
We have  described a speaker-dependent  isolated  word  recog- [ 161 R. G. Leonard, “A database. for speaker-independent  digit  recog- 
nition approach  that  requires  little  training  (one  utterance nition,” in Proc. 1984 ICASSP Con$, Mar. 1984, pp.  42.11.1- 
per  vocabulary  word),  achieves a low  error rate on the digits 42.11.4. (< 1 percent),  and  has  small  memory  and  computational  re-  [I71 c. S. Myers, Rabiner, and A. E. Rosenberg,  perfom om^^^^ 

quirements. These requirements  might  be  reduced  further tradeoffs in dynamic  time  warping  algorithms for isolated  word 
without a significant  increase in  error  rate  by  means of the fol- recognition,” IEEE Trans. Acousf.,?  Speech,  Signal  Processing, 

lowing  procedures: vol.  ASSP-28, pp. 623-635, Dec. 1980. 

1) reduce  the  size  of  merged  codebooks  by  using a cluster- 
ing  procedure [ 131 on the  combined speaker-specific and 
speaker-independent  data, 

2 )  merge a frame  (or  codeword) of speaker-specific  data 
only when it is  significantly  different  than  the  existing  speaker- 
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Abstract-In this correspondence we derive a short-time  spectral  am- 
plitude (STSA) estimator for speech  signals  which minimizes the mean- 
square  error of the logspectra (i.e., the original  STSA and its estimator) 
and examine it in  enhancing  noisy  speech.  This  estimator  is  also  com- 
pared  with the corresponding  minimum  mean-square  error STSA esti- 
mator derived  previously. It was found that  the new  estimator  is  very 
effective in enhancing the noisy  speech, and it significantly  improves its 
quality. 

I. INTRODUCTION 
Recently [ 11, we proposed  an  algorithm  for  enhancing 

speech  degraded  by  uncorrelated  additive  noise  when the noisy 
speech  alone  is  available.  This  algorithm  capitalizes on the 
major  importance of the  short-time  spectral  amplitude  (STSA) 
of the speech  signal in”its  perception,  and  utilizes a minimum 
mean-square  error  (MMSE)  STSA  estimator  for  enhancing  the 
noisy  speech. 

While the  distortion  measure  of  mean-square  error  of  the 
spectra (i.e., the original  STSA  and  its  estimator)  used  in [ 11 
is mathematically  tractable,  and  leads  also to good  results, it 
is not  the  most  subjectively  meaningful  one.  It is well known 
that a distortion  measure  which is based on  the mean-square 
error of the log-spectra is more  suitable  for  speech  processing 
(e.g., see [ 21 ). Such a distortion  measure  is  therefore  exten- 
sively used  for  speech  analysis  and  recognition. For this  rea- 
son, it is of  great  interest  to  examine  the  STSA  estimator 
which  minimizes  the  mean-square  error  of  the  log-spectra  in 
enhancing  noisy  speech.  The  derivation  of  the  above  STSA 
estimator  and  its  comparison  with  the MMSE STSA  estimator 
derived in [ 11 are  the  subjects  of  this  paper.  This  idea of util- 
izing the  above  distortion  measure  for  speech  enhancement 
purposes  was  first  proposed in [ 31 and  independently  in [ 41. 

The  correspondence  is  organized  as  follows.  In  Section I1 we 
derived  the MMSE log-STSA estimator.  The  exponential  func- 
tion of the  latter  estimator is the desired  STSA  estimator. In  
Section I11 we  compare  by  informal  listening  the  performance 
of the  new  estimator  with  that  obtained  by  using  the MMSE 
STSA  estimator  from [ 1 I .  In  Section  IV  we  summarize  and 
draw  conclusions. 

11. DERIVATION O F  MMSE LOG-STSA ESTIMATOR 
We use  here  the  same  formulation of the  estimation  problem, 

and  the  same  statistical  model,  as  in [ 11. Specifically, the esti- 
mation  problem  of  the  STSA is formulated  as  that  of  estimat- 
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ing the  amplitude of  eacli  Fourier  expansion  coefficient of the 
speech signal { x ( t ) ,  0 < t < T } ,  given the  noisy  process { y ( t ) ,  
0 < t < T } .  The  Fourier  expansion  coefficients of the  speech 
process, as well  as of  the  noise  process,  are  modeled as statisti- 
cally independent  Gaussian  random  variables. 

This  model  utilizes  asymptotic  statistical  properties  (as T -+ 

a) of  spectral  components (e.g.,  see [SI). In particular,  the 
Gaussian  model  is  motivated  by  the  central  limit  theorem, as 
each  Fourier  expansion  cocfficient  is  after all a  weighted  sum 
of random variables. In  addition,  the $atistical  independence 
assumption  is motivat,ed by  the  fact  that  the  correlation be- 
tween  the  spectral  components  reduces as the analysis  interval 
length  increases.  A  detailed  discussion  concerning  the  above 
statistical  model i s  given in [ 11 . 

Fourier  expansion  coefficient of the  speech signal, the  noise 
process,  and  the  noisy  observations,  respectively,  in  the  analy- 
sis interval [0, TI .  According to  the  formulation of the esti- 
Tation  problem given above,  we  are  looking  for  the  estimator 
A,, which  minimizes  the  following  distortion  measure: 

Let X k   = A k e  , D k ,  and Yk = R k e i s k ,  denote  the  kth J Qk 

E{(log Ak - log A k ) 2 }  (1) 

given the  noisy  observations { y ( t ) ,  0 < t < T } .  This  estimator 
is  easily shown  to be 

Jk = exp { E [ h  Ak 1 y ( t ) ,  0 < t < TI} ( 2 )  
and  it  is  independent of the basis chosen  for  the  log  in  (1). As 
noted  in [ 1  1,  under  the assumed statistical  model,  the  expected 
value of Ak given { y ( t ) ,  o < t < T }  equals to  the  expected 
value  of A, given Yk only.  Since  this  statement  remains  true 
when A k is  replaced  by In A k ,  the  estimator ( 2 )  equals 

A), =exp{E[lnAkIYk]}.  (3) 
Note  that  the  estimator  (3) results  also if we  choose to  mini- 
mize  the  mean-square  error of the log  power  spectra given by 

E{(logAZ - log A p }  (4) - 
where A$ denotes  the  estimator  of A i ,  and  use 

Jk =a. 
This  observation is  of interest  since  (4) is exactly  the  square of 
the  distortion.measure dlnz in [ 2, p. 3701,  when  the  norm is 
chosen  approp’riately. 

The  evaluation of E[ ln  AklYk]  for  the  Gaussian  model as- 
sumed  here is conveniently  done by  utilizing  the  moment 
generating  function  of In Ak given Y k .  Let Z k  = In A k .  Then 
the  moment  generating  function @ z k ~ y k ( p )  of zk given Yk 
equals 

@ z k I y k ( p )  =E{exp ( p z k ) I y k }  

=E{&IYk} .  (5) 
E{ln A k  Irk) is obtained  from @ z k l y k ( p )  by 

d 

d p  
E{ lnAkIYk}   =-@ZklYk(p) lp=O.  (6) 

Therefore,  our task  is  now to  calculate a Z k l y k ( p )  and  then  to 
obtain E(1n A k l Y k }  by  using (6).  From (51, @ z k l y k ( p )  is 
given by 

@ z k l y k ( p )   I Y k }  

Lw [ 2 r  af p ( Y k l a k ,  a k )  P(ak ,  a k )  dak  dak 
- - 

[- i2n P ( Y k l a k ,  ak)  P(ak,  a k )  dak  dak . 

(7) 

On  the basis  of the Gaussian model  assumed  here, p (   Y k l a k ,  
a,) and p ( a k ,  ak)  are given by [ 1 I 

where  &(k) L? E{(DkI2} ,  and h,(k) 2 E{IXkI2}  are  the vari- 
ances of the noise  and  the signal kth  spectral  component. On 
substituting  (8)  and  (9)  into (7), and using the  integral  repre- 
sentation of the  modified Bessel function of zero  order Io ( e )  

[6, eq.  8.406.3,  8.41  1.11,  we  obtain 

Lw a$+’  exp ( - a i / h k ) I 0 ( 2 a k a )  dak 

1 ak exp ( - a i / h k ) I 0 ( 2 a k m )  dak 

.@zkIYk(P) = 

(10) 
where hk satisfies the  following  relation 

1  1  1 _-  -- +- 
hk A X ( ~ )  hd(k) 

(1 1) 

and Uk is defined by 

$k and Tk  are  interpreted as the a priori and a posteriori signal- 
to-noise  ratio (SNR), respectively.  The  integrals  in (10) are 
evaluated  by using [ 6, eq.  6.63 1.1, 8.406.3, 9.2 12.1 I .  We get 

@ Z k l y k ( P ’ > = h ~ ’ 2 r ( p / 2 + 1 ) M ( - p / 2 ;  1 ; - u k )  (13) 

where I?(. ) is the  gamma  function  and M ( a ;  c ;  x) is the  con- 
fluent  hypergeometric  function  [6, eq. 9.210.11.  Note  that 
@ ~ , l ~ ~ ( p )  is the  formula of the  pth  moment of a  Rician  ran- 
dom  variable;  however,  here p is not  confined  to be an  integer. 

The derivative  of @ z k l Y k ( p )  with  respect to p [which  is 
needed  in  (6)] is obtained as  follows.  First, we note  that M(a;  
c ; i )  is defined  by  [6,  eq.  9.210.11: 

where (a), 2 1 . a . (a + l ) ,  . . . , (a + r - l),  and (a)o 2 1. M ( - p /  
2 ;  1; - u k ) ,  which  appears in (13), can  be differentiated  term 
by term  for (pl < 2 since the series  of  its  derivatives  converges 
uniformly on that  interval. The derivative  of M(-p/2; 1; - u k )  
at p = 0 is obtained  by  the  above  way  and it equals 

The  derivative of r ( p / 2  + 1 )  is conveniently  obtained  through 
the  derivative of In r ( p / 2  + 1) by using 

The  derivative  of In F ( p / 2  + 1) is obtained by  utilizing  its  series 
expansion given by [ 6,  eq.  8.342.11 
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Fig. 1. Parametric gain  curves. Solid line:  STSA(20).  Dashed fine: 
MMSE-STSA ([ 11, formula (7)). 

where 

and c = 0.57721566490 is the  Euler  constant.  Differentiating 
(1  7)  term  by  term,  and  using  (16) gives 

Now,  by  using  (15)  and (18) we obtain  from  (13) 

= - l n h k + -  1 1 ( l n u k +  .6, ~ d f )  
- ,-t 

2 ’  2 

where  the  last  equation is obtained  from [6 ,  eq.  8.21 1.1, 
8.214.11.  The  integral  in  (19) is known as the  exponential 
integral of uk, and  can  be  efficiently  calculated [ 71 .  On  sub- 
stituting  (19)  into  (6)  and using (12)  and (3),  we get  the  de- 
sired amplitude  estimator 

It is useful to  consider J k  as  being  obtained  from R k ,  by  a 
multiplicative  nonlinear  gain  function  which  depends  only  on 
the a priori and  the a posteriori  SNR l k  and Y k ,  respectively. 
This gain function is defined  by 

and  it is described  by  parametric  gain  curves  in  Fig.  1.  This 
figure  shows  also  the  corresponding  gain  curves  which  result 
from  the MMSE estimator for Ak derived in [ 1 ] . The  behavior 
of these  gain  curves is explained  in  detail  in [ I ] ,  and  this  ex- 
planation  holds  as  well  for  the  new  gain  curves.  It is interest- 
ing to  note  that   the new  gain function  [which  results  from 
(20)] Always gives a  lower  gain  than  the  one  which  results  from 
the  estimator  of [ 1 I .  This is  easy to prove  by  using  Jensen’s 
inequality 

111. PERFORMANCE  EVALUATION 

The STSA  estimator  (20)  was  implemented  in  the  speech 
enhancement  system  described  in [ 11,  operating  with  the  de- 
cision-directed a priori SNR  estimator.  It  was  examined  by 
informal  listening in enhancing  speech  degraded  by  stationary 
uncorrelated  additive  white  noise,  with SNR values  of 5,  0, 
and -5 dB. The  resulting  enhanced  speech  was  compared  with 
that  obtained  in [ 11 . 

First,  we  compared  the  STSA  estimator  (20)  with  the MMSE 
STSA  estimator  derived  in [ 1,  formula  (7)].  The  enhanced 
speech  obtained  by  using  (20)  suffers  much less residual  noise, 
while no  difference  in  the  speech itself  was noticed.  The  resid- 
ual  noise  obtained  with  (20)  sounds  a  little less uniform  than 
when  the MMSE STSA  estimator is  used.  However,  because of 
the  lower  residual  noise level, this  effect  appears  insignificant. 
The  reduction  in  the  residual  noise  level  obtained  when  (20) 
is  used  is  probably  a  result of the  lower  gain  [see  (22)] , partic- 
ularly  in  regions  of  low  instantaneous SNR values  (see  Fig.  1). 

Another  interesting  comparison is that of the  STSA  estimator 
(20)  with  the MMSE STSA (30) from [ 11 which  takes  into 
account  signal  presence  uncertainty. We found  that  the  en- 
hanced  speech  obtained  by  both  estimators  soundsvery  similar, 
with  the  exception  that  with  the  first  estimator  the  residual 
noise  sounds  a  little less uniform. 

It  is  worthwhile  noting  that  during  this  work we  also  exam- 
ined the STSA  estimator  which  minimizes  (1)  under  the  addi- 
tional  assumption  that  the  signal is not  surely  present  in  the 
noisy  observation [ 11,  [3].  While this  estimator  results  in  a 
further  reduction of the  residual  noise  in  comparison  with  that 
obtained  by  using  (20), it also introduces  an  effect of low-pass 
filtering on  the  enhanced  speech signal. This  effect is reduced 
as the assumed  probability of  signal  absence  is  lowered;  but 
then  the  amount of residual  noise  reduction  gained  by  this 
estimator is also  reduced.  For  the  above  reasons we found  it 
unworthy  to  incorporate  the signal  presence  uncertainty  in 
the  log  STSA  estimator. 

Iv. SUMMARY AND CONCLUSIONS 
In  this  correspondence  we  derive a STSA  estimator  which 

minimizes  the  mean-square  error of the log-spectra  (i.e., the 
original  STSA  and  its  estimator)  and  examine  it  in  enhancing 
noisy  speech. -We  found  that  this  estimator is superior to the 
MMSE STSA  estimator  derived  in [ 11 since it results  in  a 
much  lower  residual  noise  level  without  further  affecting  the 
speech  itself. In  fact,  the new  estimator  results  in  a  very  simi- 
lar  enhanced  speech  quality  as  that  obtained  with  the MMSE 
STSA  estimator of [ 11,  which  takes  into  account  the  signal 
presence  uncertainty. 
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