSNR is smaller when a larger 
quantization step is used in both coders, because 
the error introduced by quantization is increased 
(especially in the RM8-type coder which codes 
many more blocks than the proposed coder). The 
perceived quality of the reconstructed sequence 
(displayed in real time), when the same quantization 
step is used in the RM8-type coder and the pro- 
posed coder, was judged similar, in spite of the 
lower rate of the proposed coder. The quality of the 
reconstructed sequence was judged better than 
RM8 at the same rate. This can be explained by the 
lower quantization step used in the proposed coder. 

The bit-rate as a function of the frame number is 
shown in Fig. 10. The results for a fixed quanti- 
zation step ofq~ = 8 are shown in Fig. 10(a). As can 
be seen, the fluctuations in the bit-rate and the 
average bit-rate of the proposed coder (dashed line) 
are much smaller than in the RM8-type coder (solid 
line). Similar behavior can be seen in Fig. 10(b) for 
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Fig. 8. Change-detection results for frames 10-11 in 'table-tennis'. (a) Threshold-based segmentation results. (b) Results obtained by ,he 
method suggested in [9]. (c) Results obtained by the method suggested in [20]. (d) Results obtained by the proposed algorithm with one 
resolution level. (e) Results obtained by the proposed algorithm with two resolution levels. 

a fixed quant iza t ion  step of q~ = 16. Note  that  the 
first f rame is coded at the same rate in bo th  coders. 

6.3. Coding results for scenes with global motion 

As ment ioned  in Section 5, incorpora t ing  
a G M C  unit enables the p roposed  coder  to opera te  
on scenes having global mot ion.  We tested the 

coder  on 2-D scenes with global mot ion.  The  tested 
sequence was ' table-tennis '  (frames 0-100). F rames  
24-88  of this sequence include a zoom-ou t  opera-  
tion, and there is a scene-cut on frame 89. Results 
obta ined with the p roposed  coder  in compar i son  
with an RM8- type  coder  (with and without  G M C )  
are summar ized  in Table  3, where q~ is the fixed 
quant iza t ion step used in the coders. 
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Fig. 9. (a) Original frame No. 11 from 'table-tennis'. (b) Block classification results where white indicates blocks that are copied, gray 
indicates blocks that are coded as a result of the texture-matching test and edge detection, black indicates blocks that are coded as 
a result of the change detection and the white bars indicate the existence of motion vectors (the length and orientation of the bars 
correspond to the size and direction of the motion vectors, respectively. 

As can be seen in Table  3, the proposed  coder  

(with an added G M C  unit) enables a substantial  

reduct ion in the bit-rate for scenes having global  

mot ion  as well. The resulting P S N R  is closer to the 

value obta ined wih the RM8- type  coder  than for 

scenes wi thout  global  mot ion.  This is because the 

zoom-ou t  process causes the texture to become 
smoother ,  so that  the undesirable smooth ing  effect 
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Fig. 10. Bit-rate as a function of the frame number (frames 0-23 
in the 'table-tennis' sequence) for RM8-type coder (solid line) 
and the proposed coder (dashed line) for (a) fixed quantization 
step of 8; (b) fixed quantization step of 16. 
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Fig. 11. Bit-rate as a function of the frame number (frames 
0-100 in the 'table-tennis' sequence, zoom-out in frames 24-88) 
for RM8-type coder without GMC (solid line), RM8-type coder 
with GMC (dashed line) and the proposed coder (dotted line) for 
(a) fixed quantization step of 8; (b) fixed quantization step of 16. 

Table 2 
Bit-rate and PSNR values for an RM8-type coder, in compari- 
son with the proposed coder, for a scene without global motion 
('table-tennis', frames 0-23) 

Coder qs Average PSNR (dB) % Savings 
rate in bit-rate 
(Kbps) 

RM8-type 8 2485 35.12 - 
Proposed coder 8 1023 28.38 58.8% 
RMS-type 16 1020 30.35 - 
Proposed coder 16 489 27.80 52.1% 

caused by the in terpola t ion process used in the 
G M C  uni t  [4] is reduced, resulting in a better 
compensa t ion  by the G M C  unit. In  addit ion,  when 
the textured background  becomes smoother,  the 
role of the proposed change detector in reducing 
the number  of coded blocks is diminished. 

The last s tatement  is demonst ra ted  in Fig. l l .  
In Fig. l l(a), the bit-rate as a function of the 
frame number  for a fixed quan t iza t ion  step of 
q~ = 8 is shown. As can be seen, the effectiveness of 
the proposed coder is more emphasized in the first 
24 frames where no global mot ion  is present. When  
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Table 3 
Bit-rate and PSNR values for an RM8-type coder, in comparison with the proposed coder, for a sequence which contains global motion 
('table-tennis', frames 0-100) 

Coder q, Average rate PSNR (dB) % Savings in bit-rate 
(Kbps) 

RM8 8 2331 36.09 - 
RM8 + GMC 8 1839 36.44 21.1% 
Proposed coder + GMC 8 1251 33.86 46.3% 
RM8 16 1059 32.13 - 
RM8 + GMC 16 861 32.57 18.7% 
Proposed coder + GMC 16 630 31.67 40.5% 

global motion exists, the proposed coder improves 
the results as compared with the RM8-type coder 
(to which a G M C  unit is added as well), but more 
modestly. Fig. l l(b) shows the same comparison 
but for a fixed quantization step of q~ = 16. 

7. Summary and conclusions 

An improved image sequence coder is proposed 
in this paper. The coder contains a block classifica- 
tion unit which enables a reliable detection of all 
stationary blocks including coarse textured back- 
ground blocks, These blocks, which usually feature 
high variance in the corresponding difference 
block, can then be copied  from the previous recon- 
structed frame, instead of being coded (as would be 
the case in the RM8-type coders). The unit consists 
of a change detector, which is based on statistical 
models for the difference frame (a Laplacian PDF)  
and for the moving/stationary segmentation field 
(Gibbs distribution function) and on a MAP-based 
cost function. An iterative sub-optimal optimiza- 
tion procedure (ICM) is used to obtain the final 
moving/stationary segmentation. The additional 
segmentation of each image into smooth/textured 
regions, and the directed use of several initial mov- 
ing/stationary segmentation fields in the optimiza- 
tion procedure, enables the adaptation of the 
change detector to image characteristics and the 
reduction of its sensitivity to the initial segmenta- 
tion. Performing the minimization procedure at 
several resolution levels enables further improve- 
ment in the segmentation results while lowering the 
computational cost. After the changed blocks are 
detected by the change detector, a texture-matching 

test and the detection of edges in all the blocks 
which were labeled as stationary are used to verify 
the validity of copying the stationary textured 
blocks. Incorporation of the proposed block classi- 
fication unit in an RM8-type image-sequence coder 
results in a substantial reduction in the bit-rate of 
the coder for scenes with coarse textured back- 
ground, while maintaining the perceived quality of 
the reconstructed sequence. Incorporating an ade- 
quate global motion compensation (GMC) unit in 
addition to the block classification unit enables the 
application of the proposed coder for coding also 
scenes which contain global motion. In this case, 
using a special reference frame, which reflects the 
accumulation of global motion parameters estima- 
tion errors (as described in Section 5) is necessary. 
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