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ABSTRACT 
A maximum  a-posteriori  approach  for  enhancing  speech  sig- 

nals which have  been  degraded by statistically independent  additive 
noise is proposed. The approach is based upon statistical  modeling 
of the clean speech  signal  and the noise process using long training 
sequences from the two processes.  Hidden Markov models 
(HM”s) with mixtures  of  Gaussian  autoregressive ( A R )  output 
probability distributions are used to model  the  clean  speech  signal. 
A low  order Gaussian AR model is used for  the wide-band Gaus- 
sian  noise  considered  here. The parameter  set of the HMM is 
estimated using the  Baum or the EM (estimation-maximization) 
algorithm. The enhancement of the noisy speech is done by means 
of reestimation of the clean speech waveform using the EM algo- 
rithm. An approximate  improvement of 4.0-6.0 dB in signal to 
noise  ratio (SNR) is achieved at 10 dB input SNR. 

I. Introduction 
In [I], a model  based  approach  for  enhancing  speech signals 

degraded by statistically  independent  additive  noise was proposed. 
In this approach  the  unknown  probability  distributions (PD’s) of 
the  speech signal and the  noise process are first  estimated from 
long training sequences from the two processes, and then estima- 
tion of  the clean speech  signal is applied using the  estimated  statis- 
tics. Hidden  Markov  models ( H M ” s )  were  used  for  the  clean 
speech,  and a low  order  Gaussian  autoregressive (AR) model was 
used for  the  noise  process. The noise  process  considered in [l] was 
a wide-band  Gaussian  noise. The parameter  set of the HMM for the 
speech  signal  was  estimated  using the segmental k-means 
approach,  which is an approximate  maximum  likelihood ( M L )  
modeling  approach. The estimation of the  clean  speech  signal was 
done using  an  approximate  maximum  a-posteriori ( M A P )  estima- 
tion approach, in which  the  joint probability density  function (pdf) 
of the state  sequence,  the  clean  signal,  and  the noisy speech is 
locally  maximized over all  state  sequences  and clean signals. 

In this paper we  examine ML hidden Markov modeling of the 
clean speech and exucr MAP estimation of the clean speech  given 
the noisy speech. The modeling is done using the well known 
Baum algorithm, and enhancement is performed  using the EM 
(estimation-maximization)  algorithm [2], [3]. The MAP algorithm 
locally maximizes  the  conditional pdf of the clean  speech  given the 
noisy speech. The algorithm starts from the  given  noisy speech and 
generates a sequence  of  speech  sample  functions with non- 
decreasing  likelihood  values by maximizing in  each iteration an 
appropriately  defined  auxiliary  function. The enhancement  algo- 
rithm  developed  here is examined  and  compared with the approxi- 
mate MAP approach of [ 11. 

11. Problem  Formulation 

A .  HMM’s for Clean  Speech 
L e t  pk,  be the pdf of an H” for the clean speech  signal, 

where As denotes  the  parameter  set of the  model. We consider 
HM”s with M states and mixtures of L Gaussian AR output 
processes at  each state. Let y4{yf, r=O ,-., T } .  y 1 e R K ,  be a 
sequence of K-dimensional vectors which represent  the  output 
from the model.  Let x ~ ( x , ,  r=O ;-, T } ,  X,E 61 :-, M } ,  be a 
sequence  of  states  corresponding  to y. L e t  h={h, ,  r = O  ;-, T ) ,  
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h , ~  (1  ;... L } ,  be a sequence of mixture  components  corresponding 
to ( x , y ) .  The pdf p ;i, is given by 

P k , ( Y )  = CCPk,(x,h.Y) 
r h  

r h  

where is the probability of the  sequence of states x ,  
pk,(h I x )  is the  probability of the sequence  of  mixture  components 
h given the  sequence of states x, and p r , @  I h , x )  is the pdf of the 
output  sequence y given { x .  h } .  The probability p&) is given by 

where denotes the transition probability  from  state x, - ,  at 
time r - 1  to state x ,  at time t ,  and a x ~ , x , ~ r o  denotes the probability 
of the initial state x o .  For p;c,(h I x ) ,  and p k , ( y  I h , x ) ,  we make  the 
following  standard  assumptions: 

and 
T T 

f = a  1 4  
pa,@ I h.x)  = n ~ k , ( Y t  I M t )  4 nbCYt I ht.xt). (4) 

where ch, 1 is the  probability of choosing  the  mixture h, given that 
the  process is in state xf, and b(y, I h r , x f )  is the pdf of the output 
vector  yr  given ( h f , x f ) .  For zero mean N,-th order  Gaussian AR 
output  processes, we have 

where # denotes  vector  transpose, S,I p=a;l p(A:l pA,l p)- ’ ,  ~ $ 1  p 
is the  variance of the innovation  process of the AR source, and 
A,(  p is a KxK lower triangular  Toeplitz matrix in which the  first 
Ns+l elements of the first column  constitute the coefficients of the 
AR process, g,l p6(g,lp(O), g,l p(1) :-, g,l p(N,)) .  g,1 p(Ok1 .  

The modeling problem is that of estimating the parameter  set 
h,=(~,a,c,S), where ~ ! { ~ p l ,  o k { a , p } ,  c i { f V 1  p l .  and S6{Sy l  p } ,  
for a,k1 ;-, M and ~1 ;-. L, given a training sequence y from 
the speech signal. An ML estimate of the  parameter  set A, is 
obtained  from 

t-y In P k , c v )  = y x  In C C P k * ( x , h , Y ) ,  (6) 
r h  

and this maximization is locally  performed by the  Baum  reestima- 
tion algorithm. The segmental k- means  algorithm for estimating 
the  parameter set of the model  used in [I], assumes that the double 
sum in (6)  is dominated by a unique  sequence of states and mixture 
components.  Hence, the parameter set of the model is estimated 
along  with the most likely sequence  of  states and mixture com- 
ponents by 

The ML estimation  procedure is described in Section III-A. 

E .  AR Model for the  Noise  Process 
L e t  p $  be the pdf of the  model for the noise  process,  where 

h, is the  parameter  set of the model.  For  the  Gaussian  noise  with a 
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theoretically flat power spectral density considered in this paper, 
we assume that 

P L @ )  = n P L W  
T 

r d  

where v${vr, t=O ;-, T}, v , eRK,  is a sequence of T+l  
K-dimensional output vectors, and V is an N,-th order AR covari- 
ance matrix. V=(r3(A:AA,)-', where a? and A, are defmed similarly 
to p and A,I p,  respectively. A, is a KxK lower triangular Toe- 
plitz matrix in which the fmt  Nv+l elements of the fmt column 
constitute  the  coefficients of the AR process, 
g,k@v(O). gv(1) *.... g"(N"))* g,(O+l. 

The noise modeling problem is that of finding the parameter 
set I. , ,&(o3,gV(m), m = l  :-, N , )  given a training sequence v from 
the  noise process. An ML estimate of is obtained from 

max h P L ( V ) *  L (9 ) 

and this maximization is equivalent to AR modeling of the centroid 
covariance matrix of the  noise training sequence. The estimation of 
the  noise model is discussed in Section III-B. 

C .  Speech  Enhancement  Problem 
Given the parameter set As of an H" for  the clean speech 

signal, the parameter set A+ for  the AR model  for the noise process, 
and a sequence of K-dimensional noisy vectors z i { z r ,  r=O ;-, T}, 
zrryf+v!, the enhancement problem considered here is that of 
estimatlng the sequence y of clean  speech  vectors by the MAP esti- 
mation approach as follows. 

where 

Pk,,;1(YS) = Pk,(Y)Pk"(Z I Y )  = Pk,(Y)PL,(z-Y)* (11) 
due to the fact that the  noise is additive and statistically indepen- 
dent of the  signal,  and 

P L , L , ( L ~ . Y J )  = P L ( Z  I x.h.y)px,(x.h.y) 

= P L ( Z  I y)pk , (x ,h ,y )  

= PL(z-Y)Pk,(x.h?Y) (1 2) 
due to the fact that given y ,  z d (x ,h )  are statistically indepen- 
dent. Note that since p k , ~ ( z ) = r p k , k ( Y , z ) d y  is independent of y ,  
the problem (10)  is equivalent to 

m," In Pk.L,(Y I z). (13) 

where pk,,;1(Y I z ) = p i , k  @ , z ) / p k , ~  ( 2 ) .  The approximate MAP 
enhancement procedure developed in [ l ]  assumes that the  double 
sum in (10) is dominated by a unique sequence of states and mix- 
ture components.  Hence, the sequence of clean speech vectors is 
estimated along with the most likely sequence of states and mixture 
components by 

max h pa,$(x ,h ,y , z ) .  (14) 
&h.y 

Similarly to (13). the problem in (14) is equivalent to 
max In pk,;l(x,h,y I z ) .  (15) 
&h,y 

The M A P  enhancement procedure (13)  is  described in Section N. 

111. Training of Speech  and  Noise  Models 
The formulation of the  speech  modeling  problem as given in 

Section Il considers  the estimation of the  parameter set of the 
model  from a single training sequence  of speech. In this paper. 
however,  multiple training sequences which are assumed to be sta- 
tistically independent  have been used. Hence, we provide the algo- 
rithm for the more general case of  modeling  using N maining 
sequences of speech. Let 4 { Y ~ , ~ ,  r=O ;-, T n )  be a sequence of 
Tn+l K-dimensional vectors,  and  let y 4 {&*. n = l  ;-. N }  be the 
set of N such sequences.  Let xrn &{xr, , , ,  t=O .-*, T,,} and 

A. Bawn reestimation  algorithm 
The likelihood function to  be maximized is given by 

N 
~ P L , ( Y )  = Chpa.,cYr.). (16) 

Local maximization of (16) can be achieved by the Baum reestima- 
tion algorithm. This algorithm generates a sequence of H M " s  
with non-decreasing likelihood values  (16). Each iteration of the 
Baum  algorithm starts with an old  set of parameters, say As, and 
estimates a new set of parameters, say Xi, by maximizing the fol- 
lowing auxiliary function, 

n = l  

N 

$(AS')= zzP?. , (xT, ,hr .  I Yr . )hpk , , (x r" ,hr . ,Yr . )  (17) 
n=1 XT. 4" 

M 
over A:, subject to the constraints x~H, C z i = 1 ,  

a&p200, C a & p = l ,  c i l p Z 0 ,  Cc!,lp=l. and AR covariance matrices 

Si1 p ,  for a. P =  1 ;-, M and y= 1 ;-, L. The algorithm is stopped 
when a convergence  criterion is satisfied,  e.&, when the difference 
of the values of the likelihood function  (16) in two  consecutive 
iterations is smaller than or equal to a given threshold. 

The above constrained maximization of the auxiliary function 
results in the  following reestimation formulas. 

M L B=i  

p=I FI 

is the conditional probability, under p k , ,  of being in state a at time 
t-1, in state P at time f ,  and choosing  mixture  component y while 
in state P, given  the n-th utterance of the speech training 
sequence, and 

(KrST,, (23) 
is the conditional probability, under p k , .  of being in state p at t ime 
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f and choosing  mixture  component y while in state p, given the 
n-th utterance  of the speech training sequence. The reestimation 
formulas (19)-(21) are valid provided that the terms in the denomi- 
nators of these  expressions are greater  than zero. If any of these 
conditions is not  satisfied, then the affected reestimated parameter 
can be arbitrarily  chosen up to the constraints  associated with the 
problem (17). without  affecting the likelihood value. For example, 
if the denominator of (19) equals  zero  for a particular Q, then any 
u&p. fk=l ,-, M, which satisfy Ca&p=l can be chosen. 

M 

&I 

The probability measures qrn(a, P. y) and qr,,,(P, y) can be 
efficiently calculated using the forward-backward  formulas as fol- 
lows. 

CFt-l,n(a, 6)  B t , n ( P ,  Y) an@ cy1 p b 6 t . n  I y,P) 
<=I 

L 

qt,.(a, PYY) = M L 

C Ft-l,n(av W t , n ( P ,  Y) aapcyl p b V , n  I YVP) 
S&l5r-I 

O<tST,, (24) 

where 

B t , n ( P *  Y) = CBt+ l .n (V ,  P) a p v  cp IvbCvr+l,n I P* 
M L  

v=l p=l 

OlrlT,.  (27) 

The minimization  problem in (21) has a unique  solution pro- 
vided that R;I p is positive definite. The minimizing AR parameter 
set can be found by AR modeling of R;I p using a variant of the 
covariance method of linear prediction. An approximate solution 
can be obtained by the autocorrelation method of linear prediction 
if end-block effects are neglected. More specifically, if the K-th 
order vector A , I  is considered as the convolution result of y,," 
with g. ,  b .  The two vectors  are identical in their first K elements, 
but the vector which results  from  convolution of y,,,, with g,1 p has 
N,-1 additional  elements. This approximation was found  reason- 
able  for the values of K=128 and Ns=10 used here. In this case, it 
can be shown by substituting R; 1 and S, 1 P+ into (21) that the AR 
parameter set is obtained from AR modeling of the  autocorrelation 
function given by 

N T. 

n=lrl i )  
' ; ,p . (m)  4 T" (28) 

c C41."(P? Y) 
n = l f = 0  

where 
1 K - l m l - l  

rf.,,(m) = - Yt,n(k)yt,n(k+ I m I )* m=-N, ,-., N , .  
k=Q 

The likelihood  function (16), which has to be evaluated in 
checking  convergence of the Baum algorithm, can be efficiently 
calculated similarly to the  calculation of the  denominator of (23) 
using the forward-backward  formulas as  is shown in (25). 

B .  Noise  model  estimation 
The estimation problem  of the parameter set of the AR model 

for the  noise process results from substituting (8) into (9). This 
problem is equivalent to 

min{tr R,V-'-ln det V I ] ,  (29) 
V 

where 

This problem is similar  to that associated with the  estimation  of  the 
parameter  set of each AR output  process of the HMM. Approxi- 
mate  solution is obtained from AR modeling of the autocorrelation 
function given by 

m=-N, ;-, N,. (30) 
IV. EM Speech  Enhancement Algorithm 

In this section we apply the EM algorithm  for MAP estima- 
tion of the  clean  speech  signal  given  the noisy speech. Let z be a 
given  sequence of T+1 K-dimensional vectors of noisy speech. 

current  estimate of the  speech  signal.  Similarly, let y(k+l) be a 
new estimate of the  speech  signal.  Using Jensen's inequality and 
the  fact that given y, ( x , h )  and i are statistically independent, we 
have that 

Let h 4 & , ~ ) .  Let y(k)$(y,(k), r=o ;-, T I ,  Y ! ( ~ ) E R ~ ,  be a 

hPkOl(k+l) I 2 )  - h P k C y ( k )  I z) 

where 

@(y(k+1))4Cpx(x9h I Y(k))hpr(xAy(k+l) I z). (32) 

Hence,  maximization of 4t(y(k+l)) over y(k+l)  results in 
l n p k ( y ( k + l )  I z);rlnpk(y(k) I z )  where equality holds if and only 
if y(k+l)CY(k) almost  everywhere p k ( x , h  I y(k)). This standard 
argument of  the EM algorithm implies that a MAP estimate of the 
speech waveform can be achieved by reestimation of the speech 
waveform through the maximization of the auxiliary function 

On substituting (1)-(5), (8), and (12) into (32), and setting the 
gradient of $(y(k+l)) with respect to yr(k+l) to zero, we obtain the 
following  reestimation formula for the clean speech signal. 

x. h 

4Cv(k+l)). 

r 
Ls. Y 

where qf(p,y I y(k)) is defined similarly to (23) with yTn being 
replaced by y(k), and H y  p is a Wiener  filter  for  the  output Gaus- 
sian  process from state and mixture y and the  Gaussian  noise 
process (8). 

The probability  measure q&y I y(k)) is calculated by (25) using 
the forward-backward  formulas (26)-(27). The estimate y,(k+l) can 
be efficiently  implemented in the frequency  domain similarly to the 
implementation of the  approximate MAP approach in [l]. The rees- 
timation algorithm  (33) is initialized  from the noisy speech, i.e., 
y(O)=z, and  the  algorithm is stopped when a convergence  criterion 
similar  to that used in Section I1 is satisfied. 

V. Experimental  Results 
The speech  enhancement  approach  described in this paper was 

examined in enhancing  speech  signals which have  been  degraded 
by statistically independent additive  Gaussian  white  noise at signal 
to noise ratio (SNR) values of 5 ,  10, 15, and 20 dB.  The  two train- 
ing procedures for  designing the clean  speech  model, namely the 
Baum and the segmental k-means, were  examined and compared. 
Similarly, the two enhancement  procedures,  the  approximate MAP 
and the  exact MAP (33) approaches,  were  applied and compared. 
Training was performed using 100 sentences of clean  conversa- 
tional speech  spoken by 10 speakers through a telephone  handset. 
Enhancement tests were  performed on 8 sentences  spoken by 4 
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speakers and recorded in a manner similar to that of the training 
set. The speech material and  the speakers used for training were 
different from those used for testing. The model for the noise pro- 
cess was estimated direcrly from the noisy speech, using an initial 
intervzl whose length was about 10% of the length of the utterance 
to be enhanced,  and in which speech was not present. 

In all of our  experiments, the dimension of the speech vectors 
was K=128 at a sampling rate of 8kHz. Training was done using 
non-overlapped  frames, while enhancement was performed using 
frames of speech which overlapped each other by 64 samples. A 
Hanning analysis window was applied to  the speech  frames during 
training and  enhancement. The synthesis of the enhanced signal 
from the individually processed frames was done using the standard 
short time Fourier transform  overlap and add technique. The order 
of each AR output process of the HMM was set to  N,=lO, which is 
a commonly used value in linear predictive analysis of speech  sig- 
nals. The order of the AR model for the noise process was set to 
N,=4, since the noise examined here has a theoretically flat  power 
spectral  density. The iterative algorithms for designing the models, 
and for performing the  enhancement, were terminated whenever the 
difference in likelihood values at two  consecutive  iterations,  nor- 
malized by the older likelihood value, was less than or equal to 

The number of states M ,  and mixture components  for each 
state L ,  were experimentally determined by examining the enhance- 
ment results obtained using different values of ( M , L )  at input S N R  
of 10  dB. Table I shows the minimum and maximum S N R  values 
achieved in this experiment. The  case VQ-AMAP represents 
enhancement results obtained using H ” ’ s  designed by the stan- 
dard AR model vector quantization approach, and the approximate 
M A P  enhancement approach  described in [l] .  The  VQ model was 
used for initializing the segmental k-means algorithm, and the seg- 
mental k-means model was used to initialize the Baum algorithm. 
The case SEG-AMAP represents  enhancement  results obtained 
using segmental k-means training and  approximate MAP enhance- 
ment. The case ML-MAP represents enhancement results obtained 
using ML Baum training and MAP enhancement (33) approaches. 
Finally, the cases VQ-CLN and SEG-CLN represent  some theoret- 
ical performance bounds within the proposed framework for speech 
enhancement. Here, the  clean  speech was used for  estimating  the 
most likely sequence of states and mixture components,  and  the 
noisy speech was filtered by a time varying Wiener filter. At each 
time instant, the filter was constructed from the spectrum of the 
AR process associated with the estimated state and mixture  com- 
ponent,  and the spectrum of the AR model of the noise process. In 
the VQ-CLN case, AR model vector quantization was applied  to 
the  clean speech on a frame-by-frame basis using the M x L  VQ 
designed  for initializing the segmental k-means algorithm. In t h ~  
SEG-CLN case, Viterbi decoding was applied to the clean  speech 
using the model designed by the segmental k-means algorithm. 
The major difference between the two cases is that the VQ-CLN 
case is memoryless while the SEG-CLN version incorporates the 
Markovian memory. 

Table I shows that the three proposed speech enhancement 
schemes, V Q - A ” ,   S E G - A ” ,  and ML-MAP, provide very 

Furthermore, this S N R  improvement is about O S d B  lower than that 
similar S N R  improvement for  all of the examined values of ( M , L ) .  

obtained in the VQ-CLN and SEG-CLN cases which use the clean 
speech  for performing the decoding. The S N R  improvement 
obtained in  the latter two cases is essentially identical. Careful 
informal listening tests indicate that for a given ( M , L ) ,  the three 
enhancement  schemes, VQ-AMAP,  SEG-AMAP, and ML -MAP, 
provide very similar enhanced  speech  quality. In some  cases,  how- 
ever,  the ML-MAP approach provided slightly better results than 
the other two procedures. The best enhancement results  were 
obtained using the five-state five-mixture model. For this  case,  the 
enhanced  speech has almost no residual noise, it is reasonably 

enhanced speech obtained using M=8,L=4 or  M=16,L=8.  Those 
intelligible,  and it contains  fewer gross estimation errors than the 

mixture  components at 10 dB input SNR. 
Table I: Enhancement  results  for different number of states and 

gross estmatlon errors are due to decoding  errors which result in 

VQ-CLN and SEG-CLN sounds identical, a fact which implies on 
an incorrect filter selection. The enhanced  speech  corresponding  to 

the  unimportance of the Markovian memory in decoding the  speech 
signal, given rhe clean  speech, in this application. The differences 
between the best enhanced speech  signals and the speech  signals 
obtained in the VQ-CLN or SEG-CLN cases,  are generally small. 
In both  cases, the input noise was effectively removed. The speech 
obtained using VQ -CLN is somewhat crisper and somewhat noisier 

SEG -A”, or ML -MAP. 
than the enhanced signals obtained using either of VQ-AMAP, 

Table II focuses on the ML-MAP approach with the five- 
state five-mixture model, and  shows minimum and maximum 
values of S N R  of the enhanced  speech  obtained at values of dif- 
ferent input SNR. The minimum  and maximum number of itera- 

comparison with the theoretical bounds obtained in the VQ-CLN 
tions used in each case  is also shown. The  Table  also provides a 

case. 
Table n: Minimum and maximum S N R  values obtained by using 
the ML -MAP approach with M=L=5.  

Informal listening to the enhanced speech signals indicates that at 5 
dB input S N R  the  enhancement was effective  only for some of the 
sentences, while for the other sentences it introduced some notice- 
able distortions. At the higher input S N R  values of 15 and 20 dB, 
very good  enhanced speech quality was obtained.  The noise was 
completely  removed and the speech was minimally distorted. The 
crispness  and naturalness of the original speech were well 
preserved. 

VI. Comments 

which have been degraded by statistically independent additive 
We proposed a new approach  for  enhancing speech signals 

noise. The approach  capitalizes  on  statistical modeling of  the clean 
speech and the  noise process using long training sequences from 
the two processes. Given the estimated statistics of the speech and 

and implemented using the EM algorithm. This approach proved 
the noise  processes, a MAP estimation  approach was developed 

especially useful for enhancing noisy speech with S N R  greater than 
or equal to 10 dB. 

We opt  for H M ” s  due to their general acceptability as reli- 
able models for  speech signals in the speech recognition commun- 

ment applications, is for simultaneous enhancement of the entire 
ity. The most natural way to use these models in speech enhance- 

utterance of noisy speech. This, however, is not the only way the 
proposed approach can be implemented, and a frame-by-frame 
enhancement  im  lementation is possible, for example, by consider- 
ing  max,pk(y, pz,). This frame-by-frame  version of the MAP 
enhancement algorithm can also be efficiently implemented using 

The estimate  obtained in simultaneous enhancement of all  the 
slightly different  forward-backward  formulas than those used here. 

frames in the noisy input utterance is usually more accurate than 
that obtained on a frame-by-frame basis, since  the number of noisy 
speech sam les upon which the estimation is based is larger. Since 
this is the F mt paper on the subject, our goal was to establish a 
benchmark on the performance of the proposed approach. Hence, 
we focused  on  the simultaneous enhancement  of  all the frames in 
each given noisy input utterance. 
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