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ABSTRACT

This paper presents a Gabor-domain scrambling
scheme which enables a variety of scrambling options - in
time, in frequency, and in the combined time-frequency
spaces. The scrambling operation is performed by Modify-
ing on the Gabor representation of the input speech signal.
The proposed scheme can perform any invertible modifica-
tion, and not necessarily the commonly used permutation
operation, rendering the scheme more secure. It is shown
that when using the oversampled Gabor expansion there are
modifications which are not legal, and the class of all legal
modifications is determined. The synchronization prob-
lems, usually accompanying the scrambling process, is stu-
died. It is shown that certain channel delays are overcome
when using the proposed scheme. The effect of the Gabor
expansion parameters on the synchronization problem and
on the security level of the scheme is examined. The per-
formance of the proposed scheme is demonstrated by simu-
lations.

1. INTRODUCTION.

In spite of significant progress in digital speech tech-
nology, analog speech scramblers continue to be important
for achieving privacy in many types of voice communica-
tion [1-3], due to the desire for secure communication over
existing channels. Most scrambling algorithms are based on
rearranging or reordering speech samples, rendering the
speech unintelligible. Three approaches for speech scram-
bling are usually considered. These are, time scrambling,
frequency scrambling, and a combined time-frequency
scrambling. Gabor representation of the speech signal is
ideally suited for scrambling speech samples in time, in fre-
quency or in time-frequency (Gabor) domains.

Gabor representation of a single variable function (e.g., a
speech signal) constitutes a mapping onto a two-
dimensional discrete space, describable by a two-
dimensional array. The columns of the array correspond to
M —size transforms (usually DFT) of the signal multiplied
by a set of windows, shifted R samples apart.

In this paper we propose a Gabor-domain based ana-
log speech scrambling technique, which uses the approach
presented in [4] for performing linear time-varying opera-
tion. The proposed scrambling scheme creates a variety of
scrambling options, it can perform any invertible modifica-
tion, and not necessarily the commonly used permutation
operation, rendering the proposed scrambling scheme more
secure. The speech signal is transformed into Gabor space
where the Gabor coefficients are modified by a linear sys-
tem and inverse-transformed into the time domain, yielding
the scrambled speech. At the receiver end the scrambled
speech is transformed back into Gabor space, inverse modi-
fied, and inverse Gabor transformed, resulting in the origi-
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nal speech signal in time (assuming a distortion-less chan-
nel). When applying the modification in either time or fre-
quency, the proposed scrambling scheme coincides with
the time and frequency scrambling schemes suggested in
[2,3]. In these schemes it was argued that the synchroniza-
tion problem (channel delays) accompanying the scram-
bling process is resolved, as long as the shift parameter R
is less then or equal to the transform size M. In this paper it
is shown that only channel delays of r'R samples ( where r
is an integer ) are resolved by the schemes described in
[2,3]. Thus, a small R should be chosen to properly reduce
the synchronization problem. This contradicts the claim
raised in [2,3] that any R <M will do. Furthermore, it is
shown that in the oversampled case ( R <M ), not all
modifications are legal, in accordance with the results
stated in [5]. (A modified Gabor representation is con-
sidered legal if it is identical to the Gabor representation of
the scrambled signal). Hence, the number of potential
modifications decreases, resulting in a less secure scram-
bling scheme. The class of all legal modifications for a
given set of parameters R , M, and the analysis window
associated with the Gabor representation is determined,
generalizing the special cases for time and frequency
scrambling considered in [5]. The tradeoff in choosing R
which controls the synchronization problem on one hand
and the security level on the other hand is considered.

2. THE GABOR REPRESENTATION

The Gabor representation comprises a superposition of
sliding window functions multiplied by a Fourier kernel.
Throughout we shall consider the discrete-time case which
was addressed in [6] and is briefly presented here for the
sake of completeness. Unless otherwise indicated, summa-
tion indices range from —eo to +eo .

The Gabor expansion of a discrete-time function x (k)
is given by

N-1 N-1 2n
x(k)=Y % X*p.qV¥p.q *k)>=x ¥ Xp.q y(k—pR) exp (j—qk Xl)

p q=0 P q=0 M
where (k) is the synthesis window, R describes the
discrete-time shift and M is the transform size. The Gabor
coefficients x, . are evaluated using a biorthogonal func-
tion (analysis window) y(k) via

Sy =BR 0 g (=55 3 Ge=pR) exp 2ty (2)

where * denoted the complex conjugate. Similar expan-
sions are applicable in the frequency domain.

It can be observed that with minor modifications, the
discrete-time Gabor representation coincides with the
thoroughly investigated Short Time Fourier Transform
(STFT) [7]. In this paper, the algebraic approach for the
description of the STFT, introduced in [8], is adopted to



describe Gabor representations and operations in Gabor
space. With this approach the Gabor representation of an
input signal is obtained by multiplying each segment of the
signal by a matrix A, which represents the analysis window
Y(k) , and then multiplying the result by an appropriate
DFT matrix W. The matrix representation of the Gabor
analysis is given therefore by

g =WAx24Ax 3)

where x is a vector representing a segment of the input sig-
nal x (k) , and g, is a vector representing its Gabor expan-
sion, which is part of the Gabor coefficients array x, , .
The synthesis is performed by multiplying the Gabor
representation of the signal g, with the inverse (or general-
ized inverse when needed) of the above matrices in reverse
order. The matrix form of the Gabor synthesis is given
therefore by

x=SWhg 25g, @

Because of lack of space, only the case where the transform
size M is equal to the analysis window length N is con-
sidered. A generalization to the case where N > M can be
conducted via the weighted overlap add (WOLA) method
[7], and is reported in [9]. In addition, it is assumed,
without loss of generality, that the shift parameter R satis-
fies mod(M ,R)=0. For given values of the parameters M
and R , the size of the analysis matrix A is taken to be
[M¥R]x[2-M-R] , and the corresponding DFT matrix W is
a square block-diagonal matrix with [M/R] blocks of
dimension MxM each . In each operation represented by
(3), a segment of [2-M-R] samples of the input speech sig-
nal is multiplied by the matrices A and W yielding [M/R]
vectors, of length M each, representing the Gabor
expansion. The operation in (3) is repeated with a shift of
M samples at a time.

3. THE PROPOSED SCRAMBLING SCHEME

The proposed scrambling scheme is based on the
approach presented in [4] for the description and operation
of linear time-varying systems in Gabor time-frequency
space. A block diagram describing the proposed scram-
bling scheme is given in Fig. 1. The speech signal x(n) is
transformed into Gabor space, in which the Gabor
coefficients are modified by a linear system (the scrambler)
and inverse-transformed into the time domain, yielding the
scrambled speech y (n). At the receiver end the scrambled
signal is transformed back into Gabor space, descrambled,
and inverse Gabor transformed, resulting in, the original
speech signal in time (assuming a distortion-less channel).

The general form of the scrambling operation is
described by the superposition sum

yK)Y=Y htk ,Dx&=1)=3 hk k=) x{) (5)
1 1

substitution of (5) into the Gabor representation of the
scrambled speech signal y (n) yields

N-1
Ymn =2 X Mmonp.a¥p.q
p q=0

()

where y,, , are the Gabor coefficients of the scrambled
speech with another analysis window ¢(k) , and x, , are

the Gabor coefficients of the original speech with analysis
window (/) . The four-dimensional array h,, , ,,, in (6)
represents the Gabor expansion coefficients of the scram-
bling operation h (k ,/) according to

h”.,w=kzlh<k,lw,,,q(k—z)é;,_n(m )

where y* (k—)$(k) is the resulting analysis window.

To facilitate the manipulation of (6), the four dimensional
array h,, ., , Tepresenting the scrambling operation is
converted into a two-dimensional matrix H such that the
scrambling operation remains the same. Thus, the matrix
form of the scrambling operation in (6) is given by

8 =H g @)

The proposed scrambling scheme creates a variety of
scrambling options by using any invertible four dimen-
sional array h,, , , . (or any invertible matrix H ) rather
then a permutation array usually used in scrambling
schemes [1-3].

4. VECTOR-SPACE APPROACH TO GABOR
EXPANSION AND SCRAMBLING.

The Gabor Expansion and the scrambling operation
described in the previous two sections, has a very clear
description when a vector-space approach is used. The
general analysis matrix A in (3) which represents the Gabor
expansion is of size [MYRIx[2-M ~R 1. Thus, it can be con-
sidered as a transformation A from a vector space ¥ of
dimension [2:M-R] to a vector space W of dimension
[MxM/R]. When R is equal to M, the critically —sampled
case, the dimensions of both vector spaces are identical and
equal to M, in which case the generalized synthesis matrix
S in (4) is the simple inverse of A . In the oversampled case,
R <M , the dimension of the destination space W is larger
then the dimension of %, and Range {A } (the range of the
transformation A ) forms a sub-space of % which is
spanned by the columns of the matrix A . The scrambling
process, described by the four-dimensional array 4, , , o
, is considered as a transformation H:W—% . The syn-
thesis of the scrambled speech is described as a transforma-
tion S:W—7 . This vector-space approach is visualized in
Fig. 2. It can be observed that in the oversampled case the
transformation A :¥—»% is one-to-one but not onto W, i.e.,
there are vectors in the space % which are not in the range
of A . For such vectors w € W = W\ Range {A} there is no
vector v € ¥ such that Av=w' , and the scrambling
transformations (modifications) which yields these vectors
are considered non-legal. This problem was first addressed
in [5] for time and frequency scrambling, and the results
reported there constitute special cases of the following
results. A modification H is considered legal if the modi-
fied Gabor representation is identical to the Gabor
representation of the scrambled speech, i.e.,

Hg, =Ay ®

Since (9) is valid for every vector u € Range {A} it is valid
for a basis of Range{A} (the columns of A, for example).
Thus, the class of all legal modifications (LM) H, :W—W
for a given analysis transformation A is composed of all
invertible modifications obeying the following matrix
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equation

H A=AB (10)

where H; is the legal modification matrix of size
[MYRIX[M2R] , A is the general analysis matrix of size
[MYR |x[2-M -R | representing the transformation A , and B
is an arbitrary nonsingular matrix of  size
[2-M R 1x[2:M ~R ] which controls the modification charac-
teristics. In this case there exists a scrambling system as in

Fig. 1 that reconstructs the original input signal without
error. The result expressed in eqn. (10) is important, as it
enables checking whether a given modification matrix is
legal. In addition, a legal modification with special charac-
teristics can be synthesized using (10) through the selection
of B , as it is demonstrated for the time and frequency
scrambling in the next section. When the scrambling
transformation is not legal, the issue of optimal synthesis
arises. This problem is dealt with in detail in [9]. In the crit-
ically sampled case, the analysis transformation A is one-
to-one and onto W. Thus, there is always a unique syn-
thesis transformation § =A™, and all scrambling transfor-
mations H are legal.

5. TIME AND FREQUENCY SCRAMBLING
SCHEMES

Because of the close resemblance between the Gabor
expansion and the STFT, the time and frequency scram-
bling techniques first introduced in [2,3] constitute special
cases of the proposed scheme. In these schemes a permuta-
tion is performed on the STFT vectors of the signal, or on
their IDFT, yielding frequency-domain scrambling or time
domain scrambling correspondingly. These scrambling
methods are claimed to overcome the effect of synchroni-
zation error usually encountered in scrambling schemes. In
this section these time and frequency schemes are analyzed.
It is shown that only channel delays of r-R samples are
resolved, as opposed to the claim in [2,3] which says that
any shift parameter R less then or equal to the transform
size M will resolve the synchronization problem, In addi-
tion, in accordance with the previous section results, the
class of legal modifications for the time and frequency
scrambling schemes is determined. This class of legal
modification constitute a special case of the class of all
legal modifications defined in (10), and coincides with the
legal modifications found in [5}.

The set of M-dimensional short-time-vectors (STV) is
produced by multiplying the input signal x (1) by a sliding
window sequence y(n) . Using the assumption of a finite
extent window of length M , the p —th vector in the STV is
given by

X, (n) =" (n-pR)x(n); 0<n SM-1, —o<p <eo(11)
The case where the window length is greater than M is car-
ried out utilizing the WOLA method (7). The STFT is

obtained by applying an M-size DFT on each of the STV,
ie.,
X, o =DFT{X,(n)} (12)

As proven in [5], the existence and properties of scram-
bling systems such as introduced here, are independent of

the specific transform used. Thus, without loss of general-
ity, by using the identity transformation instead of the DFT,
the STV are considered instead of the STFT. Asa result,
the legality of the modifications as well as their properties
concerning synchronization problems are identical in the
time and in the frequency scrambling schemes.

The special case of time-invariant scrambling in time
is represented by a MxM nonsingular matrix Q operating
on each of the STV, i.e.,

Y,(n)=0 X,(n) (13)

It is a well known fact that decimation systems are
inherently time-varying, thus the Gabor expansion scheme
which comprises of a decimation system becomes a time-
varying system. Indeed, the Gabor expansion of a delayed
signal generally does not coincide with the delayed Gabor
expansion of the signal. The Gabor expansion constitute a
time —invariant system only for delays of r-R samples
(where R is the shift parameter, and r is any integer).
Thus, the encoding, i.e., inverse modification of the Gabor
expansion of the delayed version of the scrambled speech,
and transformation back to the time-domain, would not
produce a delayed version of the original speech, unless the
delay equals r-R . This contradicts the claim raised in
[2,3], that any delay would be resolved as faras R <M.

The above argumentation indicates that small values of R
should be chosen to properly overcome the synchronization
problem. However, as it is shown below, small values of R
reduces the set of legal modifications, rendering the scram-
bling scheme less secure.

The class of legal modifications for the time-invariant
special case is derived from (10) by imposing additional
constraints, such as in (13). For this class of legal modifi-
cations, H; is composed of M/R block-diagonal square
matrices Q of size M having the following form

Q =diag{P;} ., 1<i<MIR 14)
where P, is a set of square matrices of size R given by
P, =A;BA;™ (15)

/il- is the RxR sub matrix beginning at coordinate
(G=1)R+1, (i-1)R+1) of the analysis matrix A , and B is
an arbitrary nonsingular matrix of size R xR which controls
the scrambling characteristics. When B is chosen to be a
permutation matrix, the resulting legal modification is in
agreement with the modification obtained in [5]

Obviously, in order to overcome the synchronization
problem, the time-invariant case should be used. In this
case the class of legal modifications is reduced as R
becomes smaller, resulting in a less secure scrambling
scheme. Furthermore, since the modification matrix Q is a
block-diagonal matrix with blocks of size R, the scram-
bling is performed on small segments of the speech signal,
further reducing the security level of the scheme. Thus, as
a conclusion from the above discussion, there is trade-off in
choosing R which controls the synchronization error on
one hand, and the level of security achieved by the scram-
bling scheme on the other.
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6. SIMULATION RESULTS

The performance of the proposed scrambling scheme
was examined on an actual speech signal. The perfor-
mance, i.e., the residual intelligibility and the degradation
introduced when using the scheme, was tested using a
distortion-less channel, as well as in the presence of chan-
nel delays. Throughout, an Hamming window of length
N =64 was used as the analysis window, and the transform
size M was taken to be M =64 . First, an arbitrary (but
legal) modification matrix was tested under the conditions
of a distortion-less channel. The results showed that there
wasn’t any residual intelligibility in the scrambled speech
and that the reconstructed signal at the receiver was perfect.
Next, the time-invariant scrambling scheme was considered
for two values of the shift parameter R =2 and R =M .
For R =2 the scrambled speech contained some residual
intelligibility, and channel delays of r:2 were reconstructed
perfectly. Channel delays different then r-2 destroyed the
reconstructed signal. For R =M the scrambled speech was
unintelligible, and again channel delays different then r-R
totally degraded the reconstructed speech. Finally, we tried
to find, on a trial and error basis, a modification matrix
which reasonably withstands channel delays other then r-R
. We succeeded in finding such a modification, however we
can’t propose a rigorous way of finding such matrices, and
more research is needed concerning this problem.

7. SUMMARY AND CONCLUSIONS

This paper proposes a Gabor-domain analog speech
scrambling technique which creates a variety of scrambling
options, and generalizes current scrambling techniques in
time and in frequency. The proposed scheme can perform
any invertible modification, and not necessarily the com-
monly used permutation operation, rendering the scheme
more secure. In addition, the synchronization problem
which usually accompanies scrambling schemes was

studied. It is shown that the claim raised by other authors
[2,3] that the problem is resolved by such a scheme fails to
be correct. The proposed scheme overcomes only channel
delays which are a multiple of the shift parameter R, thus,
small values of R should be chosen to properly reduce the
synchronization problem. The selection of small values of
R leads to the problem of illegal modifications which
appears in the oversampled Gabor case, and decreases the
security level of the scrambling scheme. The class of all
legal modifications in the general case, and in the time and
frequency scrambling special cases is determined. The
trade-off in choosing R which controls the synchronization
problem and the security level is considered. The perfor-
mance of the proposed scheme is demonstrated by simula-
tions.
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Fig. 1 : Block diagram of the Gabor scrambling scheme.
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Fig. 2 : Visualization of the vector space approach to
Gabor representation and the scrambling process.
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