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ABSTRACT 

The paper presents an improved collage theorem, valid for 
a class of signal mappings called Afine Blockwise Auerag- 

ing (ABA) Mappings. The .4BA structure is exploited to 
form a bound depending on norms of collage error signals 
at several resolutions. Compared to previously published 
collage theorems, the new theorem provides a much tighter 
bound on the maximum distance between the original sig- 
nal (real world image) and the decoded attractor, given the 
distance between the original and the “collage” optimized 
by the encoder. This is achieved without contractivity con- 
straints on the .4BA mapping parameters. Finally, an en- 
coding method in which one attempts to minimize the upper 
bound directly is suggested. 

1. INTRODUCTION 

In recent years, the interest in fractal-based signal L ,mpres- 
sion has been steadily growing. The first automatic fractal- 
based coding algorithm that was practically applicable to 
real world images was suggested by Jacquin in 1989 [l, 21. 
Jacquin’s block-oriented method has been the basis for al- 
most all research in the field since it was first published, 
and has been analyzed and refined by among others 0ien, 
Lepsoy et al. [3, 4> 51. Fisher et al. [6], and Baharav et al. 

[7]. A forthcoming book [8] will collect many of the most 
recent contributions to fractal compression research. 

2. FRACTAL CODING PRINCIPLES 

The encoder in a fractal coder optimizes a nonlinear signal 
mapping T such that the distance between the original sig- 
nal 2. and the collage Tx of 5, is minimized. According to 
the Fixed Point Theorem, the decoder may then generate 
the attractorxr of T (given certain constraints on T): as 

XT = kkim T”xe for an arbitrary xo (1) 

xr can also be uniquely defined in terms of its fixed point 

property, i.e. its invariance with respect to T: XT = TXT. 
The decoder only needs the description of T to synthesize 

XT! since 10 is arbitrary. If XT is an approximation of the 

‘P.B. 2557 Ullandhaug, 4003 Stavanger, NORWAY. E-mail: 

geir:qelektro.tih.no 

tDept. of Electrical Engineering, Haifa 32000, ISRAEL. E- 

mail: zachi(~techunix.technion.ac.il 

:F’.B. 1391,140l Ski, NORWAY 

signal x to be coded, the description of T can therefore be 

used as a lossy code for x. 
5~ will generally not be exactly equal to TX, so the code 

computed by the encoder will not necessarily produce the 
globally optimal attractor. However, we are able to ensure 
that XT will he almost as close to x as Tx does, by suitably 
constraining the mapping T. This can be seen from the col- 
lage theorem which traditionally has been the justification 
behind the fractal coder structure. This theorem provides 
a bound on the distance between x and XT which is given 

by PI 

1 1 -s; 
d(x,xT) 5 - . -. 

1 - SK 
1 _ sl 4x:Tx) (2) 

where sr is the Lipschitz factor of T, and K is the smallest 
integer such that the following holds for all signals z: y: 

d(TKx, T”y) 5 SK . d(x, y) for some SIC < 1 (3) 

Note that the existence of such a li is necessary for the 
decoding process to converge. Mappings for which such a 
IC exists are called contractiue. 

If SK << 1, and sr and K are not too large! it is seen 
from 2 that the original and the attractor are guaranteed 
to be almost as close to each other as the original and the 
collage. Hence collage optimization is in that case justified 
as a means of finding a good signal code. However, for the 
types of mappings used in practice it seems that even better 
coding results can be achieved by allowing for larger si ‘s and 
K’s. This was observed both by Fisher [6] and by 0ien et 

al. [3, lo], but existing collage theorems do not give bounds 
even remotely close to the actual distances observed. This 
has made it seem somewhat “dangerous” to perform an un- 
constrained optimization of the collage in the encoder - one 
has been afraid that there might exist signals for which such 
an optimization leads to a mapping T having an attractor 
lying far away from the original. The solution most often 
used has been to put rather severe constraints on important 
parameters in the allowed mappings: with a corresponding 
decline in signal quality as a result. “Strictly” contractive 
mappings - with sr < 1 - have been most common. 

In this paper we shall take a different approach: We shall 
develop a collage theorem especially suited for the class of 
mappings introduced by Jacquin [l, 21, and subsequently 
modified by 0ien et al. [8, lo]. This is a class of afine 
mappings, operating on the space of discrete signals of a 
given size N = 2” samples. We term them Afine Blockwise 
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Auerag:ng (ABA) mappings. We shall use Bien’s modi- 
fied (orthogonalized) versions of Jacquin’s mappings, but 
our main result holds also without this modification. The 
modified mappings are used because they give us several 
advantages, including fast signal-independent decoder con- 
vergence and a simpler proof. 

The special structure of the ABA mappings allows us 
to construct a potentially much stricter collage theorem 
bound than that given by 2, thus ensuring that no dra- 
matic discrepancy can occur between attractor and original 
even when an unconstrained collage optimization is used. 
Hence we are assured that such optimization can be used 
without fearing the consequences for the decoding. The new 
theorem also suggests a way of improving the encoder by 
optimizing the code with respect to the upper bound of the 
theorem instead of with respect to the collage only. 

3. AFFINE BLOCKWISE AVERAGING (ABA) 
MAPPINGS 

By an Afine Blockwise Averaging (ABA) Mapping we mean 
a mapping T : Rx + R” fulfilling: 

1. TX = LZ + t where L : R” + Rx is a linear operator 
and t E R” is a constant vector. 

2. t is constant-valued over consecutive blocks of length 
2* samples. 

3. L replaces consecutive 2b-blocks (range blocks) in x 
by inserting in their place 2d-blocks (domain blocks. 
d > b) - taken from another part of x - which 

(4 are decimated to size 2’ by averaging over 
7(d-b) samples at a time, 
block [1(1)...1(2d)], 

i.e. for a domain 
each subvector [1(1 + i 

2’d-b)). . .I((; + 1) 2(d-b))] is replaced by its av- 

erage value 2-(d-b) . Et:-” l(j + i 2tdmb)). for 

(b) have their DC value removed (are orthogonalized 
with respect to t) 

(4 are scaled by real multipliers cy 

4. Each domain block is made up of an integer number of 
range blocks. 

For each range block, the output of an encoder optimizing 
an ABA mapping is a domain block address, the value of 
the best scalar multiplier, and the value of the constant 
vector t in the position of the range block. The former can 
be found by a systematic search while the latter two can be 
directly optimized in a least squares sense [3, 8, lo]. t will 
then equal the mean value of the samples within each range 
block of x. 

In [S, lo] an important property of AB.4 mappings of 
the form given above is shown: The attractor (at the same 
resolution as the original signal) can be written as 

K-l 

XT = T”-‘t = c Lkt 

k=O 

(4) 

where 

Ii = I-&l (5) 

i.e. convergence towards the attractor always occurs in a 
finite number of steps. (The result can also be generalized to 
the perhaps more common case of several range and domain 
block sizes used at once in a quadtree structure [2. 61.) For 
practical parameter choices, typically Ir’ = 2 - 4. 

Baharav et al. have given an interpretation of the fractal 
decoding process in a multiresolution context [i’? 81. From 

their work it is clear that the expression T,“t = ~~=, L’t, 

0 < M 5 I< - 1, is equivalent to the attractor 17 after 
decimation by averaging over 2b-“(d-b) samples at a t,ime. 
followed by sample duplication back to original size iY. We 
write this as 

T”t = x~-‘-~) for 0 5 M < K - 1 (6) 

where xg’ means zr after averaging over 2k(d-b) samples 
followed by sample duplication back to original size. It fol- 
lows from this that 

xy--l) = t 
(7) 

Note also that 
x(h’--l) = t 

(8) 

since t contains the mean value over each range block. Thus 
the decoding consists of first constructing the attractor at 
resolution 2’ samples, then, with each new term in the sum, 
adding correct details at resolution 22b-d, 23b-2d, and so on 
down to single-sample resolution. 

Before we prove our main result, we note another impor- 
tant property of ABA mappings: Due to their decimation- 
by-averaging structure, the signal to be mapped may be 
decimated by averaging over 2d-b samples and then brought 
back to original size by sample duplication without chang- 
ing the result of the mapping. I.e. the mapping is “blind” 
to details smaller than 2d-b samples. 

4. AN IMPROVED COLLAGE THEOREM 
FOR ABA MAPPINGS 

In this section we state an improved collage theorem, origi- 
nally found by Baharav [ll], which holds for AB.4 mappings 
(with or without orthogonalization). 

Theorem 1 (Collage Theorem for ABA Mappings) 
Let T : RdC’ + RN be on ABA mapping with range blocks 

of size 2’ and domain blocks of size 2d. Assume that Tk 
has Lipschitr factor Sk for k = 0: 1:. . .‘. Let I(‘) denote 

an arbitrary vector x E RN, after decimation by averaging 

over 2’tdSb) samples at u time followed by sample duplica- 

tion buck to original size hr. Let h’ = r-&l. Then the 

following holds: 

Ii-2 

d(x,xT) 5 c Sk . d(x(“). TX(“)) 

k=O 

(9) 

Proof: By the triangle inequality and the fixed point prop- 
erty of .zr: 

4x, XT) = d(x(‘), xg’) 

5 4x , (‘) TX(‘)) + d(Tx “‘,TxF’) (10) 

lT” = I, with so = 1. 
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Now, remember that 7 only “sees” the average value of the 
samples of any vector over consecutive 2d-b blocks. Thus, 
for any 9 E RT, 

Ty!“i = Tp’l (11) 

In addition. for the attractor ZT of T. follows 
equation that 

Tkx(Tl = Tk-’ xT ik-1) forall k=l.:!,...,K-1 (12) 

Equations 11 and 12 and repeated use of the triangle 
inequality implies that 

d(x? xp’) 2 d(x(‘): TX(‘)) + d(Tx(‘)! TX;‘) 

I d(x 1 (O) TX(O)) + d(Tx(‘), T2x(‘)) 

+d(T2x(2), T2x$y 

Ii-2 

5 c 
d(pxw! p+lx(“)) 

k=O 

=r(by 8) =f(by 7) 

The last term in equation 13 is seen to be zero. Thus, 

K-2 

~(x(~),x~‘) < c cf(Tkx(k),Tk+lx(k)) 

k=O 

I\‘-2 

5 c sk . d(x(“), Td”)) (14) 

k=O 

.4 comment is in order on how to compute the factors 
sl? ~2,. . Remember that L’ is an N x N matrix for k = 
O,l,....K-1. Inthecaseofthe12metric,sr,=((Lk\(:the 
norm of the linear operator L, which is the square root of the 
largest eigenvalue of ( Lk)T( L”). For the special 
AB.4 mapping and k = 1, it has been shown by 
181 that 

SI = Zd-* max T 0: 

where r denotes range block, 1 denotes domain 
or are the scalar multipliers. 

5. DISCUSSION 

case of an 
Lundheim 

(15) 

block and 

The new collage theorem bound, equation 9, suggests sev- 
eral amendments to established fractal coding theory. Most 
importantly, for the first time the frequency content of the 
signals in question is taken into account. Since the bound 
now includes norms of collage error signals at successively 
coarser resolutions, which amounts to low-pass filtered ver- 
sions of the collage error z - TX, it will work differently for 
signals with differing frequency content. If x - TX were a 
low pass signal, the new bound would therefore not neces- 
sarily be much stricter than the classical one. However. an 
error or noise signal, such as x - TX: is fundamentally a 

high pass signal. Thus, we expect the low pass filtering im- 
plied by the decimation and sample duplication to remove 
a significant amount of the collage error energy, which in 
turn improves the bound. 

Another thing to note is that for the special case of d = 
2b? the new bound shows that d(x, XT) = C-/(X, TX). In fact., 
Lepsoy has shown that in this case we always have ~7 = TX 

(and the decoding is noniteratiur) [5: 41. Our new bound 
reflects this fact. 

5.1. Modified encoding procedure 

Since the new bound has so few terms (typically l-3) we 
have a possibility of minimizing it directly instead of con- 
centrating on the collage only. By doing this we expect to 
obtain an even more “direct’! optimization of the attrac- 
tor. However, since the terms of the bound become suc- 
cessively less important the higher k is (as X: increases we 
observe a significant decrease both in sk and R(x(‘) : TX(~))), 

we suggest simplifying the problem by keeping maximally 
the first two terms. Of course, we do not know s1 before 
we have found the mapping T, but this problem may be 
bypassed by initiaUy optimizing T to minimize sums of the 
form d(x, TX) +s.d(z (‘1 TX(‘)), where s is viewed as a free , 
parameter which is to be varied within a suitable interval. 
By doing this on a training set of representative signals we 
might find the s giving the minimal sum on the average. 
This s value: which we expect to be close to the average 
Lipschitz factor for the resulting mappings. can then be 

used instead of sl in subsequent encodings. 

6. EXPERIMENTS 

6.1. Example: Modeling of synthetic vector 

In this section we will illustrate the efficiency of the new 
collage theorem bound by means of modeling of a synthetic 
data vector. We consider the vector 

X = [ 60 40 24 20 24 22 20 14 

51 49 33 27 14 8 8 2 1’ (16) 

and divide it into four range blocks of size 4 (no. 1 - 4), 
and two domain blocks of size 8 (no. 1 and 2). This yields 
h’ = 3. We performed ABA modeling of this vector with a 
code summarized in Table 1. 

Table 1. ABA parameters 

Applying this code, we fmd the attractor vector 

XT = [ 57 39 27 21 30 18 1X 14 

61 43 31 25 18 6 6 2 1’ (17) 

By equation 15, we find s1 = 0.75, i.e. T is “strictly” 
contractive in this case., We summarize the computed 
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original-attractor 12-distance and corresponding collage the- 
orem bounds in Table 2. (“Old bound” refers to equation 2 
and “new bound” refers to equation 9.) 

d(x. TX) d(x, XT) 1 Old bound [ New bound 
:3.9627 1 3.9051 1 15.8509 1 5.1486 

Table 2. Errors and error bounds for Example 5.1 

From the table we see that the bound is drastically im- 
proved. Whereas the classical collage theorem predicts an 
original-attractor rms error that is over four times as high 
as the original-collage error, the improved theorem predicts 
an error being only 30 ‘% higher. As seen from the table, 
the actual d(z, XT) is almost identical to d(x. Tz) (in fact 
slightly lower in this case), so the bound is still too pes- 
simistic: but the improvement is vast. 

6.2. Image coding experiments 

In our real world image experiments, the 256 x 256 8 bpp im- 
age “Lena” was used. Two ABA models were derived: One 
(AB.41) where the mapping T was restricted to be strictly 
contractive in the 11 norm (all multipliers of absolute value 
less than 1) and a maximal vertical/horisontal distance be- 
tween range and domain block of 96 pixels was allowed, and 
one (ABA?) where unconstrained optimization of multipli- 
ers and exhaustive search for domain blocks was used. We 
restricted-ourselves to 8 x 8 range blocks and nonoverlap- 
ping 16 x 16 domain blocks. The scalar quantizers were kept 
as real values, so no bit rate is available. The metric used 
was the rms distance. The main results are summarized in 
table 3. 

Model d(x.Tx) d(~,x~) Old bound New bound 
ABA1 12.66 13.11 353.00 42.30 

ABA2 12.13 12.60 543.71 38.81 

Table 3. Errors and error bounds for “Lena” 

This table shows several things: 1) Use of an uncon- 
strained .4BA mapping improves the modeling results. The 
original-to-attractor FSNR increases by about 0.35 dB. 2) 
I.lsing an unconstrained ABA mapping does not result in a 
greater original-attractor distance (less than 0.5 dB in both 
cases). 3) The new collage theorem bound is vastly superior 
to the “classical” one. The predicted rms error is a decade 
lower with the new bound. 4) The new bound performs as 
well, or even slightly better, for the unconstrained mapping 
as for the constrained one. 5) There is still a gap between 
the prediction of the bound and the actual coding results. 

We have not done extensive experiments with the 
.‘weighted” method suggested in Subsection5.1. but we have 
tried it on the “Lena” image. The results are given in Ta- 
ble 4. 

S 11 0 1 1.2 ) 2.4 1 3.6 1 4.8 

FSNR(x: Q-) 11 26.85 j 26.91 1 26.93 1 26.91 ) 26.88 

Table 4. “Lena” encoding results with “weighted” method. 

.4s is seen from the table, there is a (very) slight FSNR 
improvement. The optimum occurs for s = 2.4, while the 
Lipschitz factor for this mapping was computed as s1 = 
2.36. The visual improvement is also small, but is mostly 

concentrated in the notoriousI> “difficult” sections of the 
image, such as the eyes and other highly detailed regions. 

7. CONCLUSION 

A new collage theorem holding for .4B.4 mappings has been 
presented. The theorem uses a priori knowledge about the 
structure of the mappings usually employed in fractal cod- 
ing, which results in a much stricter upper bound on the 
distance between original and attractor than what has pre- 
viously been published. Collage error signals over several 
resolutions are taken into account. and the amount of im- 

provement over the old collage bound is hence dependent 
on the frequency content of the collage error signal; it is 
higher the less low frequencies this error contains. For real 
world image examples, the bound predicts an error which 
is a decade lower than that given by previous theorems. A 
modified encoding procedure in which we attempt to min- 
imize the upper bound directly is shown to yield slightly 
improved attractors. However, more extensive experiments 
with this method should be performed before its perfor- 
mance can be accurately assessed. 
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