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ABSTRACT

A speech enhancement system which utilizes an
optimal (in the minimum mean square error sense)
short-time spectral amplitude estimetor is described.
The derivation of the optimal estimator is based on
modeling speech es a quasi-periodic signal, and on
applying spectral decomposition. The optimal spectral
amplitude estimator and a recently developed vector
spectral subtraction amplitude estimator, are found to
be nearly equivalent. The optimal spectral amplitude
estimator coincides with a Wiener spectral amplitude
estimator at high signal to noise ratio (SNE) values, and
is found to be superior to it at low SNE values.

The enhanced speech obtained by using the pro-
posed system, is less spectrally distorted, although con-
tains some more residual noise, than the enhanced
speech obtained by using the Wiener spectral amplitude
estimator, in the same system. In addition, it is free of
the 'musical noise" characteristic to the spectral sub-
traction algorithm. Both systems, the proposed one and
spectral subtraction, have approximately the same com-
plexity.

I. INTRODUCTION

In this paper we describe an algorithm for enhanc-
ing speech degraded by statistically independent addi-
tive noise, using only the noise corrupted speech signal.
This algorithm capitalizes on the major importance of
the short-time spectral amplitude, relative to the short-
time phase, in speech perception, and focuses on its
optimal estimation. For reconstructing the enhanced
speech signal, the estimated spectral amplitude is com-
bined with the phese of the degraded speech.

We base the estimation on modeling speech as a
quasi-periodic signal, end apply spectral decomposition.
Thus, to a good approximation, the estimation problem
can be formulated as that of estimating the amplitude of
a sinusoid corrupted by additive noise. The amplitude
estimator derived here is optimal in the minimum mean
square error (m.m.s.e) sense. Interestingly, it was found
that the optimal spectral amplitude estimator, and a
recently developed vector spectral subtraction ampli-
tude estimator [1], are nearly equivalent. In addition, the
optimal spectral amplitude estimator coincides with a
Wiener spectral amplitude estimator, at high signal to
noise ratio (SNE) values, and is found to be superior to it
at low SM? values.

The enhanced speech obtained by using the pro-
posed system, suffers less spectral distortion, although
contains some more residual noise, than the enhanced
speech obtained by using the Wiener spectral amplitude
estimator, in the same system. In addition, it is free of
the "musical noise" characteristic to the spectral sub-
traction algorithm.
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The paper is organized as follows: In Section II we
derive the optimal spectral amplitude estimator, and dis-
cuss its properties. In Section III we describe the imple-
mentation of the optimal spectral amplitude estimator in
a speech enhancement system, and discuss its perfor-
mance. In Section IV we summarize the paper and draw
conclusions.

IL OPTIMAL SHORT- TIME SPECTRAL AMPLITUDE
ESTIMA TOE

In this section we derive the optimal m.m.s.e short-
time spectral amplitude estimator. On the basis of
modeling speech as a quasi-periodic signal, end by apply-
ing spectral decomposition, the estimation problem is
formulated as that of estimating the amplitude of a
sinusoid corrupted by additive noise. Let y(n) denote
the observed signal:

y(n) =A cos(c/n+ça) + d(m) ( i)
and assume the following assumptions: A is a Rayleigh
distributed random variabie (r.v.) with parameter CA;
is a uniformly distributed re. on [ca0—ti, w51-01, where

denotes the center of a frequency band of width 20; çs
is a uniformly distributed r.v. on [0,2ir]; and d is a zero
mean stationary gaussian noise with a given power spec-
tral density S5(W). We assume also that A, if, ço, and
rf(n) are statistically independent.

Spectral decomposition can be efficianily done by
means of the short-time Fourier transform (STFT) [2].
This is equivalent to passing the signal through a bank of
N quadrature demodulators, with identical low pass
filters, and modulation frequencies (in radians) of
c,=2wf/N, 1=0 N—i. Assuming an ideal low pass filter
h(n), with cutoff frequency at 0 radians, and considering
the relevant output (say, from the k-tb quadrature
demodulator), we get the following complex representa-
tion of (U:

Y, =Aexp[j(o,n + çs)] ÷ I3
a= Jexpi)

(2-a)

(2-b)
A

where, Wa = — is a uniformiy distributed r.v. on
[—0,0], and D is the comptex envelope of the noise in
the frequency band centered at w5. lJ is a zero mean
complex gaussian process, whose variance 2a, equals to:

A
2a = EflDI9

It

=JSd(W+Wk)IH(W)2
dw

-n

(3)

where H(c,) is the Fourier transform of the low pass filter
unit sample response h(n).
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The optimal m.m.s.e. amplitude estimator A0t of A,
given the observation (Rn,tn), is:

(4)

0 2n

ffJaf(rn,'dn a,w.çs) f(a,i,cs)dcodcJada
— ii -0 a-

JJJ f(r1 tn a (Jaw) f (a ,coa,w)dwdwada
a S-fl p

where, E'3 denotes the expectation operator;
rn 'i3, a, i.,, and co denote the realizations of the ran-
dom variables R2, t7, A, w,, and co respectively;
f (rn, a, Wa, co) is the conditional probability density
function (PDF) of (&,tn), given A, °a and çô; f(a, , ço)

is the common PDF of A, Wa, and ço. Since the real and
imaginary parts of Dn are zero mean statistically
independent gaussian random variables, and have the
same variance a, f (rntn }a,wa,cc) is given by: Fig. 1. Parametric gain curves, describing GQPL(YA,yfl).

rn —1
(s) It is of interest to note that the gain curvesf(rn6n Ia,wa,coy__—_-9-exW-——5-rne2ira4 2a obtained in the optimal spectral amplitude estimation,

Because A, w., and co are assumed to be statistically and the gain curves obtained in the vector spectral sub-
independent, f(a,wa,co) can be factored into traction amplitude estimation [1], coincide in the shown
f (a)f (coa)f (p), and hence is given by: range. This fact implies that the vector spectral sub-

traction amplitude estimator is optimal in the m.m.s.e.0�a <cc
sense.

—
The asymptotic behavior of A0 at high SNR values

f(a,wa,co) J tionship I,(vn)_34(vn)/avn, and the following approxi-
(i.e., vn-'oa) , is easily obtained by considering the rela-

mation for 4(vn) [3]:
otherwise 4(vn): exp(v)

(9)-

Defining an a-priori SNR, fA by E[A2}/ 24 and an a- We get then from (7)
iAposteriori SNR, 7n by Ig/24 and substituting (5) and A0 i-:Ri-;-';t (10)

(8) into (4), we get (see appendix A):

A0=F(1.5)'\,/-j-exp(-- -)[(1+vn)Ja(—)+vnii(-
Since we finally estimate the spectral component

)}J4 Aexp[j(rt4-ço)] by A gexp(jt), where i is the noisy
phase (see (2-b)), (10' means that at high SNR values,

(7) the estimator of Aexp[j(wan4-co)] approaches the optimal
where, v is defined by: linear (Wiener) estimator. Therefore, in the sequel, (10)

is interpreted as a Wiener spectral amplitude estimator.
(8) The gain function Gw(YA,in), which results from (10), is—

1+72" independent of y. Each of its corresponding gain
P() is the Gamma function (1'(i.s)=-'f/2), i,(') and 'je) curves, is a horizontal line at a level of 20log(y/ 1+7,4).
are the modified Bessel functions of zero and first order, The spectral amplitude estimators given by (7) and
respectively. Note also that since A is a Rayleigh distri- (10), were tested and compared in estimating the ampli-
buted r.v., 7,4=a/4 tude of a complex sinusoid, buried in a complex zero

At given by (7), is seen to be obtained from & by mean white noise. The a-priori SNE ranged from -5 dB
a multiplicative non-linear gain function, which is to 10 dB, and was assumed to be known, The noise vah-

a.., ance 2o',, corresponding to each y value, is assumed to
defined by: GQPt(7A,7fl)ApPt/R. 5t(7A,y) depends on be known as well. An ensemble of 20480 observations,
the a-priori and a-posteriori SNR values, y and in' matched to the signal model in (2), and containing
respectively, and is conveniently described by a set of twenty different realizations of the pair (A,co), was used
parametric gain curves [3,4]. The gain curves which for each a-priori SNR value. The normalized (by the van-
result from (7) are shown in Fig. 1. 'y,—1 in Fig. 1 is inter- ance of A) residual mean square error (MSE), obtained in
preted as the "measured SNR", since m=1?,/ 2a, and j this experiment, is described in Fig. 2. This figure
equals to the length of the signal plus noise resultant demonstrates the superiority of the optimal spectral
vector (see (2)). amplitude estimator, especially at low SNE values, if the

a-priori SNE value and the noise variance are known. OfThe curves in Fig. 1 show an increase in gain as the course it is useless, in this experiment, to use the
a-posteriori SNR in decreases, while keeping the a-priori optimal estimator for 7,4�ldB, or the Wiener estimatorSNR i constant. This is a direct consequence of incor- for 7,4�21B, since the resulting MSR exceeds the van-porating the a-priori SNR in the amplitude estimation ance of A. However, in practice we do not know the
process. For a given 7,4 , which results from specific expected value of A exactly, and therefore we use thevalues of aj and a,, in is proportional to R,,. Therefore, derived estimators for any value of
decreasing 'y means decreasing 1?,,, and an increase of
the gain is expected for a correct estimation of A. The performance shown in Fig. 2 represents the
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best performance one can get from the examined esti-
mators, since and 'y were known exactly. In practtce,

and iA are unknown, and estimates of their values are
used. Therefore, the performance of the examined esti-
mators depends on how well y and especially 'yA are
estimated. This problem is considered further in Section
III.

(o— ptim& nthmtcr
(b)- Winar ntimotot

-ï -i i 3 5 1 1 fl

A-PRIORI SNR lj [d6J
Fig. 2. Performance comparison of the optimal and the

Wiener spectral amplitude estimators.

We noticed in our experiments that the performance
of the vector spectral subtraction amplitude estimator
[1], as measured by a similar experiment, is nearly
equivalent to the performance obtained with the optimal
spectral amplitude estimator, which is shown by line (a)
in Fig. 2. This fact raconflrms our previous conclusion,
concerning the optimality of the vector spectral subtrac-
tion amplitude estimator.

HI. SPEECH ENHAJVC'EMENT SYSTEM DESCRIPTION

The optimal spectral amplitude estimator derived in
Section II, was embedded in a speech enhancement sys-
tem which is described in this section. The noisy speech
to be enhanced is first bandlimited to 0.2-2,2 kHz, and
then sampled at B kHz. Each analysis frame, which con-
tains 2b6 samples of the noisy speech and overlaps the
previous analysis frame by 192 samples, is spectrally
decomposed by means of STFT analysis ['2] using a Ban-
ning window. Each STET samplc is modified by the multi-
plicative gain function GPi(iA ,i), after estimating its
a-priori end a-posteriori SNE values, y and in' respec-
tively. The modified STFT samples are used for synthesiz-
ing the enhanced speech! by using the wall known over-
lap and add method [2]. Since Cwi(iA.in) is a real valued
function, the multiplicative modification of each STFT
sample made by O,g (iA 'in), is equivalent to estimating
its absolute value, and using its noisy phase. In the pro-
posed system, a look-up table which contains discrete
values of the gain function C (iA ,-y,) is used.
G,,g CiA 'in) was calculated for 961 pairs of CiA 'in —1)
values, which equally divide the square region [-15:15,
-iS:i5]dB. It was judged by informal listening, that using
discrete values of the gain function in the above range,
rather than recalculating it for each estimated value of
the pair (iA,ini), appears harmless to the enhanced
speech quality.

A crucial issue for a successful implementation of
the optimal spectral amplitude estimator, is how well can
the a-priori and the a-posteriori SNE values, iA and in'
respectively, be estimated from the noisy data. To esti-
mate iA and in' recall that iAE[A5]/ 2o, and
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A
inRv/20. Since the problem of estimating the noise
variance from non-speech intervals is well treated in the
literature (e.g., in [3]), we will not deal with it here and
asume u, to be known. The problem of estimating EA5,
is the same problem which arises in Wiener filtering,
where the spectrum of the desired signal is assumed to
be a-priori known. Lim & Oppenheim [4] suggested
several solutions to this problem. However, none of these
solutions provided adequate performance when imple-
mented in the proposed system. We found that a
"decision-directed' approach for estimating the
expected value oX A2 is usefuj in the proposed system.
Specifically, let iA() and An denote the estimated
values of iA and A, respectively, in the n-th frbme and a
given frequency kand. The proposed estimator iA() is a
weighted sum of A_1/ 2o and the "measured SNE". That
is,

iA() = aAi/2a,+(1—a)(in---l) (11)
aA/ 2o',j can be considered as the predicted value of
iA()' based on previous estimated values of A. Since
is-2iinhl (follows directly from (2) and the definitions
of iA and in)' (1a)(inl) reflects the contribution of
the present observation to the estimate of iA(). Based
on informal listening, we recommend using a0.97 in
(ii). Although 1—a equals only 0.03, the term
(i—a)('y—l) in (11) was found to be important, and con-
tributes to the crispness of the enhanced speech.

It is worthwhile to note that using 0 in (ii), (i.e.,
'TA (n )in —1) and the gain function 0opi CiA 'in), results in
a single gain curve, which is very close to the gain curve
shown in i] for the spectral subtraction algorithm.
These two gain curves are shown in Fig. 3.

MEASURED SNR -I) [dBJ
-IS -10 -5 9 5 !0 15

Fig. 3. (a) - Gain function Cwt(in1,yn).
(b) - Gain function corresponding to spectral
subtraction.

The speech enhancement system described above,
was tested in enhancing speech degraded by white noise,
with a-priori SNE values of -5, 0, and S dB. The resulting
enhanced speech was compared with the enhanced
speech obtained by using the Wiener spectral amplitude,
instead of the optimal spectral amplitude, in the same
system. Informal hstsning indicated that using the
Wiener estimator resulted in a significant reduction of
the noise. However, this was accompanied with a notine-
able spectral distortion in the enhanced signal, which
became quite severe at low SNE values (0 dB and below).
With the optimal spectral amplitude estimator, some
residual colorless noise remains, but the enhanced
speech is less distorted, especially at low SNE values.

Table I presents a performance comparison of the
examined algorithms, by means of a spectral log-
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segmental SNE measure. The spectral log-segmental SNE
values measured for the input noisy speech are also
included. This measure is the mean (in dB) STE value,
based on calculating the SNR in critical bands of each
analyzed frame. The results shown in Table I clearly
demonstrate the superiority of the optimal estimator.
However, they seem to contradict our previous conclu-
sion, concerning the coinciding of the Wiener and the
optimal spectral amplitude estimators at high SNE
values. But, we recall that this happened when lÀ was
known and not estimated as it is done here.

total
SNR[dB]

5

noisy Wiener optimal
soeech

9.39 12.42 15.36
0 5.27 j 9.31 12.02

-5 2.75 L.,83 889

where,
A

i5mod2ur—(caart+ca)ntod2yr (A.2)

ll-T = + —1 (A.3)C 0A ad

The inner integral in (Al) equals the modified Bessel
function of zer,p order, I, (as-,/ aä)' and is independent of
w. Therefore, At is given by:

5 as'a nj a exp(— T)Io(r)2a 0
= ——— —----——— (A.4)

Jaerp(— E_.)J(.TL)cja2a ad

a
By defining u7 zra2/ a,, and multiplying both numera-
tor and denominator of (A.4) by exp (—u/ 202)7 a, we
get:

a2+u au
j —j-exp(— —--9---)I0(—8---)da

= —--—-—-—--—--—-——--——----—--— (AS)a a1-u au1,f —-exp(— —---)4(—q--)da2cr2 a

The integrand in the denominator of (AS) is the PDF of a
Rician distributed r.v. with parameters (u,,g2). There-
fore, the denominator of (AS) equals one, and the
numerator of (AS) equals the expected value of that r.v..
The k-th moment of such a Rician r.v. is given by [s]:
(2a2)''2F(1'i-Ic/2)M(—k/2; 1; —u/2u2), where M(a; : x)
is the confluent hypergeometric function. Using this
formula with k=1, and lÀ and y, which were defined in
Section II, we get:

=r(i.s)J1 ---M(-0.5:l: -
1T(L—7)R (A.6)

as given by (7) is finally obtained from (A.6) by using
the following relationship [51:
M('-O.S:l:--z) = ezp(—x/2)[(1+z)I0(x/2)+x11(x/2)](A.7)

ACKNOWLEDGEMENT

The authors are indebted to Prof. I. Bar-David for
stimulating the derivation of the optimal estimator.

REFERENCES

[1) Y. Ephraim and D. Malah, "Speech Enhancement
Using Vector Spectral Subtraction Amplitude Esti-
mation", Proc. 13th Convention of Eleo. Electron.
Eng. in Israel, Tel-Aviv, Mar. 1902,

[21 ME. Portnoff, "Time yrequency Representation of
Digital Signals and Systems Based on Short Time
Fourier Analysis", IEEE Trans. Aooust., Speech, Sig-
nal Proc., Vol. ASSP-28, pp. 55-69, Feb. 1980.

[3J RI. McAulay and ML. Malpass, "Speech Enhance-
ment Using a Soft-Decision Noise Suppression
Filter", IEEE Trans. Acoust., Speech, Signal Proc.,
Vol. ASSP-28, Pp. 137-145, Apr. 1960.

[4] J.S. Lim and AY. Oppenheim, "Enhancement and
Bandwidth Compression of Noisy Speech", Proc.
IEEE, Vol. 67, pp. 1586-1604, Dec. 1979.

[s] SO. Rice, "Statistical Properties of a Sinewave Plus
Random Noise", Bell System Tech. 1., pp. 109-157,
Jan. 1948.

Table I: Performanoe comparison by a spectral
log-segmental SNE in dB.

A preliminary performance comparison of the pro-
posed algorithm with the spectral subtraction algorithm,
indicated that with the proposed system the enhanced
speech is free of the "musical noise" characteristic to
the spectral subtraction, while, aside of the different
nature of the residual noise, the enhanced speech
sounds approximately the same. A quantitative com-
parison of these two algorithms will be performed after
obtaining an optimal estimator for the a-priori SNE 7A
This problem is now under study. Nevertheless, we rem-
ind the reader that it is possible in the proposed system
to obtain the performance of the spectral subtraction
algorithm, by letting a=0 in (11).

IV. SUMMARY AND CONCLUSIONS

A speech enhancement system which utilizes an
optimal m.m.s .e. short-time spectral amplitude estimator
is described. The derivation of the optimal estimator is
based on modeling speech as a quasi-periodic signal and
on applying spectral decomposition. The optimal spectral
amplitude estimator coincides with the Wiener spectral
amphtude estimator at high SNE values, and is found to
be superior to it at low STE values. It was also noted that
the optimal spectral amplitude estimator and a recently
developed vector spectral subtraction amplitude estima-
tor [1], are nearly equivalent.

The enhanced speech obtained by using the pro-
posed system suffers less spectral distortion, although
contains some more residual noise, than the enhanced
speech obtained by using the Wiener spectral amplitude
estimator, in the same system. In addition, it is free of
the "musical noise" characteristic to the spectral sub-
traction algorithm.

We believe that the potential of the optimal spectral
amplitude estimator proposed here, was not yet fully
exploited in this work, since better results can certainly
be obtained if the estimation of the a-priori STE will be
improved. This key issue is now being investigated.

ARI-ENDIXA.

In this appendix we derive the optimal amplitude
estimator given by (7). Substituting (5) and (6) into (4),
we get:

—
faezp (_.E..)f j-fexp (-cosc (p)) -ci coAria
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fasxp(— 2
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