
s2.1 
A UNIFIED  FRA.MEW0RK  FOR  LPC  EXCITATION  REPRESENTATION 

IN RESIDUAL  SPEECH  CODERS 

E. Ofer, D. Malah', and A. Dembo2 

Electrical  Engineering  Department 
Technion - Israel Institute  of  Technology 

Technion City, Haifa 32000. Israel 

ABSTRACT 

In this paper the efficient representation of the excitation sig- 
nal  to an LPC synthesis filter by means of a vector expansion of 
the residual signal is examined. According to this approach the 
excitation signal is represented as a linear combination of a small 
number of vectors taken from a given vector set, known at both 
ends of the transmission channel. It  is demonstrated that this 
approach provides a unified framework for describing and analyz- 
ing a wide range of residual speech coders, from Multipulse LPC 
and CELP to Residual Transform Coders and leads to generaliza- 
tion of some of these schemes. Optimality conditions based on the 
singular value decomposition (SVD) of  the impulse response 
matrix of the perceptually weighted LPC synthesis tilter are glven. 
A resulting simplified Predictive Transform Coder is proposed and 
examined by computer  simulations. 

1. INTRODUCTION 
Residual speech  coders are typically designed  to operate at 

transmission rates of 4.8 - 16 Kbps. These  coders have the feature 
of coding both  the LPC  residual, which is used as the excitation to 
the synthesis filter, and the LPC parameters which make up  the 
synthesis filter [ l] .  

In recent years, some new residual coders were proposed. In 
the Muhipulse  scheme [2], the residual signal is represented by a 
small number of pulses. The location and amplitude of each pulse 
are  coded  and transmitted in addition to the LPC parameters. Fol- 
lowing the rnultipulse scheme other schemes have appeared which 
attempt to represent the residual in a simpler manner. Some exam- 
ples are: Maximum Residual Magnitude (MRM) 131, Regular Exci- 
tation [4.5], and Thinned-Out Residual [6]. 

Another recently proposed residual coder is the CELP (Code 
Excited Linear Prediction)  coder [7] in which each segment of  the 
residual signal is represented by an appropriate block of white 
Gaussian noise selected from a given dictionary (code-book). In 
another recent residual speech coder, the speech residual is first 
transformed by a  DCT and then coded [SI. 

In this work, we present a unified mathematical framework 
for the above  coders which leads to some generalizations of these 
schemes and  to  a better understanding of optimality conditions. 
This  framework is based on  a vector-expansion of  the LPC residual 
signal and its representation by a linear Combination of a  small 
number of vectors taken from a given vector set.  This  can be seen 
as an extension of the unified description used in [9] for some of 
the above  coders  (although the work presented here is based on our 
earlier efforts in this direction [IO]) .  

The paper is organized as follows: In section 2. a  mathemati- 
cal presentation of the vector-expansion approach is given. Section 
3 demonstrates that several known residual speech coding schemes 
are included in the unified framework, and provides generalization 
to some of these schemes. Section 4 presents optimality considera- 
tion  in choosing the vector set used in the proposed vector- 
expansion  scheme, and Section 5 presents  a simplified residual 
transform coding  scheme which was examined in computer  simula- 
tions. 
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2. VECTOR  EXPANSION OF THE LPC RESIDUAL 
tn the proposed vector-expansion scheme, the excitation vec- 

tor, whose elements are the input to  the synthesis filter, is 
represented by a linear combination of a  small number of vectors, 
taken from a  given vector set. The vector  set is known at both ends 
of the transmission channel, and the transmitted parameters are  typ- 
ically the indices of the selected vectors from the set  and the 
coefficients needed to linearly recombine  the  vectors. 

L e t  V be a set  of M vectors of length N ,  each ( N S M ) .  
Given the original speech vector s - constructed from consecutive 
N samples of the input speech (frame), and the LPC all-pole syn- 
thesis filter coefficients, we seek an  excitation vector u which will 
be a linear combination of only a  small number of vectors from V, 
i.e., 

k 
u = xjv;,  vi E v, k < N  

i =I 

The vectors v, are to be selected from the given  set V such that 
the weighted squared  error, between the original  and the recon- 
structed speech signals in  the given frame is minimized. The 
weighted squared error is defined here as 

where sn is  the original speech  signal, in is the reconstructed 
speech  signal, wn is the weighting filter impulse  response,  and  the 
summation is assumed here to be over the N samples of the frame. 
The transfer function of  the weighting filter is given by [2]: 

k = l  

where the ok's are the linear prediction coefficients,  and the con- 
stnnt y, 0 I y <  1, controls  the shaping of error spectrum so as to 
match it to  the frequency masking properties of the human ear 121. 
Representing the reconstructed signal as: 

S,=u, *h ,+ I , ,  
- 

(4) 
where 14, is the excitation,h is  the synthesis filter impulse 
response (corresponding to H ( z )  = l / A ( z ) ) ,  and I ,  is a 'hang- 
over' signal generated by the filter memory from the previous 
frame (and needs not to be approximated,  as it is also  known at the 
receiver). Thus, from (2): 

E ,  = [(en - - E ) *  h n 1 2  , 
( 5 )  

where en is  the residual signal resulting from  passing (s, -l,) 
through the inverse filter A ( z )  with zeroed-out memory, and h,  is 
the impulse response  of the weighted synthesis filter which is 

Defining R to be the N x N  maaix with elements ri, given by: 

n 

h, * w,. 

results in 

E ,  = ( e  - ufR(e - U) , (7) 
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where e is the residual vector  and u is the excitation vector. 
Now, let Q be an N x k  matrix, having as its columns the selected 
k vectors from the set V. Hence, from (1). u can be expressed  as 

u = Q x ,  (8) 
where the elements of the vector X are the linear combination 
coefficients xi. i = 1 ,  2 ,  . . . , k. (This is similar to the 'gain- 
shape' excitation representation in [9 ] ) .  Thus, for a gven matrix 
(1, we obtain from (7) and (8) the following  expression for the 
weighted squared error: 

E$ = (e - Qx)'R(e - Q u )  . (9) 

Solving for x which minimizes E$,  results in: 
sopl = (Q'RQ)-'Q'Re . (10) 

Substituting (IO) into (9) gives the following  expression for 

E$,, = e'Re - (eTRQ)(Q'RQ)-l  (Q'Re) . (11) 

Thus, assuming that V is given, the basic procedure is to compute 
e and R, for each  given  speech  frame,  and then to find Q E V such 

that AE$ will be maximal. where: 

the minimal error,  given the matrix Q, 

AE$ = (erRQ)(QrRQ)-'(QTRe) . (1 2) 

3. RELATION TO PARTICULAR  CODING  SCHEMES 
The residual expansion  scheme presented above provides a 

unified framework for describing  a range of residual speech  coders, 
some of which were recently proposed, and some are generaliza- 
tions which follow naturally from the presented framework.  These 
coders. which we will briefly review some of them here, differ 
from each other by the  chosen vector set V and in the way the 
expansion basis vectors (Le. the columns of Q ) are  selected from 
it. 

It should be emphasized that we do not address here the prob- 
lem of efficiently coding  the coefficient-vector Y but only treat the 
problems of choosing the vector set V and of finding Q. so as to 
minimize (7). For some  coders this is not  the best approach, under 
given data rate constraints,  since by using a bit allocation scheme 
to  quantize  a  full-dimension  vector X (i.e., having N elements and 
not just k) ,  a lower error can be obtained. However.  even then. 
issues concerning the choice of the vector set V are still of interest. 

3.1 Multipulse  LPC 
L e t  V be chosen to consist of N unit vectors so that a matrix 

V, having the N vectors in V as its columns,  can be constructed to 
be the NxN identity matrix, i.e., 

V = I N .  (13) 

In this case the excitation signal is simply a linear combination of 
k unit vectors (Le.. it is represented by k pulses). Since  for this 
choice of V, eq. (12) does not reduce to a form which allows us to 
select all the k vectors in Q simultaneously, and an exhaustive 
search for the best k vectors in V is usually prohibitive, an itera- 
tive suboptimal solution is typically used. In the iterative scheme 
the positions of the pulses in the frame  and their amplitudes are 
calculated iteratively - one pulse at a time. This  scheme is known 
as Multipulse LPC and was first suggested by Atal & Remde [2]. 
Using (12) shows that in the j-th iteration of  the algorithm we 
should let Q = vi, and select vi from V such that 

A E ; )  = (eti)'Rvl)'/riZ (14) 

is maximized  (over all vectors in V). where i indicates the pulse 
position in  the selected unit vector, ri, is  the i-th diagonal  element 
of R,  and eci) is the residual vector at the j-th iteration, updated to 
take into account all the chosen vectors up to this point. Thus, 

& + I )  = ,ti) - x . v .  . 
I I .  

e('' = e , (15) 

Implementing (14) is simple  since multiplying the matrix R by vi 
means  choosing its i-th column,  and xi in (15) is simply  given by 
the  square root of the numerator of the r.h.s. of (14) (following 
maximization). 

3.2 CELP 
In the CELP scheme [7], a large vector set is typically used 

(called  a  dictionary).  The vectors here are usually blocks of white 
Gaussian noise and only one vector is chosen per frame. Using 
(12) shows that the vector v to  be chosen for a given frame should 
be selected from V (Le. 0 = v )  such that 

AEL = (e'Rv)'/(v'Rv) (16) 

will be maximized  over all the possible vectors in V. Thus, the 
process of selecting  a vector in each iteration of the Multipulse 
scheme and in CELP is quite similar (except, of course, that a 
much larger amount of computations is needed in CELP to com- 
pute (16). since v is not a unit vector as in  the Multipulse LPC 
scheme,  and the  set V usually contains many more vectors then the 
size of the  frame) It should also be noted that since the vector set 
used in CELP consists of white Gaussian noise vectors, the residual 
signal e,, should also be whitened. This is approximately achieved 
by adding  a pitch loop to the usual LPC scheme, i.e. removing 
long-term correlation in  the input speech  signal [7.9] (in which 
case h, in ( 5 )  and (6) should be modified appropriately). 

3 3  Generalized  Maximum-Residual-Magnitude  (GMRM) 
Examination of (12) shows that if we use a vector set V hav- 

ing the property that for any Q constructed from it the matrix 
(Q'RQ) is diagonal, then we can select all the vectors in Q 
simultaneously (as will be exemplified in  the sequel). 

Assuming that R is calculated by a 'covariance' type method 
(i.e., in (6) the range of  the summation is the frame length N), R 
can then be written as: 

R = H'H , (17) 

where H is an N x N  lower triangular Toeplitz matrix (known  also 
as  the impulse-response  matrix),  such that an ( i , j )  element in H is 
given by h , , ,  for i 2 j ,  and is zero for i<j .  Now, let the matrix V 
(which represents the vector set V) be given by 

V = H-I  . (18) 

Then.  since 0 is a  column-submatrix of V, we obtain that 
QTRQ = IL (the kxk identity matrix), and hence, from (12): 

AE$ = (erR(l)(QTRe) = 1 1  Q'Re 1 1  * , (19) 

where 11 - 1 )  denotes the usual Euclidean vector norm. This 
expression will be maximized by choosing the vectors composing 
0 according to the indices in v which correspond to the k largest 
magnitude  elements in  the vector 

y V'Re = H e .  (20) 

Hence, y can simply be found by passing the  elements of  the resi- 
dual vector e through the weighted synthesis filter 
H ( z )  = H ( z ) W ( z )  = 1 / A  ( z l y )  (with zeroed-out memory). From 
(IO), the coefficient-vector X is given  here by: 

uOp, = Q'Re . (21) 

Thus, the k elements of x, I are simply given by the k largest 
magnitude elements in y oP(20). Note that choosing a value of 
y # 0 results in peak picking from the colored residual signal (by 
1 / A  ( z i y  ), or the weighted input signal, whereas if y = 0 is used, 
the peak picking is done from the residual signal itself. 

We name this scheme 'Generalized Maximum Residual Mag- 
nitude'  (GMRM)  since it  is a generalization of the simple residual 
coders proposed in the literature - MRM [ 5 ] ,  and TOR (Thinned- 
Out Residual) [ 7 ] .  In these coders y = 0 is used, and indeed the 
peak picking is done there directly from the residual signal - e,. 

3.4 Residual  Transform  Coding 

letting: 
The vector set  chosen in (18) can be made  more general by 

v = H - ~ T ,  (22) 
where T is an N x N  unitary matrix, satisfying T'T = I, where in 
this paper, if a matrix is complex, superscript T denotes compkx- 
conjugation and rransposirion. Thus, since the property 
VTRV = I is maintained, we have again QTRQ = I k ,  and  as 
before Q is selected from V according to the indices which 
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correspond to the k largest magnitude elements in 

y = VTRe = TTHe = TTs, , (23) 

where s, denotes the weighted speech vector, i.e., s, He. 
We see from (23) that with this more general selection of V, 

v can be considered to be a man orm of s,, where the transform 
I s  defined by the unitary matrix ' 8 .  Thus, as  common in aansform 
techniques, data compression is achieved by zer%ing out the ( N - k )  
smallest magnitude elements in y,  producing y,  from which the 
reconstructed weighted speech  vector s,, is obtained by inverse 
transformation, Le., 

b = T j . .  (24) 

Applying inverse weighting, by passing the elements of i, through 
I / w ( z )  = A ( z / Y ) / A ( z )  the reconstructed speech signal s, can be 
obtained (care must be taken to add back the 'hangover'  signal /,). 
Alternatively, one can first find 0, by selecting the columns in V 
corresponding to the indices of the nonzero elements in $, and then 
determine the excitation vector u from u = Q u ,  (where the ele- 
ments of  the vector x are the k nonzero elements of y). Passing 
the elements of the excitation  vector u through the LPC synthesis 
filter l / A ( z )  (without zeroing-out its memory,*so that (4) is 
satisfied) results in the reconstructed speech  signal s,. 

Note again that if y = 0 is used, A (z/y) = 1, and hence 
S, = e and the LPC residual signal is  the one being transformed 
by the u n i t a r y  transform represented by T T .  On the other hand, if 
y = 1 is used, no weighting is performed ( W ( z )  = 1 ), and the 
transform is applied  directly to the input speech  vector (after the 
removal of the  'hangover'  sequence 1, ). Thus, it  may appear that 
conventional transform coding [ l l ]  also  falls  into this framework. 
However, since here the transform is applied to the weighted input 
speech vector, and only after  the  'hangover'  signal from the previ- 
ous frame is removed, this scheme is different. It has the advantage 
of reducing frame-to-frame redundancy and also alleviating frame- 
to-frame transition effects (by adding back the 'hangover' signal at 
the receiver which smoothes these transitions), thus eliminating the 
need for overlapping frames - as commonly done in transform 
coders [12]. Because of this strong link with the LPC model of  the 
input speech  signal. we term here this coding  scheme 'predictive 
transform coding' (F'TC). The issue of selecting the unitary 
transform T and  a simplified practical FTC  are  discussed in the 
following sections. 

4. OPTIMALITY  CONSIDERATIONS 
tn this section we consider  the problem of finding the best 

vector set V for minimizing  the error E, in (7). under the con- 
straint that only the knowledge of H may be assumed in construct- 
ing the vectors in  the set. In t5rms of  the weighted input speech 
vector s ,  and its reconstruction G, E, in (7) can be written as: 

Substituting (10) into (8) and using 

i, = H u  (26) 

we  obtain that iw can also be expressed  as 

i, = He , 
where H is an N x N  matrix of rank k.  Thus, (25)  can be written 
as 

E, = II (H - H)e I I  , (28) 
and by a well known norm inequality [13] we have, 

where A, 4 El - H. and the matrix  norm assumed here is the 
Forbenius norm [13],  given by the square root of the sum of 
squares of all the elements in the matrix, (or equivalently. by the 
square rmt of the trace of the given matrix times its transpose). 
Since in choosing V we may only  assume knowledge of H,  we 
consider, in view of (29). choosing it such that the upper bound on 
the error (given by the right hand  side of (29)) could beflinimized. 
L e t  us consider first. therefore, the problem of finding H ,  from the 
given matrix H ,  such that the norm of AH will be minimized. The 

solution to this problem is given through the singular value decom- 
position (SVD) [13,14] of H,  as follows: 

The SVD of the N x N  nonsingular matrix H is given by 

H = Y D d *  (30) 

where Y and @ are unitary N x N  matrices satisfying: 

R@ = @D2 ; R W  = YD2 , (31) 

where 

R H ~ H  ; R' 4 H H ~ ,  (32) 

and D = Diag (d l  , ! 2 ,  . ' ,&). with the elements on the main 
diagonal being the slngular values of H (i.e., the positive square 
root of the eigenvalues of R ,  or R' ). The important result which 
we are going to  use here is that if the singular values are  arranged 
in (30) in decreasing order of their magnitudes then the best least- 
squares Bpproximation of the matrix H,  by a lower rank ( k  < N) 
matrix H. (i.e.. minimizing 1 )  AH 1 1  defined above,  over all possi- 
ble rank  k matrices), is given by [14,15) 

H = H, 4 YDk@', (33) 
A L .  

where Dk = Diag(d1,  . . ,dk,O,O, . . . ,O). 
Using this result we can find  now a vector set V which 

corresponds to this approximation. Substituting $33) in (27). replac- 
ing e by H-ls,, and using H-' = @D-'Y (from (30)). we 
obtain 

i, = YPpY'Ts, , (34) 

where Pk = Diag (1, I ,  . . . ,1,0,0, .; 0) has k nonzero  ele- 
ments on the main diagonal. In (34). s, can interpreted as the 
result of the following operations:  First, S, is transformed by the 
unitray transform matrix Y r ,  then the N - k  elements in the 
transformed vector which correspond to the  smallest  magnitude 
singular values are zeroed-out (by Pk), and finally, the resulting 
vector is inverse transformed by Y.  Thus, we can determine the 
corresponding vector set V (represented by the matrix V), by let- 
ting T = Y in (22). resulting in 

V = H-'Y = @D-' , (35) 

Now  that V has been found, we can minimize the error  (for the 
given vector set V), as  was  done in section 3.4, by zeroing  out the 
smallest magnitude N - k  elements in the transform of s ,  (whose 
indices do not necessarily coincide with the indices of the smallest 
magnitude singular values). The transformed vector coincides then 
with y in (23). and (24)  can be used for reconstruction. 

Using s,, = H e  and substituting  (30) for H ,  we  obtain from 
(23) (with T = Y) ,  

y = @s, = DQTe = DV , (36) 

where denotes the transformed residual vector by the unitary 
transform QT. Thus, given H ,  one can either use its left singular 
yatrix Y for transforming s, (resulting in y), and obtain from it 
s, as discussed above, or one can use the right singular matrix @ 
of H,  for transforming e, and obtain y from the r.h.s. of (36). and 
then continue as above. 

Furthermore. since i, = Hu (see  (26)) it could be more con- 
venient to determine first the excitation vector u. To do this we 
need not find 0 and x as required in (8), but can find  it directly 
from the unitary transform of e , V, by zeroing-out the elements in 
e according to the indices of the smallest magnitude elements in 
DV (i.e. in y )  resulting in a vector ii from which the excitation 
vector u is obtained by inverse transformation: u = @ii. T h a t  this 
minimizes the error in (7) for the selected transform can  also be 
seen by substituting for R in (7) the expression (from (31)) 
R = @D2@ and hence, 

- 

N 
E ,  = Cd?(ei-iir)* , (37) 

I =L  

where F,, ii, are the the elements of the transformed vectors V ,ii, 
respectively. 

This is actually the approach taken in [8], with one differ- 
ence, that instead of obtaining U by zeroing elements in e, as  dis- 
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cussed  above, ii is a quantized version of 7, using vector quantiza- 
tion, with (37) being the error measure used for searching the 
code-book. 

In  the above discussion, the vector set V and  the correspond- 
ing transforms, which were derived from the S V D  of H .  were 
shown to ensure an error which is less or equal to  the minimum 
value of the upper bound in (29). but are not necessarily optimal 
for the given H .  A sufficient condition for optimality is obtained 
from (29) by the following observation: If all the elements in  the 
transformed residual vector OTe have the same magnitude, i.e. e is 
'white' with respect to  the transform OT, then 

I1 1 1  * = 1 1  AH 1 1  1 1  e 1 1  1 
(38) 

and hence minimizing 1 1  A, I( , by using H in (33).  also minim- 
izes the error and hence the vector set corresponding to (35band 
the  corresponding transforms (Y' for transforming s, and @ for 
transforming e) are optimal, for the given H .  

To complete this discussion we consider briefly the case in 
which a statistical measure, instead of  the deterministic measure 
E,,, in (7) or (25) is used. We specifically consider the weighted 
mean uare error (WMSE) given by the expected value of Ew,  
i.e., EJq2 E{&}. The classical result is that the best transform 
for transforming s, is the Karhunen-Loeve (KL) transform, rT , 
given by the orthonormalized eigenvectors of  the autocorrelation 
matrix [ l l ]  

R,,w = E{s,s$} = HE(eeT}HT = HK,,HT . (39) 

Hence, if the residual signal, e , ,  is spectrally flat, Re, = I ,  and we 
obtain that Rswsw = HHT = R'. By (31). Y is  the unitary matrix 
which diagonalizes R', and hence the KL transform is given then 
by rT = '4''. Thus, the KL transform coincides with the transform 
considered above for the deterministic case  and which was found  to 
be optimal if e is 'white' with respect to the transform derived 
from the right singular matrix @ of H.  

5. A SIMPLIFIED  PREDICTIVE  TRANSFORM  CODER 
In view of  the results and the discussion in Sections 3.4 and 

4.  we have considered simulating a simple predictive transform 
coder and compare its performance to the Multipulse LPC scheme. 
The main issue is  the selection of  the transform. Although H can 
be computed at the receiver from the transmitted LPC coefficients, 
finding its SVD is a computationally demanding task. Hence, as 
common in such situations, we have considered using a transform 
which is independent of H.  Noting that if the effective length of 
h, is much less then N (as is particularly the case when y < 1, 
since h, = y"h, decays  fast), the matrix H is banded and by 
adding only a small number of terms at the upper right comer can 
be approximated by circulant matrix (in fact H is asymptotically 
equivalent to a circular matrix [16]). Since any circulant matrix is 
diagonalizable by the DFT matrix [16]. we consider the DFT as a 
candidate transform (note also that because a circular matrix is nor- 
mal Y = @ in  its SVD decomposition).  Similarly, using the argu- 
ments in [8] (based on the approximation of R by a Toeplitz 
matrix, for large N) the DCT approximately diagonalizes R and 
hence is also  a candidate transform. 

We examined first a  coding system in which the weighted 
speech signal s,, is transformed by a DFT or a  DCT and a small 
number of k<N of the largest magnitude elements in the 
transformed vector are selected (and coded) for transmission. 
While providing relatively high SNR (with the DCT being prefer- 
able), this approach was found to result in audioable 'ringing' 
(tonal noise) when the transmission rate was 16 Kbps and below. 
To reduce this ringing effect we have attempted to use a  scheme in 
which the bits available for  coding in a given frame are distributed 
among more transform elements, as commonly  done in Adaptive 
Transform Coders (ATC) [11,12]. However,  here we used the 
scheme discussed in Section 4, in which the residual signal itself  is 
transformed (using the DCT), but instead of picking k peaks 
according  to  the largest magnitude  elements in y, to obtain ii, the 
elements of are quantized using a bit assignment which varies 
from frame to frame according to  the spectral envelope of 
H(z) = l /A(z /y) .  This is based on (37). in which it seen that  the 
squared singular values provide the weighting of  the quantization 
error, and hence, since these are the eigenvalues of R (see (31)) 

they correspond to the spectral envelope of H ( z )  (note also that 
the DFT and DCT provide identical spectral envelopes [12]). At 
the receiver, decoding and inverse transformation of ii provides the 
excitation vs to r  u whose elements are input to the the LPC syn- 
thesis filter H ( z )  (without zeroing-out its memory so as to add the 
'hangover'  signal) to obtain the reconstructed speech signal s,. 

The above simplified PTC scheme largely reduced the ringing 
effect and provided a very high quality reconstructed speech at 16 
Kbps (a segmental S N R  of 18.1 dB was obtained at this rate) and 
better then communication quality at 9.6 Kbps  (with  a segmental 
SNR of 12.9  dB). Both the quality and segmental S N R  were 
higher, as compared with a corresponding multipulse LPC scheme 
(Le., having no pitch loop), which achieved segmental SNR values 
of only 16.1 dB and 11.2 dB, respectively, for the same input 
speech data. 

Further improvement at 9.6  Kbps  could be achieved if the 
residual will be whitened (by using a pitch loop), before its 
transformation, as this will provide a better approximation of the 
DCT (or DIT) to the optimal transform, as discussed in section 4. 
Ultimately, adding the pitch loop and replacing the scalar quantiza- 
tion used here by vector quantization, the scheme in [8] is 
obtained. 
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