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Abstract

The starting point of this paper is the basic fractal coder suggested by
Jacquin. The coder finds and encodes the parameters of a partitioned iterated
function system (PIFS), which approzimates the signal as a fized-point of a
contractive transformation.

The work presented here can be divided into two parts. The first part
begins with a presentation of the hierarchical structure of the PIFS code.
This structure relates the code and its fized-point in different resolutions. It
18 shown that there exists a function of a continuous variable which is directly
related to the PIFS. It is shown that by properly manipulating this function,
called the PIFS embedded-function, one can compute the fized-points related
to the code in any desired resolution.

We end the first part with a brief description of several applications, such
as a fast non-iterative decoder, a method for fractal interpolation of the signal
vza 1ts PIF'S code, and an improved collage-bound.

This research was supported by the fund for the promotion of research at the Technion.



The hierarchical representation of the IFS code establishs a link to mul-
tiresolution analysis of the code. In the second part of the work we present a
method for mapping similar regions within an image in the wavelet domain.
We first show a new formulation by which mappings, which are identical to
conventional IF'S mappings, are found in the Haar wavelet transform domain.
We then propose to use different mother-wavelet than Haar. The use of other
wavelets than Haar results in the overlap of mapped regions, thus avoiding
the typical blockiness associated with conventional blockwise IF'S.

By Using mappings between the wavelet coefficients we can enrich the
family of transformations. This leads to a new fractal-wavelet image coder
that reduces blockiness, and improves the PSNR of the reconstructed image.

1 Introduction

The subject of fractals began as a pure mathematical subject related to chaos
(e.g. von-Koch snowflake, Sierpanski-gasket [6]). In 1992, Jacquin [9] used
the idea of fractals in a compression algorithm for images. Many interesting
features associated with the ’original’ fractals seem to fade away as the IFS
coding of pictures evolved. For example, the property of self similarity at
different resolutions, inherent to fractals, does not show up in a simple form
in IFS codes.

In this work we will show that the properties of self similarity at differ-
ent resolutions, and the related notion of fractal-dimension, do exist in IFS
coding. Moreover, we will use the hierarchical interpretation to arrive at a
new blockless wavelet-fractal coder. The original coder, suggested by Jacquin
[9], can then be viewed as a special case of this coder, when one uses Haar
wavelets.

The work is organized as follows:

Section 2 briefly reviews the formulation of IFS coding, introduces nota-
tion and presents basic examples.

Section 3, contains a theorem, relating the different resolutions of a signal
to its IFS code. It then gives an hierarchical interpretation of the theorem.

Section 4 describes various applications, like a fast decoding method, and
super resolution via the IFS code. It also introduces the imporatnt notion of

the IFS embedded function.



Section 5 briefly reviews the wavelet-series and their relation to octave-
band subband decomposition.

Section 6 describes a new formulation of the common IFS code, by which
similar regions within an image are mapped using the Haar-discrete-wavelet-
transform.

Section 7 describes a new improved coding algorithm based on the IFS
mappings in the DWT domain (DWT-IFS).

Section 8 investigates super-resolution via the DWT-IFS code.

Section 9, which is the last one, contains the summary and conclusions.

2 Formulation of IFS Coding/Decoding

In this section a formulation of the IFS coding/decoding is discussed, accom-
panied by an example. To simplify notation we usually refer to 1-dimensional
signals, and we will call them either vectors or blocks. Extensions to 2-
dimensions are ususally immediate, and are partly considered in the applica-
tions sections, as well as in the discussion of wavelets. The following notation
will be used: vectors are in bold-face letters (like a), matrices are in bold
upper-case ones (like A), and scalars are in regular letters (like a, A).

2.1 Encoding

The task of finding the IFS code of a vector ug € R is the task of finding a
contractive transformation W, such that its fixed point is as close as possible
to ug.

In the encoding process one restricts the set of allowed transformations
W, to be systems of Mg functions w;. Thus, by loosely using the union
notation, we can write the operation of W on a vector v € R as:

u = W(v), uec®Y

M
W(v) = Uizffwi(v) (1)
Each w; is further restricted to be of the form:
w; : RP — RB 5
dm,- = Tr; = wz(dml) = a'i(P(dm,-) + bilB ( )

where:



d - is called the domain-block, and is of size D. d,,, is thus the m;’th
domain-block, which is simply a block of D consecutive elements ex-
tracted from v. The use of the subscript m; comes to stress the fact that
the domain-block d,,; is mapped to r;. For now, no specific mechanism
for extracting the blocks will be discussed.

r - is called the range-block, and is of size B < D. r; is thus the 2’th
range-block, and r; € u.

@ - Spatial contraction function, which transforms blocks of size D to blocks

of size B .

a; - Scalar scaling factor,
a; € R, |az| <1 (3)

b; - Scalar offset value, b; € R.
1g - A vector of size B of all 1’s.

The group of all triplets (a;, b;, m;) is called the transformation parameters.
The length of u, which is the result of concatenating Mg range-blocks of

size B each (1), is
N=Mg-B (4)

Moreover, the concatenation of range-blocks can also be written as:
u((i—1)-B+j)=rj) ; 1=(,---,Mg), j=(L,---,B) (5)

Now the mechanism of computing u = W(v), where all the parameters
describing W are known, can be described as follows:

I :  Algorithm for Computing the Transformation u = W(v)

1. Fori=1 +to Mg

(a) Extract the d,,, block from the vector v.

(b) Compute
r; = wi(dm,) = a;0(dm;) + bilp (6)



2. Concatenate the range-blocks thus obtained, r;,i =(1,---, Mg),
in the natural order, to get the new vector u. The length of
the vector u is N = Myp-B.

W described above is called a block-wise transformation, the reason being
evident from the computational algorithm.

So far the discussion of the w;’s was quite general. At this stage we will
make further restrictions and assumptions about the parameters, in order to
make the discussion both more practical and lucid.

II : Parameters Restrictions and Assumptions

i. N - The size of the original vector to be encoded is an
integer power of 2.

2. B=2 - The size of a range-block. B is therefore also
some integer power of 2.

3. D=2B - The size of a domain-block.

4. D,=B - Dy is defined to be the shift between two adjacent

domain-blocks. Thus, the number of domain-blocks is Mp =

(—NI;hD + 1), and each domain-block is given by

dpm,(37) = v((mi — 1) D + ) (7)

mi:12a"'aMD ) j:1a2a"')D (8)

Y

Note that the domain-blocks are overlapping, since D, < D.

5. () - The spatial contraction function is defined to be:
Nal . . .
P(dm)(7) = 5(dmi(27) + dmi(25 = 1)), j=1,2---,B  (9)

i.e., ¢(-) contracts blocks of size D = 2B into blocks of size
B, by averaging pairs of adjacent elements in d,,;.



The contents of the IFS code of a vector, namely the parameters which
define W, can now be summarized:

1 IFS-code

1. B - The size of the range-blocks.
2. Mg - The number of range-blocks.

3. Mpg triplets of the transformation-parameters (ai,bi,mi).

All other relevant parameters needed for decoding, such as D = 2B, Dy, =
B, N = MgB, and others, are derived from the IFS code using the previous
assumptions.

The encoding process to be described consists of finding a W which sat-
isfies ug = W(uo). Thus, uo is approximately the fixed-point of W. Since
W defines uniquely its fixed-point, storing W (namely the parameters that
defines it) defines a lossy code for uy.

IV . TIFS-Coding of ug

1. Store B in the code-filse.

2. Store Mg in the code-file, where Mz = N/B, and N is the
length of ug.

3. Partition uy into Mp range-blocks, as described in (5),

ri(j) = uo(( — 1) - B + ) (10)
i:(l,...,MR), ]:(1,,3)
4. Extract from uy, the Mp = (NI;hD—I—l) domain-blocks, according
to (7)
dy(5) = uo((g — 1)Dr + 5) (11)

q:1a2a"'aMDa j:1a2a"'aD

5. Fori=1 +to Mg



(a) Find the best parameters (a;,b;,m;), such that
d(ri, a;p(dm;) + bilp) (12)

is minimized, where d(-) is a distance function.

(b) Store the parameters (a;,b;,m;) in the code file.

This formulation is now demonstrated by the use of a numerical example.
Fig. 1(a)-(b) presents a vector uy and its IFS code. The IFS is given in
a table form. By performing the transformation described by the IFS on
Ug, one can verify that the vector ug in this example is a fixed-point of the
transformation (namely ug = W(uo)), and thus the coding in this case is
lossless.

2.2 Decoding

The process of decoding is straight-forward, since it involves the finding of
a fixed-point of a contractive transformation W. This can be done by re-
peatedly iterating W on any initial vector, until a desired closeness to the
fixed-point is reached [4].

In Table 1 the decoding of the IFS code in Fig. 1b is demonstrated, start-
ing from an initial vector of all 0’s.

H iteration ‘ vector
0 o,0(0|]0|O0O|O0O|O0O|O|O|O|O|O|lO]O]O]|O
1 121121212, 0 | 0 | O | O |4|4|4|4| 8| 8 |88
2 1818|1212 |10(10 12|12 |0|0|2(2|10 |10 4| 4
3 21 /181718 | 8 | 9 |13 |10 |5|6 |0 |1 |13 |10 |9 |10

Table 1: Decoding by iterations

Following the example, we will now demonstrate an imporatant fact about
the decoding (and the IFS defintion). In the above example, the IFS code,
with the prescribed B = B; = 4, resulted a transformation W' : ®¢ — R16
with a fixed point f1 € R'®. Suppose, however, that the value of B is
changed to some other value than the one prescribed in the IFS code, e.g.



> d, >
e d 1 e d 3 >

Ug : 123121017119 [1119 157135 [ 7[3[1]15]13]9 [11]
< Ir > Iy > Irs > Iy >

Range- | Scale | Domain- | Offset

block block

index index

1 a; m; b;

1 0.5 1 12

2 0.5 3 8

3 0.5 2 0

4 0.5 1 4
B=4,6 Mgp=4

e )
o
SN—

0.5-p(dy) +12 =
0.5-¢([23,21,17,19,11,9,15,13]) + 12 =
0.5-[22,18,10,14] + 12 =

[23,21,17,19]

()

Figure 1: (a) An original vector uo (b) IFS code of ug (¢) Example of computing the
first code-line on ug

B = %Bl = 2. We have thus created a new transformation, denoted by W%,

which is clearly a contractive transformation in R®. The decoding process of
1

W2 will therefore yield a fixed-point vector f 3 of length N = N L= 8, which

is half the length of f'. Thus, we conclude that the IFS can be decoded in
different spaces, yielding a different fixed-point in each space. Throughout
the remainder of this work, we will use the notion that B = B; results in f!,
and B = jB; results in f7. In Fig. 2(a)-(c) 3 fixed points of the same IFS
code (using different B’s) are described, each one being in a different space,
R N8 and R*, respectively.

The exact relation between those different fixed-points, and its interpre-



(20121 4 [12]

(22[18[10[14[ 6 [ 2 [14]10]

(2312117119111 9 [15[13[5 [ 7 [3 [ 1 [15[13[ 9 [11]

Figure 2: Decoding with (a) B=4, (b) B=2, and (c) B=1

tation, are examined in detail in the sequel.

3 Hierarchical interpretation

As described in the previous section, each value of B leads to a different
transformation, with a different fixed-point. The following theorem describes
relations between two different fixed-points, given that B is halved.

Theorem 1 (Zoom) Given an IFS code, it leads to W* with B = By, and
to W2 with B = Bi/2. Let the fized-points of these transformations be f*
and f%, respectively, then:

Zoom-out:

BG) = {fE)+ 0@ -1}, i=050  (13)

where Ny 2 Mg - B;.

Zoom-in: ) .
f1((1 — 1)By 4 j) = aif 2 ((m; — 1)Dy? + 7) + b; (14)
i:(l,...,MR), j:(l’...,Bl)
where Dh% = DT’LI = %.

For proof see [19].



An interpretation of the theorem is as follows: The theorem establishes

a relation between the pair f! and f 2. The same relation is carried over to
the pair £z and f%,

£3(j) = 5 {£32s) + £(25 — 1)} (15)

£5((i — 1)By + 5) = aifs ((m; — 1)Dp* + §) + b; (16)

The relation also holds for the pair 1 and f%, and so on. The collection of
fixed-points can thus be described in terms of an hierarchical structure, as
was shown in Fig. 2. This structure is a pyramaid of the IFS fized-points, with
far comprising the p’th level of the pyramid. Thus f2r has N/2? elements.
The level with the coarsest resolution (Fig. 2c) is called the top-level.

An intuitive understanding of the process can be gained by noting that
the domain-blocks of f, after their contraction, are actually blocks which are
contained in f2. In a formalistic form, this can be shown by writing down the
expression for the j’th element in the contraction of the m;’th domain-block

of f* (‘eqns. (7)-(9) ):

oA )(3) = £ {£1((ms = 1)Day 425 = 1)+ £((mi = )Dis +2)} (17)

je (L"'aBl)
According to (13), the right hand side is ezactly f%((mi — 1)Dpq/2 + 3),
= Dy,/2 and dmi% as the m;’'th

D=

and if we further denote as before, D),
domain-block of f %, we conclude that:

o(dm)(7) = dm?(5), € (L,---,By) (18)

The question arises, what is the smallest size of the top-level such that the
above relations between two adjacent levels still hold ?  This is answered
by the following corollary.

Corollary 1 Let f! be a fized-point in RN of a given IFS, and let B = B, =
2! D = D, = 2B and Dj, = By, then the number of levels in the pyramid of
IF'S fized-points is

log,(B)+1=1+1 (19)

leading to a top-level size of N/2' (= Mg).

10



PROOF : Ascending one level in the hierarchy, means halving the size of the
range-block, B. Since this size must be at least 1 in order that the IFS could
be applied, the corollary follows. Q.E.D m

3.1 DC Orthogonalization

A modification of the conventional mapping described in (6) is a mapping
with orthogonalization to the block averages (DC) [13]. The reconstructed
block and the transformation can be described as:

r; = wi(dy,) = ap(dm; — dm;15) + Filp (20)

Where Hmi and T; are the mean values of the corresponding blocks. notice
that in this case T; replaces the conventional offset factor b; in (6). Therefore
the transformation parameters in this case are :

W = Uwi, w; = {ai,fi,mi} (21)

The two main advantages of defining W as in (20), over the one in (6),
are :

1. Its fixed point can be found in no more than log,(B)+ 1 iterations [13].
2. The scaling factors values a; do not have to be restricted.

The DC block orthogonalization does not affect the pyramidal relations
between the different scales of the fixed point as described in Sec.(3). To go
up the fixed point pyramid (decrease resolution) one should average samples,
as in (13), while to go down the pyramid one should replace (14) with :

£1(G = 1)B1 +j) = a: {f/%((mi = 1)Dy* +j) —dm; } + 7 (22)
i=(1,---,Mg), j=(1,---,Bi)

11



4 Applications

4.1 Fast Decoding

A fast decoding method, which we call hierarchical decoding, follows directly
from the hierarchical interpretation of the IFS code. In this method, one
begins by computing the top-level. This can be done by iterating the TFS
with B = 1, i.e. applying W to an initial vector of size Mg, until a fixed-
point is reached (or closely approached). Then, one follows the deterministic
algorithm (14) to advance to a higher resolution. The process of advancing
to a higher resolution is repeated, until the desired vector-size is achieved.

In [2] a detailed account of the computations is given, and it is shown
that for the 2-dimensional case, the savings are in an order of magntitude.

An even faster non-iterative decoding method is echived by hierarachical
decoding of a fixed point of a transformation that consist mappings with
DC orthogonalization. In this case the top-level can be computed in a non-
iterative way. The decoding algorithm will be as follows [13] :

V :  Hierarchical decoding with DC-orthogonalization

1. Construct the pyramid level f5 in which f%(i) =T;, i.e. the
range blocks mean values that are included in the IFS code.

2. ’Zoom-in’, log,(B) times, starting from f5, to get f' as described
in Sec.(3) and Sec.(4.1) This time use (22) to copy domain blocks
from a given pyramid level to tile the next lower level (higher
resolution).

In the following sections we refer to this procedure as the ‘reference algo-
rithm’ and show that an equivalent algorithm can be performed in the Haar
Discrete Wavelet Transform.

4.2 Super-resolution

The subject of resolution is inherently related to the discretization of a func-
tion of a continuous variable. The process of discretization is called sampling.
In the following definition we define a specific method of sampling.

12



Definition 1 Given a function G(z) € L [0,1], define G,(¢) by

A

G, (i) & r/(” LG de, = (1) (23)
i—1)L

G, (1) denotes the function G(z) at resolution r. We say that G, (3) is finer

(i.e., with higher resolution) than G,,(t) (which is coarser) if r; > 7y .

Theorem 2 (IFS Embedded Function) Given an IFS code, there exists
a unique function G(z) € L*®[0,1] such that a vector vy € RV is a fized
point of the IFS iff it is equal to the function G(z) at resolution r = N, i.e.,

VN(j):GN(j), j:1a2a"'aN (24)
The function G(z) is called the IFS embedded function.

For proof see [19].

In Fig. 3 a somewhat intuitive demonstration of the IFS embedded func-
tion theorem is given. The IFS is the one described previously, in Fig. 1.
Its fixed-points, for B = 1, B = 2, and B = 4 are shown in the figure as
functions of a continuous variable z € [0,1]. For example, the fixed-point
using B = 1 is the vector [20,12,4,12], which has N = 4 elements. Thus,
the fixed-point is drawn as a piece-wise constant function:

fl@)=¢12 =€ [53) (25)

The embedded function G(z) is also shown. One easily sees that the
fixed-points ’approach’ the IFS embedded function. Moreover, it is seen that
the value of each function, in each of its intervals, equals the mean of the
IFS Embedded function over the appropiate interval, as described by (23).

Super-resolution deals with finding a higher resolution of a given discrete
signal. For example, suppose a vector v! with elements v'(i) = gn(7),7 =
1,2,---, N is given, which is the signal g(z) € L*[0,1] at resolution N,
where g(z) is unknown to us. The goal is to find a vector v? of length 2N,
which approximates the signal g(z) at resolution 2N, namely gan(7),7 =
1,2,---,2N. The process of transforming from a given resolution to a higher
one is also called zoom-in.

13



B=1 B=4

20 20

10 10

0 0
0 0.5 1 0 0.5 1

B=2 Embedded Func.

20 20

10 10

0 0
0 0.5 1 0 0.5 1

Figure 3: Fixed-points with B=1 ,B=2 ,B=4 ,and the corresponding IFS Embedded
Function

The hierarchical representation suggests a simple method for finding higher
resolution representations from a given resolution. Given a fixed-point vector
f' of length N (which is the signal g(z) € L*[0,1] at resolution N, where
g(z) is not known to us), its IFS code enables us to build a hierarchical
structure, called the pyramid of fixed-points. The IFS code also gives us
an algorithm for relating between two adjacent levels in the pyramid (Zoom
theorem, eqns. (14)-(13)). Thus, after finding the IFS code of f!, all that
is needed in order to get a vector of length 2N is to apply the zoom-in al-
gorithm in (14) to ', and get a new vector f2. The vector f? is an integral
part of the pyramid of fixed-points, and is the fixed-point of the IFS code
when using B = 2B;. This vector can be used as an approximation of the
higher resolution representation, namely an approximation of gsx. The sub-
ject of super resolution will be pursued further in Sec.(8) in conjuction with
a wavelet based encoder.

We have already introduced the IFS embedded function. Moreover, in-
dicative bounds on its fractal dimension can be found directly from the matrix
representation of the IFS code [19]. This dimension tells us about the na-

14



ture of the super-resolution vectors (see [4] for detailed discussion concerning
fractal interpolation functions). By introducing certain constraints in the
coding procedure (such as on %, or |a;|), one can affect the dimension of the
resultant IFS embedded function.

We will not elaborate here upon the possibility to arrive at any desired
rational zoom factor, nor about the possibility of incorprating different sam-

pling methods in the above disccussion. These subjects appear in [19].

4.3 Improved collage theorem

A detailed description of an improved collage theorem can be found in [14],
where simulations and a discussion are also given. Here, we will merely
describe 1t in general terms, because its full description involves additional
notation, which we have no room for in this paper.

We have previously described the fact that the IFS fixed points can be
arranged in a pyramid structure of different resolutions. Similarily, one can
create a pyramid structure composed of different resolutions of the original
signal (by simply averaging elements), where the highest resolution is that of
the original vector. The idea in the new collage theorem is that if we require
that the original vector and the fixed point should be ’close’ as possible in
the highest resolution, it implies a requirement on the 'closeness’ of the other
levels of the two pyramids.

This idea can be utilized to arrive at a new bound on the decoding error.
This new bound considers the signal in different resolutions. This idea has
many implications, and perhaps the most important one is that it suggests a
different method for performing the encoding in a manner which takes into
account the error in each level of the pyramid, and not only at the original
resolution level.

5 The Discrete Wavelet Transform

5.1 Wavelet Series

An Orthonormal Wavelet Series [16] [11] is an orthonormal basis of La(R)
whose members v, ; are self-similar functions. That is, each of the functions
¥, 1s a scaled and shifted version of a mother wavelet ¥,

15



Pra(t) = V2 (2 — k), (k1) € 22 (26)

where k 1s the translation index and [ is the scaling index.
As a result, every function f(t) € Ly(R) can be described as a linear
combination of the wavelet functions :

=3 Y dutn(®) (27)

l=—00 k=—00

and the coefficients are the inner product between f(t) and ()

iy = /_ °; F(E) () dt (28)

The approximation of f at resolution L is defined as
L o
A{f®)}= Y2 > diea(t) (29)
l=—0c0 k=—00

This approximation can also be calculated as a linear combination of
translations of scaled versions of a Scaling Function ®

bro(t) = VL2t — k) e 2 (30)
A{fO} = Y ansdusl?) (1)

The set of coeflicients ay 1 is defined as the discrete approrimation of f
at resolution L, and is denoted Ap = {ay |k € Z}.
The detail signal is a signal that is spanned by the set of wavelet functions

'1/}k,L . I.e, -
Dr{f(t)} = Y. drrter(t) (32)

k=—o0

The coefficients that represent the detail signal are denoted :

Dy = {dp |k € 2} (33)

16



It is easy to see that the detail signal is the difference between two ap-
proximations of the signal in two sequential resolutions L and L — 1 :

Dp1{f()} = Ac{f ()} — Ar-1{f(?)} (34)

With the mother wavelet (and the scaling function) one can associate a
pair of digital filters hj and h; such that all discrete approximations A; and
detail signal coefficients D; (I < L) can be calculated from Az by means of
digital filtering and decimation :

AL—l = (AL * hl) l 2, DL—l = (AL * hh) l 2 (35)
Ay can be reconstructed from Ay_; and Dy_; using the folowing:
AL = (AL—l T 2) * hl + (DL—I T 2) * hh (36)

where T 2 represents upsampling by adding a zero valued sample between
every two consecutive samples. These relations between the aproximations
and the detail signal in different resolutions are also known as subband de-
composition of a discrete signal as described in the folowing subsection.

5.2 Wavelet Transforms of Discrete Signals

Let us describe the Discrete Wavelet Transform (DWT) of a 1D discrete
signal v(n) as an octave-band subband decomposition (Fig. 4, top), using a
pair of Para-Unitary Quadrature Mirror Filters (QMF)[16]. The octave-band
filtering is implemented by splitting over and over the lowest subband with
the two-band pair of filters. Such a decomposition with three splits is shown
in Fig. 4(bottom). At each split the higher branch represents convolution
with high pass filter hj and 2:1 decimation, and the lower branch represents
convolution with lowpass filter h; and decimation. Let us denote the signal
as v(n) = v£(n) and the subbands as :

v = T ey L2, v = T ) L2 @)
It is easy to see that the relations between the discrete aproximations

(ar;) and the detail signal coefficients of a countinuous variable function
(dk,) are, in fact, the same as the relations between a discrete signal and its

17
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Figure 4: Octave band subband decomposition. (a) Splitting tree. (b)The
subbands on the frequency axis.

subband coeflicients that result from splitting it into octave bands. IL.e., if the
discret signal v(n) is a discrete approximation A of a continuous function

f() (v(n) = anp) then :

vW/¥ =4, vY¥=D, VL<o0 (38)

5.2.1 Finite Length DWT Representation

Since the DWT is an orthonormal transformation, the subband decomposi-
tion of a finite length signal v(n) can be represented by a unitary matrix. We
will denote this matrix by Ug’:H. Here L stands for the Number of subband
splittings, H for a specific choice of the QMF filters and N is the length of
the signal. We will denote the DWT of a signal v by vg,; i.e:

[v}:ﬂL, v71_(/2L, . ,v;f] = Viwt = UgHv, v = (UgH)Tvdwt (39)
In the following sections we use a pyramidal description of the DW'T, in which
the subband splitting is described by two pyramids. The first is a lowpass

L
pyramid that consists of [ = 0,..., L levels, where only vzﬂ is part of the

DWT. The second is a highpass pyramid that consist of V;fl, l=1,...,L

18
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Figure 5: pyramidal description of the DWT

and is fully contained in the DWT. The two pyramids are illustrated in
Fig. 5 (in this figure L = 3).

6 IFS mappings via the Haar DWT

The use of wavelets in fractal image coding should not be surprising. TFS
fractal images have self similarities among different scales of the images and
Wavelet basis functions are self similar. Therefore, it is natural to believe
that Wavelet transforms of an IFS fixed point should have a unique structure.
Such a structure has been explored in [8] on synthetic IFS fractals. In this
work we wish to devlope the connection between a PIFS fixed point and the
discrete wavelet transform. A conection that has been intorduced recently
in [10] and [5]

In section 4.1 we summarized the ’reference algorithm’. In this section
we wish to construct an equivalent algorithm in the Haar-DW'T. The aim of
this section is to show the following :

1. Given an IFS, the Haar-DWT high-bands coeflicients of its fixed point
can be calculated directly from the lowest band - which is the fixed
point at the lowest resolution (f};/B).

2. The TFS mapping parameters, obtained by the reference algorithm in
section Sec.(3.1) can be found directly from the Haar-DWT coefficients
of the input signal v.

The Haar-DWT is an orthonormal transform that is associated with the

lowpass filter h; = [/1/2, 4/1/2], and the highpass filter by, = [/1/2,—4/1/2],
as a QMF pair. Note that 2:1 decimation of the output of the convolution
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of a signal v with h; is equivalent (up to a \/1/72 factor) to applying the
operator ¢ that simply averages pairs of samples (9) of the signal v. Ie.,
1/2 \/_90( ). As a result, if Dy, is even one can extract the scaled-down
domam blocks ¢(d;) directly from Vz: = \2vs.
It is observed that, since the length of end of each of the Haar filters is
2, the Haar-DWT is a blockwise transform which maps 2% input samples
(where L is the number of splittings) to 2 DWT coefficients. As a result,
every range block r; of size B = 2L can be represented by a set of 2 DWT
coefficients. We call the set of coefficients that represent a range block a

range-tree and denote the range-tree obtained from a block r; by S, :

Se, = [, 7] = U et (40)
The coeflicients S, are part of the DWT of the whole signal v

Ur:

rzgl)) Tt z(B) € UgHaarv (41)

the coefficients in S, can be subdivided into groups based on the subband
that they have been taken from :

kM= viB)
r = viP0)

&, = [vilP(2i —1),v3/P(2i)]

[P0 P = (B + 1), va (B/2)i)] (42)

We have seen that the scaled-down domain-block is part of the subband
v}; Let us assume that Dy = 2B, i.e., the scaled-down domain-blocks tile
V}:/ . This is somewhat more restrlctlve assumption than the one in Sec.(3)
where we selected Dy, to be B. As a result, one can extract a sub-tree of
coefficients Sq,,, that is the Haar-DWT of the scaled-down domain block

¢(d;) from the DWT of v with L + 1 = log,(B) + 1 splittings :
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Sdmi = [dgrlbz)’ Tt dgf;)] = ﬂUIJiHaargo(dmi)
d’Erltl)’ tet ’dgrﬁ) € U]{'Xgaarvz/z C U£V+1,Haa.rv
dD = vi®B(m)
d2) = vi{*"(m;)
[d9),d9] = [vi/P(2i — 1), v3{%(2my)
[aBrn, P = Vi 2((B/4)m; +1),...,vil*(B/4)m))] (43)

Note that rgl) and dg,lll) are the only lowpass coeflicients in S,; and Sg,, ,

respectively. These coefficients are equal, up to a gain factor of \/§L, to their
corresponding blocks mean values.

Let us now consider a signal f! that is a fixed point of an IFS transfor-
mation W. f! is tiled with range blocks such that for any block, r;, there is
a corresponding scaled-down domain block ¢(d,;) in f2 such that

r; — T = ai(p(dm;) — dm;18) (44)

Applying the unitary matrix UE,Haar on both sides of (44) gives :

0,7, ) = V2ai[0,d), ..., dP)] (45)

1 )

Suppose now that we decompose the whole fixed point f with a L + 1 =
log,(2B)-split, Haar-DWT, as in Fig. 6. Assuming that D, = 2B, and based
on the previous observations, each of the range and domain blocks can be
reconstructed from the coeflicients tree that is extracted from the DWT of
the whole fixed point. In Fig. 6, the DWT coefficients of a four samples
range block in f (shaded) and scaled-down domain-block (white) in f1/2, are
marked.

Since all AC coeflicients rz(p) and dgﬁg (2 < p < B) are contained in the
DWT of f (with L + 1-splits), and since for each p, dgﬁg is from a subband

of lower frequency than rl(p ), (45) shows that the coefficients of the higher
bands can be calculated from those of the lower bands. That is, one can start

with fr}{/w, calculate all the coeflicients which are in ff,li/B and so on. This

Y
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Figure 6: Representing coeflicients trees of a range and a domain block.

calculation can be interpreted as a recursive extrapolation, or prediction of
the higher bands of the signal from the lowest one. At each stage another
subband is extrapolated and so a higher resolution of the fixed point can
be obtained, quite similar to the hierarchical decoder which is described in
Sec.(3).

Can we find the IFS code in the wavelet domain as well? The answer
depends on the metric. If one uses the standard inner product metric 2 (a
very common choice), then, due to the norm preserving characteristics of the
DWT transform, the approximation error minimization can be performed in

the DWT domain:

B
2= 3 (") - V2a;d®))? (46)

p=2

H(rl - fi) - aigo(dmz' - amz)

Thus, the minimization of the distance can be performed by finding the
best matches between AC range and domain-trees. In each tree there are
2 — 1 coefficients as in the right pyramid of Fig. 6. Each range and domain-
tree consists of coefficients from different subbands, representing the same
location of the signal.

We can now gather the observetaions above and describe an encoding/decoding
algorithm in the Haar-DWT. This algorithm yields exactly the same results
as the reference algorithm and will be refered to as the DWT-IF'S algorithm.
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A summary of that algorithm is as follows :

VI : Finding a DWT-IFS (Encoding)

1. Compute the DWT with L+41(= log2(B)+1) splits of the signal.
2. Extract range and domain-trees (with AC coefficients only).

3. For each range-tree S,,, find the best domain-tree Sdmi and scaling
factor a; which minimizes (46).

4. The IFS code consists of the upper levels of the lowpass and
highpass pyramids (f};/zB and f71./23) , the scale factors a;, and

the indices m; for each tree.

VII : Finding the Fixed-Point of the DWT-IFS (Decoding)

1. Copy the lowpass and highpass levels of the corresponding pyramids
from the code.

2. Extrapolate downwards in the highpass pyramid using the scale
factors and the indices from the IFS code.

3. Compute the Inverse DWT.

The term “DWT-IFS” has been choosen for this algorithm inspite of the
fact that, for finite resolution images, the process is ended in deterministic
number of steps, since the decoded image is identical to the one that is
echieved using the conventional IFS decoding process. Moreover, in Sec.(8),
we show that the algorithm can iterate “infinite” number of times and achieve
an infinite-resolution continuous image.

23



| iy}
7
H

m~+HE
H
4
| ]
/

(a) (b)

Figure 7: Representing coefficients trees of a range block and a corresponding
domain block. (a) The coeflicients in the DWT domain. (b) The blocks in

the spatial domain.

6.1 2D-IFS in the Haar-Wavelet Domain

In order to apply the above algorithm to images there is a need to extend
it to two dimensions. This is most easily done with separable 2D QMF’s.
The subband decomposition of a separable octave-band QMF is a quadtree
partition of the 2D frequency domain as illustrated in the left side of Fig. 7.

In such a decomposition every split of the low band v};/ﬁz " consists of four
bands, labeled v};/ﬁzurl, v};/r,zurl, 'v;i/zurl, v;i/r,iurl

Each DC-less BxB range or scaled-down domain block can be represented
by a tree of 2L22L — 1 (L = log,(B)) highpass coefficients that are extracted
from the 2D separable Haar transform (2D Haar-DWT) of the whole image.
The subdivision of the 2D frequency plane, the coefficient-tree that represent
a range block and the coeflicient-tree that represends a scaled-down domain
block are shown in Fig. 7. In the left side of the figure, there are 15 shaded 2D
Haar-DWT coeflicients. These coefficients are the DWT of the 4x4 (shaded)
range block of an image shown in the right. The 15 white coefficients repre-
sent a single domain-tree corresponding to a scaled-down version of the 8x8
square that is also shown on the right of Fig. 7. Therefore, it easy to see that
the 2D encoding and decoding process is as described for the 1D case.

The extrapolation of the subbands is also marked (by the arrows) in
Fig. 7(a). We would like to emphasize that the 2D extrapolation to calculate
the higher bands is done here with the same parameters in all three directions
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(HL, LH and HH)

6.2 block flipping and rotation in the DWT domain

The conventional fractal image coder uses rotated and flipped versions of the
domain blocks in order to enrich the domain pool [9]. It can be shown that
all the conventional isometries of a scaled-down domain block can also be

implemented at a very low computational cost in the 2D-DWT transform
domain. This is due to the fact that linear phase, even length, separable
2D-Filters have the following properties :

7

1.

The lowpass 2D filter (hy) is invariant to all the 8 rotations and flips
that are commonly used in fractal coders.

The hpp, filter is rotation and flip invariant (up to a sign reversal)

. The ’cross’ filters hy, and hp; may switch (due to rotation and flipping)

from one to the other. That is, a rotated hj, turns out to be L£hy;.

To summarize : The coefficients-tree which represents an isometry of a
scaled-down domain block can be found from the representing tree of the

scaled-down block by:

1.

applying the same isometries in every sub-block of coefficients that
belong to the domain-tree and come from a specific subband.

. switching between HL and LH subbands (for diagonal flips and 90°

rotations only)

inverting the sign of the coeflicients of a subband if the result of flip-
ping/rotating its coresponding filter (hin, hni, hnn) are the negative of
one of those filters.

An Adaptive Blockless DWT-IFS Coder

7.1 A Blockless IFS

The investigation of the IFS in the Haar-DWT domain gives a better un-
derstanding of the frequency characteristics of the code. Although many
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practical benefits can be achieved from the subband interpretation, the main
benefit comes, probably, from changing the filters used in the QMF pair.

In such case the domain trees come from the decomposition of v};/ A
scaled-down version of the image. However the scaling function ¢ in now
not a four pixel averaging operator as defined in (9). Instead it is equiva-
lent to filtering the image with 2D LP QMF separable filter followed by a
decimator. Such a filter has a much smoother characteristics as a scaling
operator. Finding the best domain-tree Sq,, and the best scaling factor a;,
that describe each range-tree, is equivalent to finding similar regions in an
image and in its scaled-down version. However those regions overlap, and
their local energy fade smoothly towards their borders. Thus a code that is
not in blocks have been obtained. To summarize, if the algorithm for finding
an IFS and its fixed point, as in Sec.(6) is applied, using a QMF pair other
than Haar, one effectively obtains a blockless reconstructed image.

The chosen QMF should have the following properties:

1. Since the IFS matches coeflicients from different frequency bands (in
different locations), it is very important that the filters should have zero
(linear) phase. Such filters have an additional advantage in coding finite
length signals (images) since there is a simple way for symmetrically
expanding them to prevent discontinuities along the boundries of the
image (instead of cyclic expansions) [3].

2. The filters should be relatively short due to the finite size of the image,
and because it is desireable to prevent a local error (which usually
comes from an edge) from being diffused to smooth areas and create
'ringings’ or 'ripples’.

3. Since the minimization is done in the transform domain, it is of advan-
tage to use an orthonormal DWT. If a non-orthonormal transform is
used, the distance between the the iamge v and W(v) is not equal to
the distance between their DWT transforms.

4. Tt is sufficient, however, that the QMF will provide near-perfect re-
construction (almoust orthogonal), as long as the error created by the
subband splitting is small relative to the expected error (of the IFS
prediction).
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7.1.1 Preliminary Results

In order to evaluate the quality of the IFS that can be obtained in the DWT
domain (DWT-IFS), its ability to compress images has been examined. Sev-
eral separable QMF’s were examined on a few images, and all of the filters
performed better than the Haar-QMF (which is, as explained earlier, equiva-
lent to the reference algorithm). Out of the examined filters, the best results,
in terms of PSNR, as well as subjectively, were obtained with Adelson’s et.
al. 9 taps QMFs [1] Changing the QMF filter improves the PSNR by about
1dB, and reduces the blockiness of the reconstructed image

It 1s known that in order to achieve high compression results one has
to adapt the amount of bits that represent a block (tree) according to each
block activity. One of the common ways to do so is by Quadtree partitioning
of the (large) blocks with high prediction error [7]. An equivalent procedure
can be applied to range/domain trees in the DWT domain (This is currently
under investigation). However, in the following subsections we would like to
describe other ways to adapt the complexity of a transformation w; to the
activity of its corresponding regions.

7.2 Zerotrees and DWT-IFS
The DWT-IFS coder that has been described in the last section can be

interpreted as a Wavelet-coder in which the coeflicients of the base-band
are quantized while and higher bands coeficients are predicted from the base
band by the DWT-IFS. In recent years several high performance wavelet
image coders based on Zerotrees were reported [18]. A Zerotree is a subtree
of wavelet coefficients that is encoded with a special flag that declares that
a whole subtree has negligible energy.

Zerotrees can improve the DWT-IFS coder as well. If a range-tree of AC
coefficients has negligible energy, then the bits that are used for decoding its
coresponding scaling factor and domain-tree index can be saved. Simulation
results show that for standard images (such as ’Lena’ 512x512) more than
30% of the range-trees can be zeroed with negligible degradation in the PSNR
(about 0.1 dB). We would also like to mention that zerotrees of variouse
depths are associated with the DWT-domain equivalent of a Quad-tree based
IFS, in which range blocks may have different sizes, corresponding to trees
with different depths.
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Note that using Zerotrees in the DWT-IFS coder, with Haar filters, is
equivalent to representing a range block by its mean. A procedure that has
been previously used for low variance blocks (denoted by Jacquin as shaded
blocks [9]), However, such a procedure does not work well because of the
discontinuities between the blocks. Using filters other than Haar, allows
zeroing low energy trees without noticeable visual artifacts.

7.3 Matching pursuit

A simple way to enrich a transformation is to represent a DC-less range-tree
(block) by a combination of several domain-trees (blocks). L.e.,

r - 5 = a{Vp(dn, @ — d) + 0Pp(dn@ — Ao+ ... (47)
Finding the optimal scaling factors, agp ), and domain blocks d,y,, (p ), through
exhaustive search is not practical, therefore it is suggested to apply a matching-
pursuit approach, which is similar to the one in [12], to find a sub-optimal
approximation of every single range block (tree) as follows :

VIIT :  Range-block approximation using matching pursuit

1. Injtialize p=1 and the estimation error : ez(l) =r;,—T;.

2. If ||e7||? is smaller than a given threshold or p = P+1 (where
P is the maximum number of domain blocks to be combined) goto
step 7.

(»)

7

(»)

3. Find the best single domain index m; and scaling factor a;

that minimize :

e ~ afP(dn® ~ )]s (48)

4. If p > 1 re-optimize the scaling factors by minimizing the
norm of

(ri=5:)—a{ i (dpn, V—d0)) —aPp(d,n, O —d)) —. . —aPp(d,n, D))

(49)

given the blocks indices (requires a pxp matrix inversion)
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5. Calculate the new estimation error

p
ePH) _ oM _ 3" oPq, ) 35:3) (50)
k=1

6. increase p by 1 and go back to 2

7. The parameters of w; are the number of domain-blocks p, and
the p pairs of scaling factors and domain indices.

7.4 Directional trees and directional mappings

An alternative way to improve the representation of a range-tree, when it
is not well estimated by a single domain-tree, is to subdivide the range-
tree into three groups of coeflicients based on the orientation of the subband
from which they come from. (LH, HL and HH). In this manner one gets three
range subtrees of size (2Lx2% — 1)/3 from a single range-tree of 2Lx2F — 1
coefficients. Each of these directional range subtrees is approximated sep-
arately from directional domain subtrees (extracted in the same manner).
As a result, the IFS that is used to reconstruct the region (the block in the
Haar-DWT case) consists of three domain indices and three scaling factors,
one for each directional sub-tree. A similar idea for coeflicients subblocks has
been recently proposed by Rinaldo and Calvango [15]. However, they use a
different set of parameters for each resolution level (pyramid level).

7.5 Proposed coding algorithm

Based on the above suggestions the following Adaptive DWT-IFS coding
scheme is proposed :

IX :  Encoding

1. Compute the DWT of the image v(m,n) with L+1 splits of the
signal.

. 1/2B 1/2B /2B _1/2B
2. Quantize and store the low bands VE/L R VEZH R VH/E R VH/H .
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3. Extract domain pool of trees Sdmi (with AC coefficients only).

4. For each range-tree S,,
O If ||Sy,||3 < Thershold = encode as a Zerotree.
{ else approximate the range-tree with a single domain-tree
(Sec.(7.2)).
{ Is the error is too large, approximate the range-tree with
two domain-trees using the matching pursuit formulation (Sec.(7.3)).
{ If the error is still too large, split the range-tree into
three directional subtrees and approximate each of them using
three directional domain subtrees. (Sec.(7.4)).

X :  Decoding

1. Copy the quantized bands from the code.

2. Extrapolate recursively from the low bands (included in the
code) to the higher bands. Compute each of the groups of coefficients
according to the information about the type of transformation,
using the scaling factors and the indices.

3. Compute the Inverse DWT.

7.6 coding results

The Adelson et al. 9 taps QMF wavelet coeflicients of the lower bands were
quantized with 7 bits/coeff for the LP band and 6 bit/coeff for the three
(lower) HP bands. The scaling factors were also quantized with 6 bits each.
All the quantizers used were uniform. The quantization was followed by
adaptive arithmetic encoding of each of the quantized variables. In Fig. 8 we
compare the results obtained in coding the image ‘Lena’ (512x512) using the
reference IFS algorithm with a fixed block size B = 8 - (bottom line) to
DWT-IFS coding using Adelson et. al. 9 taps QMF pair [1] with L = 3
(middle) and Adaptive coding scheme with the same 9 Taps filter (upper).
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The lines of the fixed IFS/DWT-IFS pass through only two points. The
lower point come from IFS without use of rotations and the upper from IFS
using Rotations. The use of isometries in the Adaptive DWT-IFS was not
found to improve the results, and therefore isometries were not applied.

From Fig. 8 it is evident that the improvement from using the Adaptive-
DWT-IFS over the reference algorithm is more than 2dB. In the range 0.2-
0.35 bit/pixel, the proposed coder also outperforms the conventional coder
using the Quadtree approach described in [7](Chapt. 3).

However the decrease of the slope of the graph teaches us that in order
to achieve higher PSNR results one should combine the Quadtree aproach
with the addaptive DWT-IFS. L.e., use range-trees of different depth as well.
Such a scheme is currentlly under investigation.
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Figure 8: Results of Coding the image ’Lena’ (512x512) with Adaptive DWT-IFS, L = 3.
see text for details
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8 Super Resolution

In Sec.(4.2) we have shown that the pyramidal interpretation of an IFS code
may also be used to increase the resolution of signals. We showed that instead
of using an IF'S code to decode signals in arbitrary resolutions, one can ’zoom-
in’ from a fixed point at a given resolution and obtain a representation at
twice the resolution. In this section we would like to generalize the results of
Sec.(4.2) to the DWT-IFS.

Let us assume that one uses a given DWT-IFS set of parameters (base-
bands coeflicients, scaling factors and domain indices) but instead of extrap-
olating from the base band to the upper bands L times (as one should do
according to the DWT-IFS decoding procedure and is shown in Fig. 6) one
extrapolates L + 1 times. Such a procedure is equivalent to zooming-in L +1
time in the low pass pyramid as described in Sec.(4.2), when one uses the
Haar QMF. However, using other QMFs reduces the visual artifacts typi-
cal to super-resolution techniques because of the reasons explained before,
concerning IFS coding/decoding.

The result of this extra band extrapolation is a fixed point with the same
subbands content as in the fized point at the original resolution, but with an
additional subband that does not exist in the original resolution. Note that
if one wishes to use the IFS code for “super-resolution” only, then one can
extrapolate the higher (nonexisiting) band(s) from the DWT of the original
signal. As a result the lower subbands of the signal in super resolution will
be the same as the lower subbands in the original signal.

8.0.1 DWT-IFS Embedded Function

In Sec.(4.2) we have also pointed out that the limit of a zooming-in pro-
cess applied to a fixed point is a continuous-time fixed point in “infinite”
resolution denoted IFS Embedded Function

Using the Wavelet framework (and under some constrains on the scaling
factors), the DWT-IFS defines a unige continuous time fixed point in L2
This function can be constructed in the following way :

1. extrapolate a given DWT-IFS fixed point to higher bands again and
again, “infinite” number of times.
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2. Calculate the continuous time function f(t) - assuming that the DWT
coeflicients are actually its “Wavelet Series” coeflicients.

Due to the relation between DWT and wavelet series, it is observed that
by definition the fixed points at various resolutions £1/2' (—oo <1 < L) (Here
L is the number of splits in the DWT of the analyzed signal) are discrete
approximations of this function.

It should be noted that this is a generalization of the IFS Embedded
function, and that the functions are the same in the case of Haar-DWT-IFS.

9 Summary and Conclusions

In this paper a link between farctal image coding and multiresolution analysis
has been established. We have shown that the hierarchical interpretation of
the IFS code can be used to achieve a very fast decoding scheme.

The investigation of the hierarchical structure of the fixed point naturally
leads to a wavelet framework. Such a framework enables us to create a
blockless IF'S code.

We belive that the combination of fractal image coding and wavelet cod-
ing, where self-similarities among wavelet-subtrees are used for representing
similar regions at different resolutions in the image, will provide a common
useful ground for future activity in this area

References

[1] E. D. Adelson, E. Simoncelli, and R. Hingorani. Orthogonal pyramid
transforms for image coding. volume 845, pages 50-58. SPIE-Visual
Communications and Image Processing 11, 1987.

[2] Z. Baharav, D. Malah, and E. D. Karnin. Hierarchical interpretation of
fractal image coding and its application to fast decoding. Intl. Conf. on
Digital Signal Processing. pages 190-195. Cyprus, July 1993.

[3] R. H. Bamberger, S. L. Eddins, and V. Nuri. Generalized symmetric
extensions for size limited multirate filter banks. IEEE Transactions on
Image Processing, 3(1):82-87, January 1994.

33



[4]
[5]

8]

[9]

[10]

[11]

[12]

M. F. Barnsley. Fractals Fverywhere. Wiley and Sons, 1988.

G. Davis. Self quantized wavelet subtrees: A wavelet based theory for
fractal image compression. DCC-Data Compression Conference, pages
232-241, Snowbird-Utah, May 1995.

K. Falconer. Fractal Geometry, mathematical foundations and applica-
tions. Wiley and Sons, 1990.

Y. Fisher. Fractal Compression: Theory and applications to Digital
Images. Springer Verlag, New-York, 1995.

G .C. Freeland and T. S. Durrani. Ifs fractlas and the wavelet transform.
pages 2345-2348. ICASSP, 1990.

A. E. Jacquin. Image coding based on a fractal theory of iterated con-
tractive image transformations. IEEE Transactions on Image Process-
ing, 1(1):18-30, January 1992.

H. Krupnik, D. Malah, and E. Karnin. Fractal representation of images
via the discrete wavelet transform. IEEE 18th conv. of EE in Israel, pp.
2.2.2 : 1-5, May 1995.

S. G. Mallat. A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Trans. on PAMI, 11(7):674-693, July
1989.

S. G. Mallat and Z. Zhang. Matching pursuits with time frequency dic-
tionaries. [EEE Transactions on Signal Processing, 41(12):3397-3415,
December 1993.

G. E. Qien and S. Lepsgy. Fractal image coding with fast decoder con-
vergence. Signal Processing, 40:105-117, 1994.

G. E. Qien, Zachi Baharav, et al. A new improved collage theorem with
applications to multiresolution fractal image coding. pages V:565-568,

ICASSP, 1994.

R. Rinaldo and G. Calvango. Image coding by block prediction of
multiresolution subimages. IEEE Transactions on Image Processing,
4(7):909-920, July 1995.

34



[16] O. Rioul. A discrete time multiresolution theory. IEEE Transactions on
Signal Processing, 41(8):2591-2606, August 1993.

[17] H. L. Royden. Real Analysis. Macmillan Pub., 1988.

[18] J. M. Shapiro. Embedded image codec using zerotrees of wavelets co-
efficients. IEEE Transactions on Signal Processing, 41(12):3445-3462,
December 1993.

[19] Z. Baharav, D. Malah, and E. Karnin. Hierarchical interpretation of
fractal image coding and its applications. In Y. Fisher (ed) Fractal

Compression: Theory and applications to Digital Images, chapter 5, pp
91 — 117. Springer Verlag, New-York, 1995.

35



