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Abstract — In this paper, an image subband coding (SBC) system, which applics a uell_is coder to effi-
ciently encode the subband signals, is prescnted. The system uses a bank of two-dimensional quadrature
mirror filters (2D-QMF) to separate the image into sub-images corresponding to different frequency bands.
The decimated sub-images arc then vector quantized using a trellis encoder. A trellis coder, rather than a
codebook-based vector quantizer (VQ), is used since simulations have shown its advantage over VQ (t?oth
coders with random population) if the two coders are constrained to have the same amount of computations
and same rate. Simulation results with images indicate that at 1 bit/pixel, the proposed system provides
better subjective reconstructed image quality than the earlier reported SBC with scalar quantization.

1. INTRODUCTION

Subband Coding (SBC) is a medium complexity method for
imagc coding at low bit rates. According to this mcthod a filter-bank
separates the original image into sub-images, each one representing a
different frequency band. It is assumed that the image can be trcated
as a random process, with a slowly spatially varying spectral density.
Then, if the frequency bands are sufficiently narrow, the sub-images,
following decimation, can be considered as uncorrelated sources.

The scparation to subbands can be performed using different
two-dimensional filter-banks, e.g. The Laplacian pyramid [1], uniform
filter-bank [2] and two-dimensional quadrature mirror filter-bank
(2D-QMF) [3]. The filter-banks can be implemented in rcal time
using fast convolvers which are already available commercially. The
advantage of the 2D-QMEF is that with no quantization, the analysis-
synthesis system is approximately a unity system and complete can-
cellation of the aliasing, which results from the decimation process, is
ensured.

In previously reported works [1, 2, 3] on subband coding of
images, the subband signals were quantized by scalar quantizers.
From rate-distortion theory we know that an improvement in perfor-
mance should be obtained by using vector quantization, using suffi-
ciently long vectors, There arc three basic structures of vector coders
[5]: Block (VQ), Tree, and Trellis coders. The block and tree coders
are not instrumental for long vectors because their complexity grows
exponentially with vector length (for a given coder rate). In this
paper, we demonstrate that the trellis coder provides better perfor-
mance than VQ when both coders are constrained to have the same
amount of computations. Hence, we chose this coder for the SBC sys-
tem we studied.

To usc the trellis we have to populate it with codewords. To do
this, two different methods may be used. In the first, a long training
data sequence is used in an iterative process [8). The second method
is to populate the trellis from a random memoryless source having an
appropriate probability distribution {4]. With this mcthod one avoids
the complicated and lengthy training process. However, the perfor-
mance is dependent on how does the real image data approximate the
assumed statistical properties.

The remainder of this paper describes in more detail the pro-
posed coding algorithm and the results obtained. Section 2 introduccs
bricfly the 2D-QMEF filter-bank. Scction 3 presents the trellis coder
stricture, the random population process, and simulation results (with
synthctic data), from which we conclude that indecd the trellis is
beneficial over VQ under the constraint of a given number of compu-

_tations and the range of paramcters examined. In Section 4 the coding

system, including implementation considcrations are presented.
Simulation results with actual image data are given in Section 5. A
summary and conclusions are contained in the fast section.

2. 2D-QMF FILTER BANK

The basic structure of a 2D-QMEF filter-bank is depicted in
Fig. 1. 1t is a four-band array composed of analysis and syn-
thesis filter-banks [3]. The outputs of the analysis stage are
four sub-images, each of which is a quarier in size of the
original image, representing different frequency regions, as
itlustrated in Figure 2.

To achieve complcte cancellation of the aliasing due to
decimation of the sub-images, it is common to select the filters
which are determined from a single prototype filter, H{(w,wy).
The relations satisficd by the analysis and synthesis filters in
order to obtain complete cancellation of aliasing, and the condi-
tion for a unity systcm are given in [3].

Using a scparable prototype filter (i.e.:
H(wy, wy) = H (W) ,(wy)) reduces dramatically the amount
of computations necded, and enablcs onc 1o use QMF filters
designed for the one-dimensional case [7).

A filter-bank with more bands can be built by using the
above basic 4-band 2D-QMF in a tree structure. The advantage
of the tree-structured filter-bank is that it offers the flexibility of
sub-dividing frequency regions of interest (where the input
spectral densily varies rapidly), while leaving other bands undi-
vided.

3. TRELLIS VECTOR CODER

The trellis diagram can be described as a coding tree in
which branches are joined. Consider, therefore, a coding tree of
L levels (L is the tree depth). The first level consists of one
node that splits into g branches. Each branch lcads to a node
which splits again into ¢ branches, and so on, up to the last-
level. Each branch is populated with n codewords. In the cod-
ing process, a vector of N=nl source clements is coded. The
encoder looks for the path in the tree which will minimize the -
crror between the source vector and the reproduction vector on
the path. This path is transmitted to the decoder which has



" knowledge of the coding tree and reconstructs the reproduction
vector from the transmitted path.

As stated above the trellis stems from the trec by joining
branches. The joined branches are those for which the last k
elements in the path description, leading to a given node, are
identical. As a result, at cach level (from the &-th on) there are
q"‘l nodes and g* branches. When all the levels are populated
with the same codewords, the trellis is time invariant. On the
other hand, if the codewords are not the same on cach level, the
trellis is time varying. In Figure 3 a time-invariant trellis in
which L=4,k=3,q=2 is illustrated.

In this work, the trellis is populated using clements from a
random process, with a probability distribution satisfying the
rate-distortion function. The motivation for using random
population is given in {4]. It is proven in [4] that, for a memory-
less source, a time varying trellis populated randomly has per-
fonnance (as K-—»e<0), which is arbitrarily close to the rate-
distortion function bound.

In the following, we will justify the use of a trellis code
instead of VQ when random population is applied (assuming
knowledge of statistical characteristics of the source). To deter-
mine which of the two coding structures is preferable, under the
constraint that both have the same computational load
(multiply-adds per source symbol), the following question is
asked: Given the rate R, and the number of computations per
source symbol B =g%, how should one choose the trellis
parameters K ,n, and ¢, in order to get minimum distortion?
The answer, based on simnulation results, is demonstrated in
table 1. The table shows the distortions obtained with different
trellis parameters for R=1 bits/source-symbol, and for different
values of B (64, 128 or 256). For the memoryless Gaussian
source (with o?= 1), the distortion criterion is mean square
error (MSE), whereas for the memoryless Laplacian source
(c?=1) it is the mean absolute error (MAE). In all the simula-
tions, the length of the coded vectoris N =256.

The conclusion from these particular simulations is that
with random population of a time varying trellis, under the con-
straint of a given number of computations, B, as above, the
lowest distortion is obtaincd when the value of K is the largest
possible (i.c. smallest ¢ for a given B). The value of n is also
the lowest possible which satisfies the rate constraint:
R =(log,q)/n = lbits/symbol.

To compare between the performance of VQ and trellis
coders, we used a VQ coder with vector size n’ and codcbook
size N’, set to satisfy the rate and computations constraints. As
the trellis, the codebook is populated randomly. For the rate of
1 bit/symbol, and a given number of computations B, con-
straincd as before, we have 1o set N'=B and code vectors of
length n’=6, 7, or 8 samples, respectively. The results
obtained now arc identical to those obtained with the trellis for
the particular choice of K'=1. This case is depicted in Fig. 4. As
seen in this figure, for K=1 the trellis is composed of L dif-
ferent codebooks in cascade. Thus, for each value of B, the dis-
tortion valne shown in table 1, for K=1, is actually the average
of the distortions obtained using L different random codcbooks,
cach with same vector length.

Thus, we concludc that by using the proper trellis parame-
ters, better results can be obtained with the trellis coder, than
with VQ, for the same computational effort. Although this is
achieved at the price of a larger memory size (Lng* =NB for
the trellis, compared to n’N’ =n’8 for VQ).

4. SYSTEM DESCRIPTION AND IMPLEMENTATION
CONSIDERATIONS

4.1 QMF-Array

For cfficient implementation of the QMF array we have
chosen the prototype filter H (wy,w,) to be separable. Further
more, identical one dimensignal filters are used for each dimen-
sion: H(wy,wo)=Hw,) - Hiw,y)

Among all 1D-QMF filters given in {7], the filters for
cach level were chosen such that they would give the best
approximation 1o a unity system.

The 2D-QMF arrays used are full trees having either two
or three Jevels.

To avoid the increase in the total number of output sam-

ples, due to the convolution operations, a periodic extension of
the source image is introduced.

4.2 Coders description

A. Bit Allocation

The bit allocation between bands assurcs that for a given
average rate, the MSE between the source image and the recon-
structed one, Dy, is minimized. Assuming that there is a good
band separation, we achicve this goal by minimizing the accu-
mulated distortion of all the bands, since:

Dr=2%Di m

where D; is the distortion resulting from coding the {-th sub-
band signal.

To find the optimal bit allocation, it is assumed that the
coded image is a Gaussian source, and that the spectral density
in ecach of the decimated bands is ncarly constant.

With these assumptions, the optimal bit allocation is parametri-
cally given by [9]:
2
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r; —is the optimal raic given to band i (in bits/pixcl)
o} — tlic variance of the ¢ -th band signal
0 — a parametcr which can be calculated by solving the rate con-
straint, i.e. by forcing the total rate to be R,
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ri =— Y max (< log—.,0) 3

1 2 e

i=1

ol
m;

where m is number of bands.

Note that it is not possible to implement any desired rate by
using the trellis, since ¢ and n arc integers. Choosing g to
have the same value in all the bands, the possible rates are
r=(ogaq)n, n=12,..

Bascd on the optimal bit allocation, according to (2), n;
(the number of codewords on cach branch of the trellis for band
i) is detcrmined to be the maximal integer such that:
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where r; is the actual rate given to band i. Thercfore, the total
rate is usually somewhat larger than the desired rate, R .

Typically, the lowest frequency region is characterized by
high correlation between adjacent pixcels, even after the decima-
tion, a scalar DPCM coder is used in this band.



B. Trellis Population

Since we assumed that the original image data is Gaus-
sian, it can be expected that the resulting decimated band sig-
nals are ncarly memoryless Gaussian sources. Hence, the trellis
coders (onc for each band) can be populated randomly from a
probability distribution which satisfics. the rate-distortion func-
tion. On the other hand, looking at the histograms of different
bands shows that the band distribution (apart from the lowest
band) is very close to a Laplacian distribution. The problem is
that a closed-form expression for the rate-distortion function for
this distribution with an MSE distortion measure is not known.
A closed-form cxpression is known only for the MAE distortion
measure. But this measure is not suitable here since it does not
satisfy (1).

In an effort to find a sub-optimal solution, two approaches
were considercd and examined. In both, the bit allocation was
performed as described in the former section (under the Gaus-
sian source assumption). The two differ by the distribution in
which the trellis diagrams are populated. In the first, each trellis
is randomly populated using the Laplacian distribution, with the
variances being estimated from the data in each band (and sent
as side information to the decoder).

In the sccond, cach treitis was populated using the distri-
bution satisfying the rate-distortion function for a Laplacian
source (with the MAE distortion measure), given by
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where 0 is obtained from the bit allocation procedurce described
earlier, and ¢ is estimated for each band as before and is sent to
the decoder. For both approaches, the search of a trellis is done
under the MSE distortion measure. For rates of 1 bit/pixe! and
less, the second approach led to slightly better results. There-
fore, in the proposed system the population of the trellis
diagrams is done according to this second approach.

The memory size necded to store codewords of a time
varying trellis is nLg*. The trellis parameters used in the sys-
tem (K=3,¢4=32) led to an unrealistic memory size
requirement. This problem was overcome by using a table con-
taining a much smaller number of random codewords (we
stored 2500 words) and cyclically using them to populate each
trellis. Using this mcthod, a minor degradation in performance
of only 0.1dB was observed.

C. Trellis Search

A full search of the trellis using the Viterbi algorithm {6]
demands too much computational effort in large trellis struc-
tures. Thus, only a partial search is done using the M-algorithm
[5), which is a sub-optimal version of the Viterbi algorithm.

Note, however, that already in the first level the trellis
search begins at M nodes and, therefore, there is a nced to send
to the decoder side information about the node from which the
selected path begins ((log, M )/Ln bits/symbol). This informa-
tion becomes ncgligible as longer vectors (N =Ln ) are coded in

. the trellis.

1

4.3 In-Band Trellis Adaptation

The fact that the image is non-stationary, so that at dif-
ferent regions of the image its encrgy may concentrate in dif-
ferent frequency bands, forces the adjusiment of the bit-
allocation and the trellis population according to the spatial
variations of the variance in each sub-image. Thus, instead of

transmitting the variances and averages of the whole sub-image
corresponding to a given frequency band, we need to transmit
the variances and averages of sub-regions in each of the sub-
images.

The regions in each sub-image are formed by dividing the
sub image into equal size rcctangles. For a 2-level filter-bank
the sub-images were divided imo 16 equal size regions.
Whereas, for a 3-level filter-bank, the sub-images were divided
only into 4 regions (since the decimated sub-images arc
smaller). Hcnce, for each of the above two filter-banks we get a
total of 256 regions. To minimize the MSE, the bit allocation is
now performed as in Scction 4.2, A, but the variances of all 256
regions are taken into account. The trellis corresponding to cach
region is populated according to its local variance and the same
parameter 0 obtaincd from the bit allocation process. The vari-
ances and avcerages are coded by a uniform scalar quantizer,

5. SIMULATION RESULTS

In order to simulatc the proposed systein we used a
Vax/750 computer with a Gould 1P 8500 image display system.
The simulations were performed on the image 'GIRL' of size
256x256 pixels, shown in picture 1.

in all trellis diagrams used, the coded vector size, n; L, is
256. The branching factor, g, is the same in all bands. Its
value was chosen to be 32 in order to cnable rates up to 5
bits/pixel. The constraint length, K, is chosen to be 3 and the
search parameter M , is 30. In all versions of the proposed algo-
rithm the sub-image corresponding to the lowest frequency
band is coded using a scalar DPCM coder.

When the system with adaptation was implemented at the
rate of 1 bit/pixel, the following results were obtained: In the
case where the 2D-QMF array contained 2 stages and the filtcr
lengths werg 32 at the first stage and 16 at the sccond, the SNR
(10 log 255°/MSE) between the original image (Picture 1) and
the reconstructed one (picture 2) was found to be 31.83 dB.
Whereas, using a 3 stage 2D-QMF (with filter lengths of 32, 16,
and 8), the SNR obtained is 31.48 dB (picture 3). Still the sub-
jective quality of the reconstructcd image in picture 3 is judged
1o be better.

SUMMARY AND CONCLUSIONS

The proposed system which consists of 2D-QMF and a
trellis coder was found to achieve good results at the rates of 1
bit/pixel (for an image of 256x256). Although similar SNR's
are obtained with a DPCM coder with adaptation {3], our
experience has shown the trellis coded images to be subjec-
tively better. Further improvement can be obtained by using
more carefully selected parameters, and by populating the trellis
according to better matched probability densities. Another pos-
sibility is to use a sufficicnly long training sequence and the
iterative process in [8].

We observed that some of the subband signals are not

uncorrclated as assumed, and hence we are presently consider-
ing the application of a predictive trellis structure [10].
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Figure 3. Trellis diagram.
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