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Speech  Enhancement  Using a- Minimum Mean- 
Square  Error  Short-Time  Spectral 

Amplitude  Estimator 

Absstroct-This paper  focuses on  the class of speech  enhancement sys- 
tems which capitalize  on the major  importance of the short-time  spec- 
tral amplitude (STSA) of the speech signal in  its perception. A system 
which utilizes  a  minimum  mean-square  error (MMSE) STSA estimator is 
proposed and then  compared with other widely used systems which are 
based on Wiener filtering and  the “spectral  subtraction” algorithm. 

In this  paper we derive the MMSE STSA estimator, based on modeling 
speech and noise spectral  components as statistically  independent 
Gaussian random variables. We analyze the performance of the  proposed 
STSA estimator and compare  it  with  a STSA estimator derived from 
the Wiener estimator. We also examine  the MMSE STSA estimator 
under  uncertainty of  signal presence in the noisy observations. 

In constructing the enhanced signal, the MMSE STSA estimator  is 
combined with the complex  exponential of the noisy phase. It is shown 
here that  the  latter is the MMSE estimator of the complex  exponential 
of the original phase, which does not  affect  the STSA estimation. 

The  proposed  approach  results in a  significant  reduction of the noise, 
and provides  enhanced speech with colorless residual noise. The com- 
plexity of the  proposed  algorithm  is  approximately that of other sys- 
tems  in the discussed class. 

T 
I. INTRODUCTION 

HE problem of enhancing speech degraded by uncorrelated 
additive noise, when the noisy speech alone is available, 

has recently received much  attention. This is due to the many 
potential applications a successful speech enhancement system 
can have, and because of the available technology which en- 
ables the  implementation of such intricate algorithms. A com- 
prehensive  review  of the various speech enhancement systems 
which emerged in recent years, and their classification accord- 
ing to the aspects of speech production and perception which 
they capitalize on, can be found in [ 11 . 

We focus here on the class of speech enhancement systems 
which capitalize on  the major importance of the short-time 
spectral amplitude (STSA) of the speech signal  in its perception 
[ l ]  , [2]. In these systems the STSA of the speech signal  is 
estimated, and combined with  the  short-time phase of the 
degraded speech, for constructing the enhanced signal. The 
“spectral subtraction” algorithm and Wiener filtering are well- 
known examples [l] , [3]. In the “spectral subtraction” 
algorithm, the STSA is estimated as the square root of the 
maximum likelihood (ML) estimator of each signal spectral 
component variance [3] . In systems which are  based on 
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Wiener filtering, the STSA estimator is obtained as the modulus 
of the optimal minimum mean-square error (MMSE) estimator 
of each signal spectral component [l] , 131. These two STSA 
estimators were derived under Gaussian assumption. 

Since the “spectral subtraction” STSA estimator is  derived 
from an  optimal (in the ML sense) variance estimator, and the 
Wiener  STSA estimator is derived from the optimal MMSE 
signal spectral estimator, both are not optimal spectral  ampli- 
tude estimators under the assumed statistical model and cri- 
terion. This observation led us to look for  an  optimal STSA 
estimator which is  derived directly from  the noisy observations. 
We concentrate here on the derivation of an MMSE STSA esti- 
mator, and on its application in a speech enhancement system. 

The STSA estimation problem formulated here is that of 
estimating the modulus of each complex Fourier expansion 
coefficient’ of the speech signal in a given analysis frame from 
the noisy speech in that frame. This formulation is motivated 
by  the fact  that  the Fourier expansion coefficients of  a given 
signal  segment  are  samples of its Fourier transform,  and by 
the close relation between the Fourier series expansion and the 
discrete Fourier transform. The latter relation enables an ef- 
ficient implementation of the resulting algorithm by utilizing 
the FFT algorithm. 

To derive the MMSE STSA estimator,  the a priori probability 
distribution of the speech and noise Fourier expansion coef- 
ficients should be known. Since in practice they are unknown, 
one can think of measuring each probability distribution or, 
alternatively, assume a reasonable statistical model. 

In the discussed problem, the speech and possibly also the 
noise are neither stationary nor ergodic processes.  This fact 
excludes the convenient possibility of obtaining the above 
probability distributions by examining the long time behavior 
of each process. Hence, the  only way which can be used  is 
to examine independent sample functions belonging to the 
ensemble of each process, e.g., for  the speech process these 
sample functions can  be obtained from different speakers. 
However,  since the probability distributions we are dealing 
with are time-varying (due to the  nonstationarity of  the pro- 
cesses), their measurement and characterization by the above 
way is complicated, and the  entire procedure seems to be 
impracticable. 

For the above reasons, a statistical model is used here. This 
model utilizes asymptotic statistical properties  of the Fourier 
expansion coefficients (see, e.g., [ 5 ] ) .  Specifically, we  assume 

‘The complex  Fourier  expansion  coefficients are also referred  here as 
spectral  components. 
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that  the Fourier expansion Coefficients of each process can  be 
modeled as statistically independent Gaussian random vari- 
ables.  The mean of each coefficient is  assumed to be zero, 
since the processes  involved here are assumed to have zero 
mean. The variance of each speech Fourier expansion coeffi- 
cient is time-varying, due to speech nonstationarity. 

This Gaussian statistical model is motivated by  the  central 
limit theorem, as each Fourier expansion coefficient is, after 
all, a weighted sum (or integral) of random variables resulting 
from the process samples.  The fact  that  a central limit theo- 
rem exists (under mild conditions) also for strongly mixing 
processes  (i.e., in which sufficiently separated samples  are 
weakly dependent) [4] , [5] encourages the use of the Gaussian 
model in the discussed problem. 

The statistical independence assumption in the Gaussian 
model is actually equivalent to the assumption that  the Fourier 
expansion coefficients are uncorrelated. This latter assumption 
is commonly justified by the fact that the normalized correla- 
tion between different Fourier expansion coefficients ap- 
proaches zero as the analysis frame length approaches infinity 

In our problem, the analysis frame length T cannot be too 
large due to the quasi-stationarity of the speech signal. Its 
typical value is 20-40 ms. This may cause the Fourier expan- 
sion coefficients to be correlated to a  certain degree. Never- 
theless, we continue  with  this statistical independence assump- 
tion in order to simplify the resulting algorithm. The case of 
statistically dependent expansion coefficients is now under 
investigation. In practice, an appropriate window (e.g., 
Hanning)  is applied to the noisy process, which reduces the 
correlation between widely separated spectral components,  at 
the expense of increasing the correlation between adjacent 
spectral components. This is a consequence of  the wider  main 
lobe  but lower sidelobes of a window function,  in comparison 
to the rectangular window. 

It is worthwhile noting that several efforts have been made 
in  the past for measuring the probability distribution of a speech 
spectral component.  It  turns  out  that  the answer to the ques- 
tion of what is the correct distribution is controversial, since 
different investigators arrived at different distributions. For 
example, Zelinski and Noll [7], [8] observed that  a gain nor- 
malized  cosine transform coefficient (which is  closely related 
to the real part of the Fourier transform coefficient) is approxi- 
mately Gaussian distributed. On the  other  hand, Porter and 
Boll [9] claim that  the amplitude of a gain normalized Fourier 
transform coefficient is  gamma-like distributed. However,  since 
in  the  latter measurements the long-time behavior  of the speech 
signals  was examined, this gamma distribution reflects the 
relative frequency of amplitude appearance rather than  the 
probability density function of the STSA. 

In conclusion of the above  discussion concerning the  statis- 
tical model of  the speech spectral components, we note that 
since the  true statistical model seems to be inaccessible, the 
validity of the proposed one can be judged a posteriori on the 
basis of the results obtained here. In addition,  the  optimality 
of the estimators derived here is  of course connected with  the 
assumed statistical model. 

In this paper we derive the MMSE  STSA estimator based on 
the above statistical model, and compare its performance with 
that of the Wiener  STSA estimator. This comparison is  of 
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interest since the Wiener estimator is a widely  used STSA esti- 
mator, which is also  derived under the same statistical model. 

The Gaussian statistical model assumed  above does not take 
into  account  the fact that  the speech signal  is not surely pres- 
ent in the noisy observations. This model results in a Rayleigh 
distribution  for  the amplitude of each signal spectral compo- 
nent, which assumes insignificant probability for low amplitude 
realizations. Therefore, this model can lead to less suppression 
of the noise than  other amplitude distribution models (e.g., 
gamma) which assume high probability for low amplitude 
realizations. However, using a statistical model of the  latter 
type can  lead to a worse amplitude estimation when the signal 
is present in the noisy observations. 

One useful approach to resolve this problem is to derive an 
MMSE STSA estimator which takes into account the uncer- 
tainty of speech presence in the noisy observations [3], [lo], 
[l 11 . Such an estimator can be derived on  the basis of the 
above  Gaussian statistical model, and by assuming that  the sig- 
nal is present in the noisy observations with probability p < 1 
only. The parameter p supplies a useful degree of freedom 
which enables one to compromise between noise suppression 
and signal distortion. This  is of course an advantage in com- 
parison to the use of a gamma type statistical model. 

The above approach is applied in this paper, and the result- 
ing  STSA estimator is compared with the McAulay and Malpass 
[3] estimator in enhancihg speech. The  latter estimator is an 
appropriately modified ML  STSA estimator, which assumes 
that  the signal  is present in each noisy spectral component 
with  a probability of p = 0.5. 

In this paper we also examine the estimation of the complex 
exponential of the phase of a given  signal spectral component. 
The complex exponential estimator is  used  in conjunction 
with the MMSE STSA estimator for constructing the enhanced 
signal. We derive here the MMSE complex exponential estima- 
tor and discuss its effect on  the STSA estimation. We show 
that  the complex exponential of the noisy  phase  is the MMSE 
complex exponential estimator which does not affect the STSA 
estimation. Therefore, the noisy phase is used in the proposed 
system. 

The paper is organized as  follows.  In Section I1 and Appendix 
A we derive the MMSE STSA estimator and compare its per- 
formance with  that of the Wiener  STSA estimator. In Section 
111  we extend  the MMSE  STSA estimator and derive it under 
uncertainty of  signal presence in the noisy spectral components. 
In Section IV and Appendix B we discuss the MMSE estimation 
of the complex exponential of the phase. In Section V we dis- 
cuss the problem of estimating the a priori SNR  of a spectral 
component, which is a parameter of  the STSA estimator. In 
Section VI  we  describe the proposed speech enhancement 
system and compare it with the  other widely used systems 
mentioned above. In Section VI1 we summarize the paper and 
draw conclusions. 

11.  MMSE SHORT-TIME SPECTRAL 
AMPLITUDE ESTIMATOR 

In this section we derive the MMSE STSA estimator under 
the statistical model assumed in Section I. We also analyze its 
performance and examine its sensitivity to the a priori SNR, 
which was found to be a key parameter. This performance 
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and sensitivity analysis is  also done for the Wiener STSA esti- 
mator,  and  the two estimators are compared on  this basis. p(ak 9 OIk) = - exp (-A) 

n M k )  X X M  
(6) 

Derivation of Amplitude Estimator where h,(k) 4 E{  IXkl2},  and b ( k )  L E {  IDkI2}, are the var- 
iances of the kth spectral component of the speech and the 

respectively. The observed  signal y ( t )  is  given by noise, respectively. Substituting (5) and (6) into (4) gives  (see 
Appendix A) 

Let x(t)  and d(t)  denote  the speech and  the noise processes, 

y(t)  = x(t)  t d(t) ,  0 < t < T (1) c\ 

A~ = r(1.5) - fi M(-0.5; l ; - u k ) &  
where, without loss of generality, we let  the observation inter- yk 
Val be [o, TI. Let & A ,  eXp ( j a k ) ,  Dk, and Yk Rk eXp 
( j 8 k )  denote  the lcth spectral component of the signalx(t), the = r(l .5) - 6 exp (- 2) 
noise d(t) ,  and the noisy observations y ( t ) ,  respectively, in the Y k  
analysis interval [0, TI . Yk (and similarly & and Dk) is  given 
by 

r(.) denotes  the gamma function,  with P(1.5) = f i / 2 ;  M(a; 
c;  x) is the  confluent hypergeometric function [4, eq. A.1.141; 
Io( e )  and I l  ( e )  denote  the modified Bessel functions of zero 

(2) and first order, respectively. vk is defined by 

Based on  the  formulation of the estimation problem given in uk = A - gk 
the previous section, our task is to estimate the modulus Ak, 
from the degraded signal { y ( t ) ,  0 < t < T} .  where & and yk, are defined by 

Toward this end, we note  that  the signal {y ( t ) ,  0 < t < T }  
can be  written in terms of its spectral components Yk by  [6] A A X ( k )  

1 ' g k  
yk 

.Ek= 

2n lm akp (yk a k ) P  (akr ak)d akdak 
= -  (4) 12r P ( y k  I ak)P (ak,  (Yk)d akdak 

where E{ a }  denotes  the  expectation  operator, and p ( * )  de- 
notes  a probability density function (PDF). 

Under the assumed statistical model, p(Yk (ak, ak) and p(ak ,  
a k )  are given by 

A 

A k S -  lk Rk high SNR 
1 + t k  

6 A ; .  (12) 

Since we cnallyAestimate the spectral component = Ak exp 
( j a k )  by = A k  exp (&), where exp ( j 8 k )  is the complex 
exponential of the noisy phase  (see Section IV), we get from 
(12) the following approximation for the  kth signal spectral 
component  estimator: 

A 2 - " Yk high SNR 
1 ' t k  

LA X?. 
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This estimator is in fact the MMSE estimator  of the  kth sig- 
nal spectral  component, i.e., the Wiener estimator. For this 
reason, (12) is referred to as a Wiener amplitude estim2tor. 

It is useful to consider the  amplitude  estimator A k  in (7) 
as being obtained  from Rk by  a multiplicative nonlinear  gain 
function which is defined by 

A i k  
GMMSE (tk 5 Y k )  = - 

Rk 
(14) 

From (7) we  see that  this gain function  depends  only on  the 
a priori and the a posteriori SNR, t k  and yk ,  respectively. 
Several  gain  curves  which result from (7) and (14) are shown 
in Fig. 1 .  Y k  - 1 in Fig. 1 is interpreted as the “instantaneous 
SNR,” since Yk 2 R : / A ~ ( ~ ) ,  and Rk i s  the  modulus of  the 
signal  plus  noise resultant spectral component. 

The gain  curves  in  Fig. 1 show an increase in gain as the  in- 
stantaneous SNR Yk - 1 decreases, while the a priori SNR &‘ 
is kept  constant. This  behavior is explained  below on  the 
basis of  the fact that  the MMSE estimator compromises  be- 
tween  what it knows from  the a priori information  and  what  it 
learns from  the noisy data. 

Let tk result from some  fixed  values  of X,(k) and hd(k). 
The fmed  value  of X,(k) determines  the most  probable realiza- 
tions  of A k ,  which are considered by  the MMSE estimator. 
This  is due to  the fact that X&) is the only parameter o f p ( a k )  
[see (6)]. On the  other  hand,  the fixed  value of A&) makes 
’yk to be  proportional to R,, since Yk = Ri/Xd(k).  Therefore, 
as !& is  fixed  and Yk decreases, the estimator should compro- 
mise  between the most probable realizations of Ak and the  de- 
creasing values  of &. Since Ak is estimated b y j k  = G”SE 
( g k ,   y k ) R k ,  this can  be done by increasing C“SE ( [ k ,  Y k ) .  

Fig. 1 also shows  several  gain  curves  corresponding to the 
Wiener  gain function which results from  the  amplitude esti- 
mator (12). This  gain function is  given by 

A 

and it is independent o f  Y k .  The  convergence  of the MMSE 
and  the Wiener amplitude  estimators at high SNR is clearly 
demonstrated  in Fig. 1. 

It is interesting to note that  the same  gain  curves as those 
belonging to  the gain function G”SE ( & ,   Y k )  were obtained 
by  a “vector spectral subtraction”  amplitude  estimation  ap- 
proach  [16] . In  this  approach,  the  amplitude  estimator is 
obtained  from  two mutually dependent MMSE estimators of 
the  amplitude  and  the cosine  of the phase error (i.e., the phase 
8 k  - ak) .  Since an  estimator of  the cosine of  the phase error 
is  used for estimating the  amplitude,  this  approach is inter- 
preted as a “vector spectral subtraction”  amplitude  estimation. 
We conjecture that this coinciding  of the gain  curves is a  con- 
sequence  of the statistical independence assumption of the real 
and  imaginary parts  of each  complex Fourier expansion co- 
efficient, which results in the statistical independence of the 
amplitude and  phase.  This  probably  enables one to obtain  the 
MMSE amplitude  estimator,  by cross coupling the  two partial 
MMSE estimators, of the amplitude  and the cosine  of the 
phase error. 

-5 c I 

-35 I.1’.L1 
-15 -10 -5  0 5 10 15 

INSTANTANEOUS SNR [dB] 
( Yk-l)  

Fig. 1. Parametric gain curves  describing (a) MMSE gain function 
GMMsE(+ y k )  defined by (7) and (14) (solid  lines),  and  (b) Wiener 
gam function Gw(&, Yk) defined  by (15) (dashed line). 

Error Analysis  and  Sensitivity 
The MMSE amplitude  estimator (7) is  derived under  the im- 

plicit assumption  that  the a priori SNR t k  and the noise vari- 
ance Ad(k) are known.  However, in  the speech  enhancement 
problem  discussed here, these  parameters are unknown  in  ad- 
vance, as the noisy  speech  alone  is available. Therefore,  they 
are replaced by  their  estimators  in  a practical system  (see  Sec- 
tion V). For  this reason it is of interest to examine the sensi- 
tivity of the amplitude  estimator to inaccuracy in these 
parameters. 

We found  that  the a priori SNR is a  key parameter in the 
discussed problem,  rather  than  the noise  variance  which  is 
easier to estimate.  Therefore, we  examine  here the sensitivity 
of the MMSE amplitude  estimator to  the a priori SNR t;k only. 
In  addition,  for similar reasons,  we are interested here especially 
in the sensitivity at  low apriori  SNR (Le., & << 1). 

We present  here a sensitivity analysis which  is  based on  the 
calculation  of the mean-square error (MSE) and the bias associ- 
ated  with  the  amplitude  estimator (7) when the a priori SNR 
& is perturbated. This sensitivity analysis provides  also  an 
error analysis, since the  latter  turns out  to be  a particular case 
of the  former. 

A similar  problem to the above one arises  in the Wiener 
amplitude  estimator, which  depends on  the a priori SNR 
parameter [see (12)] . Since the Wiener estimator is widely 
used  in  speech enhancement systems, we  give here a sensitivity 
analysis for  this  estimator as  well,  and  compare it  with  the 
MMSE amplitude  estimator. 

Let tz denote  the nominal a priori SNR, and ik tz + Atk 
denote  its  perturbated version. The MMSE amplitude  estimator 
which  uses the  perturbated t k  is obtained  from (7), and is 
given by a 

i k  = r(i .5)- M(m0.5; 1; -5k)Rk  (1 6) 
Yk 

where ijk is  defined by 

Similarly, the Wiener amplitude  estimator  with  the  perturbated 
.!& is obtained  from (1 2), and  is  given  by 
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To calculate the residual MSE in  the  amplitude  estimation 
(16) for low a priori SNR values, it is most convenient to ex- 
pandM(a;c;x)in(16)bythefollowingseries [ 4 , e q . A . 1 . 1 4 ] :  

“ I +  - - + + - - - - - - + + . .  ‘ 
a x a(a t 1) x2 
c l !  c(c+ 1) 2! 

where (a), = @(a t 1 )  . * (a t r - l ) ,  and (a)o = 1. By so do- 
ing, and using the  fact  that yk  is exponentially distributed, i.e., 

A A 

It can be shown by using the Lebesgue monotonic convergence 
theorem and the Lebesgue dominated convergence theorem 
[ 171 that  the  commutation of the  expectation and limit opera- 
tions needed in the calculation of (21) are  vaid for [* < 1 and 
E < (1 - t*)/2t*. Therefore, the resulting expression in (21) 
is  also  valid  in that domain. 

The normalized residual MSE € , (E: ,  i k )  resulting in the 
Wiener amplitude estimation ( 1 8 )  can be calculated similarly, 
and is  given by 

-., 

Ew (t:, g k )  ‘ E {  [ A k  - -4k”12)/E{ fAk  - E ( A k ) 1 2 )  

. ( - tz) l  r ( r  t 1.5)) (22) 

which is valid for t* < 1. 
For low SNR the above expressions can  also be used to cal- 

culate the nominal residual MSE, which corresponds to the 
MSE when the a priori SNR is known exactly. This can be 
done by substituting t k  = tg in (21) and (22). 

For very  low SNR values, EMMSE(~:, ik) and E, ( E , $ ,  j k )  can 
be approximated  by considering terms of up  to third order 
only in the infinite sums af (21) and (22). Fig. 2 shows the 
residual MSE obtained in this way  as a  function of the nominal 
a priori SNR e;, and for several  values of At, / ($ .  A number 
of conclusions can be drawn now.  First,  note  from (21) and 
(22) that  the nominal normalized MSE in the MMSE estimation 
cannot be greater than  unity, while in the Wiener amplitude 
estimation it can be as high as 1/(1 - n/4). Second, both esti- 
mators seem to be insensitive to small perturbations in the 
nominal a priori SNR t,$ value. Finally, it is interesting to 
note  that  both estimators are more sensitive to underestimates 
of  the a priori SNR than to its overestimates. In addition, by 
using an overestimate of E; in the Wiener amplitude  estimation, 
the residual MSE decreases. This surprising fact can be explained 
by noting  that  the Wiener estimator is not  an MMSE amplitude 
estimator under  the assumed model and criterion. Therefore, 
using an erroneous value of can either increase or decrease 
the MSE. 

The operational conclusion of the above error analysis is 
that  on  the basis of an MSE criterion,  it is more appropriate 
to use  an overestimate of  the a priori SNR than to use  an under- 
estimate of it. l t  is satisfying to note that a similar conclusion 
was drawn in [ 1 8 ]  on a perceptual ground. In [ 181 it was 
found that when the speech spectral component variance 
is estimated (for the spectral subtraction algorithm purposes) 
by  the “power-spectral subtraction”  method (see Section V), 
then  it is useful to use a “spectral floor” which masks the 
“musical noise.” This “spectral floor” is a positive threshold 
value which is used as the estimated variance when the “power 
spectral subtraction”  method results in an estimate which is 
lower than  that threshold. Therefore, the “spectral floor” is 
an overestimate of the signal spectral component variance, and 
also of  its apriori SNR, 

We turn now to the calculation of the normalized bias of 
each estimator when the a priori SNR is perturbated. The nor- 
malized bias is defined here as the  ratio between the  expected 
value  of the  amplitude estimation error and the expected value 
of the amplitude. 

The normalized bias B M M ~ E ( @ ,  i k )  of the MMSE estimator 
at low a priori SNR is obtained by using ( 1 6 ) ,  (1 9), and (20). 
It is equal to 

BMMSE(tg, gk)  ’ E { A k  - z k ) / E { A k )  

-- 
(1 ?tk ti) l“ z o  ?1>,- 

(-0.9, 

and is  valid for .$*g < 1 .  The normalized bias Bw(t,$, ,&) of 
the Wiener amplitude  estimator is easily obtained from (18), 
and is  given by 
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Fig. 2. Normalized MSE in amplitude  estimations  for  perturbated values 
of the a priori SNR. (a) MMSE estimator (16). (b) Wiener estimator 
(18). 

Fig. 3 shows  the bias  of the MMSE and  the Wiener amplitude 
estimators as a  function  of tz: B”SE(tg, tk) in Fig. 3 is  cal- 
culated by using terms of up to the third order in the infinite 
sum in (23). 

- 

111. MMSE AMPLITUDE ESTIMATOR UNDER 
UNCERTAINTY OF SIGNAL PRESENCE 

In this section we derive the MMSE amplitude  estimator 
under the assumed  Gaussian statistical model,  and  uncer- 
tainty of  signal  presence in the noisy observations. By so doing 
we extend  the  amplitude  estimator derived in Section 11, as 
will be clarified later. 

Signal  absence  in the  noisy  observations {y(t), 0 < t < T> is 
frequent, since speech signals contain large portions  of silence. 
This absence  of signal  implies its absence in  the  noisy spectral 
components as  well.  However, it is  also  possible that  the 
signal  is present in the noisy observations, but appears  with 
insignificant  energy in some noisy spectral components, which 
are randomly  determined.  This is a typical situation  when  the 
analyzed speech  is  of  voiced type, and the analysis  is not 
synchronized  with the  pitch period. 

The above  discussion  suggests two statistical models for 
speech  absence in the noisy spectral components.  In the first 
one, speech  is  assumed to be either present or absent,  with given 
probabilities, in all of the  noisy spectral components.  The rea- 
soning behind this model is that signal  presence  or  absence 
should be the same  in all of the  noisy spectral components, 
since the analysis is done on a finite interval. In  the second 
model  which represents the  other  extreme, a statistically inde- 
pendent  random  appearance  of  the signal in  the noisy spectral 
components is assumed. As is  implied by the above discussion, 
this model is more  appropriate for voiced speech signals  when 
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Fig. 3. Normalized bias of amplitude estimators  for  perturbated values 
of the a priori SNR. (a) MMSE estimator (16). (b)  Wiener estimator 
(18). 

weak  signal spectral components are  considered as if they were 
absent. 

These two  models, and the resulting MMSE amplitude esti- 
mators based upon  them, are examined in details in [19]. We 
found that  the estimator whose derivation is  based on  the 
second model is  especially  successful in speech enhancement 
applications. Therefore, we present  its derivation in this section. 

The  idea of utilizing the uncertainty of signal presence  in the 
noisy spectral components for improving  speech enhancement 
results was first proposed by  McAulay and Malpass [ 3 ] .  In 
their work  they actually capitalize on  the above  second model 
of  signal absence, and modify  appropriately an ML amplitude 
estimator. In  Section VI we compare  the speech enhancement 
results of the McAulay and Malpass amplitude  estimator  with 
those of the  one which we  derive here. 

Derivation ofAmplitude Esh’mator  Under 
Signal  Presence Uncertainty 

The MMSE estimator, which takes into account  the  uncer- 
tainty of  signal  presence in  the noisy observations, was  devel- 
oped  by  Middleton and Esposito [lo] . Based on our second 
model for signal absence,  in which statisticauy independent 
random  appearances  of the signal in  the noisy spectral com- 
ponents is assumed,  and on the statistical independence of the 
spectral components assumed  in Section I, this MMSE estima- 
tor is given by [ 191 

where A( Yb, q k )  is the generalized likelihood ratio  defined by 
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with p k  = (1 - qk) /qk,  and q k  is the probability of signal ab- 
sence in the  kth spectral component. H i  and H i  denote the 
two hypotheses of signal absence and presence, respectively, in 
the  kth spectral component. E{Akl Yk,  H i }  is the MMSE 
amplitude  estimator when the signal  is surely present in the 
kth spectral component. This is  in fact the estimator (7). 
Therefore, in order to derive the new amplitude estimator (25), 
we need to caiculate the additional function A(Yk,  qk)  only. 
This can be easily done by using the Gaussian statistical model 
assumed for  the spectral components,  or equivalently, by using 
(5) and (6). We get 

A 

where ,$k in (27) is now defined by 

This definition agrees with  its previous definition in (9), since 
there  the signal is implicitly assumed to be surely present in 
the noisy spectral components. 

It is more convenient to make A(Yk, qk)  and the resulting 
amplitude estimator a  function of Vk 4 E { Ai}/Xd(k) which is 
easier to estimate  than &. v k  is related to & by 

= (1 - q k )  t k .  (29) 

Thus, by considering A( Yk,   qk)  in. (27) as A(&, yk, qk),  and 

yk) is the gain function defined by (7) and (14), the  amplitude 
estimator (25) can  be written as 

using E{Ak  IYk ,  Hi)= GMMSE(tk, Yk)Rk,where GMMSE(tk3 

A D  
- GMMSE(vk,  Yk, q k l R k *  (3 0) 

Note'that if qk = 0, then A/( 1 t A) in (30) equals unity,  and 
also l)k = & .  In this case G,D,~E(Q~,  yk ,   qk)  turns  out  to be 
equal to GMMSE(C;k, Yk). Thus, the amplitude estimator (7) 
can be considered as a particular case of  the amplitude estima- 
tor (30). 

Several  gain  curves which result from G g ~ s ~ ( l ) k ,  Yk, q k )  in 
(30) are described in Fig. 4  for qk = 0.2. It is interesting to 
compare these gain  curves with those of G M M ~ E  (&, y k )  which 
are depicted in Fig. 1. Especially it is interesting to see the dif- 
ferent trend  of  the gain  curves in each pair corresponding to 
the same value of the a priori SNR when this value is high. 
The decrease in gain  as Y k  decreases and is high, for  the 
case in which qk > 0, is in contrast to the increase in gain for 
the case in which qk = 0 [i.e., for GMMsE(tk, yk)] . This is 
probably a result of favoring the hypothesis of signal absence 
by  the amplitude estimator (30) in such a  situation. 

We conclude this section by noting that  the  estimator (25) 
which takes into  account  the signal presence uncertainty could 

5- 
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( Y k 4 )  

Fig. 4. Parametric gain  curves  describing the MMSE gain function 
G&sE(rlk, Yk, 4k) defined  by  (30) for 4k = 0.2. 

be obtained  from  the estimator (4), which assumes that  the 
signal  is surely present, if p ( a k ,  ak) in (4) is chosen appropri- 
ately. This can be done by using 

P ( a k , a k ) = ( 1 - 4 k ) P ( a k , 0 1 k I H i ) t 4 k 6 ( a k , a k )  (31) 

where p ( a k ,  (Yk ] H i )  is the  joint  PDF  of A k  and a& when 
the signal  is surely present, and 6 ( a k ,  ak) is a Dirac function. 
Under the Gaussian assumption used here, p ( a k ,  aklHi) is 
given by (6). This is an interesting interpretation of the esti- 
mator  (25), which was originally derived in [lo] by minimizing 
the mean-square estimation error.  It also indicates that  the 
estimator derived by using (4) with  the above p ( a k ,   a k )  [or 
equivalently (25)] is the MMSE estimator  for  a class of a priori 
PDF's which differ in the probability assumed for signal absence. 

IV. MMSE COMPLEX EXPONENTIAL ESTIMATOR 
In  the previous sections we  gave the motivation for using an 

optimal STSA estimator of the speech signal, and derived such 
an estimator under an assumed statisticalmodel.  In this section 
we concentrate  on  the derivation of an optimal MMSE estima- 
tor of the complex exponential of the phase under  the same 
statistical model. This estimator is combined with  the MMSE 
STSA estimator for constructing the enhanced signal. 

We show that  the MMSE complex exponential  estimator has 
a  nonunity modulus. Therefore, combining it  with an optimal 
amplitude  estimator results in  a new amplitude  estimator which 
is no longer optimal. On the  other  hand, the MMSE complex 
exponential estimator whose modulus is constrained to be unity, 
and therefore does not affect the  amplitude  estimation, is the 
complex exponential of the noisy phase. 

We also show in this section that  the  optimal  estimator  of 
the principle value of the phase  is the noisy phase itself. This 
result is of interest, although it does not provide another esti- 
mator for  the complex exponential  than  the above constrained 
one. Its importance follows from the  fact that  it is unknown 
which one,  the phase or its complex exponential, is more im- 
portant in speech perception. Therefore, the optimal estima- 
tors  of  both of them should be examined. 

Derivation of MMSE Complex Exponential Estimator 
Based on  the statistical model assumed in Section I, the 

MMSE estimator of the complex exponential elork, given the 
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noisy observations {y(t) ,  0 < t < T} ,  is  given  by 

elak = E{ eiak Iy(t), 0 < t d T}  
cy 

=E{eiakl  Y 0 , Y 1 ; . . }  

= E{ E?"ik I Y k }  

= E{ e-j9k I Y k } e j 9 k  

= [ ~ { c o s c p ~ ~  Yk} - iE{s inqkI  Y,}] e''' (3 2 )  

where q k  is the phase error which is defined by qk = 8 k  - f f k ,  

and 8 k  is the noisy phase. E{ sin q k  I Y k }  and E{ COS q k  I yk}  
can be easily calculated for the Gaussian statistical model as- 
sumed here (see Appendix B). We obtain 

A 

E{sinqkI Y k } = o  (33) 

and 
cy 

elor'  cos I& I y k } e j 9 k  

= r(1.5) 6 ~ ( 0 . 5 ;  2 ; - u k )  e''' 

= r(l.5) 6 exp ( -uk/2)   [ IO(uk/2)  -k I1 ( vk /2 )1  e jak  

A N j a k  = cosqk e . (34) 

The combination of the MMSE estimatzr e l f f k  with  an  inde- 
pendently derived amplitude estimator A k  results in the  fol- 
lowing estimator ?k for the kth spectral component: 

?- 

X k = A k  c o s p k  e . A N 

(3 5) 

The modulus of the spectral estimator ?k reprpents now a 
new amplitude estimator which is not optimal if A k  is optimal. 
That is, improving the estimation of the complex exponential 
of  the phase (in comparison with the use of  the complex ex- 
ponential of the noisy phase)  adversely affects the  amplitude 
estimation. 

It isAworthwhile to further investigate the estimator (35) 
when A k is the MMSE estimator from (7). We now show that 
this  estimator is nearly equivalent to the Wiener spectral esti- 
mator X,W, w_hich is  given by (13). On the one hand,  this  fact 
implies that X k  is a nearly MMSE spectral estimator, since the 
Wiener spectral estimator is MMSE. On the  other  hand,  this 
fact enables us to estimate the degradation in the  amplitude 
estimation by uszg the error analysis of the previous section. 

To show that X k  in (35) and X? in  (13) are nearly equiva- 
lent, we compare their gain  curves for  the SNR values which 
are of  interest here.  several of these gain  curves are  shown in 
Fig. 5. The closeness  of the gain  curves, which correspond to 
the same value of & ,  implies that  the  two estimators ?k and 
X,W are nearly equivalent. 

Due to  the major importance of the STSA in speech percep- 
tion,  it is of interest to derive  an MMSE estimator of  the com- 
plex exponential of the phase which does not affect  the ampli- 
tude estimation. To derive this  estimator, which we denote  by 
e l a k ,  we  solve the following constrained optimization problem: 
0~ 

0 5 J 7 - - T - l  

-5 

(3 -15 
9 

-35 1- 
-15 -10 -5  0 5 IO 15 

INSTANTANEOUS  SNR [dB] 
( Y k - l )  

Fig. 5. Parametric gai2  curves resulting from (a) combined spectral esti- 
mator (35) when A k  is the MMSE amplitude estimator (7) (solid 
lines) (b) Wiener spectral estimator (13) (dashed lines). 

Using the Lagrange multipliers method, we get 
A 

e j f fk  = ej'k (37) 

That is, the complex exponential of  the noisy  phase is the 
MMSE complex exponential estimator which does not affect 
the  amplitude estimation. 

Optimal Phase Estimator 
The optimal estimator of the principle value of the phase  is 

derived here by minimizing the following distortion measure 
P O I  

E{ 1 - COS ( f f k  - $k) } .  (38) 

This measure is invariant under modulo 2n transformation of 
the phase f f k ,  the estimated phase G k ,  and the  estimation error 
ak - f f k .  For small estimation errors, (38) is a  type  of least- 
square criterion, since I - cos 0 z p2 / 2  for 0 << 1. 

The estimator i& whch minimizes (38) is  easily shown to 
satisfy 

* 

(3 9) 

By using ak = 8 k  - q k ,  and E{ sin pk I Yk}  = 0 [see (33)] , it is 
easy to see that 

E{ sin a k  I Y k }  = sin 8 k  cos I& 
N 

(40) 
N 

E{ cos f f k  1 Y k }  = cos 8 k  COS q k .  (41) 

On substituting (40) and (41) into (39), we get 

tg $k = fg 8, (42) 

or, alternatively, z k  = &. 

V. A PRIORI SNR ESTIMATION 
In this section we address the problem of estimating the a 

priori SNR of a spectral component in a given analysis frame. 
The a  priori SNR should be reestimated in each analysis frame, 
due to the  nonstationarity  of  the speech signal. Two approaches 
are considered here. In the  first,  an ML estimator of a speech 
spectral component variance  is utilized. The second approach 
is  based on  a "decision-directed'' estimation method. Both 
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approaches assume knowledge of the noise spectral component 
variance. In practice this variance  is estimated from nonspeech 
intervals which are most adjacent in time to the analysis frame 
[21], [22] . If the noise  is known to be stationary,  then it 
suffices to estimate its spectral component variances once 
only,  from  an initial nonspeech interval. We present here the 
derivation of the above two estimators, and leave for  the  next 
section the discussion concerning their application and perfor- 
mance in the proposed speech enhancement system. 

Maximum Likelihood Estimation Approach 
The ML estimation approach is most commonly used for es- 

timating an unknown parameter of a given PDF [e.g., X,@) in 
(6)], when no a priori information  about it is-available. We 
now derive the ML estimator of the  kth signal spectral com- 
ponent variance in the nth analysis frame. We base the estima- 
tion  on L consecutive observations Yk(n) & { Yk(n),   Yk(n - l), 

dependent. This assumption is reasonable when the analysis 
is done  on nonoverlapping frames. However,  in the system 
used here, overlapping is done (see Section VI). Nevertheless, 
we continue  with  this assumption since the statistical depen- 
dence is difficult to be modeled and handled. We also  assume 
that  the signal and noise kth spectral component variances 
X,(k) and hd(k), respectively, are slowly  varying parameters, 
so that  they can be considered constant during the above L 
observations. Finally, we assume that  the kth noise spectral 
component  varianceis  known. 

The ML estimator X,(k) of h,(k), which is constrained to be 
nonnegative, is the nonnegative argument which maximizes the 
joint  conditional PDF of Yk(n) given h,(k) and hd(k). Based 
on  the Gaussian statistical model and the statistical indepen- 
dence assumed for  the spectral components, this PDF is  given 

... , Yk(n - L t l)}, which are assumed to be statistically in- 

by 

where &(l) 2 I Yk(l)l.  ̂X&) is  easily obtained from (43), and 
equals 

A 
- R i ( n  - I )  - A&) if nonnegative 

otherwise. 

(44) 
This estimator suggests the following estimator for the a priori 
SNR & .  

where yk(l)  = I Yk(l)12/X&) is the a posteriori SNR in the 
lth analysis frame. 

A 

-”t/ 
-40 I - 20 -10 0 IO 20 
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Fig. 6. Gain  curves  describing  (a) MMSE gain function GMMSE(&, y k )  
defined by (7) and (141, with tk = rk - 1, (b) “spectral subtraction” 
gain function (46) with p = 1, and (c)  Wiener  gain function Gw(tk, 
yk) (15) with gk = y k  - 1. 

It is interesting to consider the ML estimator (44) when L = 
1. In  this case  we  get the “power spectral subtraction” estima- 
tor derived in [3] . The application of  the corresponding [ k  
estimator (45) (with L = 1) to the MMSE amplitude estimator 
(7) results in a gain function which depends on,yk only.  Sur- 
prisingly, this gain function is almost identical to the “spectral 
subtraction” gain function for a wide  range  of  SNR  values. 
The “spectral subtraction” gain function is  given by (46) [l] , 
and the above near-equivalence occurs when j3 = 1. 

This fact is demonstrated in  Fig. 6 .  For comparison purposes, 
the same  figure  also  shows the gain  curve for  the Wiener ampli- 
tude  estimator, which results from (12), and the same apriori 
SNR estimator (i.e., (45) with L = 1). 

In practice, the running average needed in (45) is replaced by 
a recursive  averaging with a time constant comparable to the 
correlation time of yk. That is, the estimator of [ k  in the  nth 
analysis frame is obtained by 

- 
yk(n)  = aTk(n - 1) + (1 - a) - yk(n) 

B ’  
O G a < l ,   0 2 1 .  

(47) 

j3 is a  correction  factor, and here it plays the same role as in 
the “spectral subtraction”  estimator (46). The  values of (Y and 
j3 are determined by informal listening, as is explained in Sec- 
tion VI. 

“Decision-Directed” Estimation Approach 
We now consider the estimation of the a priori SNR of a 

spectral component  by  a “decision-directed” method. This 
estimator is found to be  very useful when it is combined with 
either the MMSE or  the Wiener amplitude estimator. 

Let &(n),  Ak(n), hd(k, n),  and yk(n) denote  the a priori 
SNR,  the  amplitude,  the noise variance, and the a posteriori 
SNR, respectively, of the corresponding kth spectral com- 
ponent in the  nth analysis frame. The derivation of the a priori 
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SNR estimator is  based here on the definition of ik(n),  and its 
relation to  the a posteriori SNR yk(n), as given below: 

The proposed estimator f k ( n )  of Ek(n) is deduced from (50), 
and is  given by 

+ ( l - a ) P [ y k ( n ) -  11, o < a < l  (51) 

where Ak(n  - 1) is the amplitude estimator of the kth signal 
spectral component in the (n - 1)th analysis frame, and P[-] 
is an  operator which is defined .by 

n 

x i f x > O  

0 otherwise. 
P [ x ]  = 

By comparing (50) and (Sl), we  see that gk(n) is obtained from 
(50) by dropping the  expectation  operator,using  the amplitude 
estimator of  the (n  - 1)th frame instead of the  amplitude itself 
in the  nth fame, introducing a weighting factor between the 
two terms of Ek(n), and using the  operator P[-3 defined in 
(52). P [ . ]  is  used to ensure the positiveness of  the proposed 
estimator in case yk(n) - 1 is negative. It is also possible to 
apply the  operator P on the right-hand side of (51) rather  than 
on yk(n) - 1 only. However, from our experience both alterna- 
tives give very  similar results. 

The proposed estim:tor for &(n) is a “decision-directed” 
type estimator, since i k ( n )  is updated on the basis of  a pre- 
vious amplitude estima?. 

BY using A k ( n )  = G(Ek(n), yk(n))  Rk(n), where G(., .) is a 
gain function which results from either the MMSE or  the Wiener 
amplitude estimator, (51) can be written in a way which em- 
phasizes its recursive nature. We get from (51) 

$k(n) = aG2 ( t k ( n  - 11, yk(n - 1)) ’Yk(n - 1) 

t ( l - a ) P [ y k ( n ) -  l1* (53) 

Several initial conditions were examined by simulations. We 
found  that using gk(0) = a + (1 - a) P [yk(0) - 13 is appropri- 
ate, since it minimizes initial transition effects in  the enhanced 
speech. 

The  theoretical investigation of the recursive estimator (53) 
is  very complicated due to its highly nonlinear nature. Even 
for  the simple  gain function of the Wiener amplitude estimator 
it was difficult to analyze. Therefore, we examined it  by simula- 
tion  only, and determined in this way the “best” value of a. 

VI. SYSTEM DESCRIPTION AND PERFORMANCE 
EVALUATION 

In this section we first describe the proposed speech enhance- 
ment system, which was implemented on a general purpose 
computer (Eclipse S-250). Then we describe the performance 

of this system, based on informal listening, when each of  the 
STSA estimators discussed  in this paper is applied. 

System Description 
The input to the proposed system is  an 8 kHz  sampled  speech 

of 0.2-3.2 kHz bandwidth, which was  degraded by uncorrelated 
additive noise. Each analysis frame which consists of 256 sam- 
ples of the degraded speech, and overlaps the previous  analysis 
frame by  192 samples,  is spectrally decomposed by means of a 
discrete short-time Fourier transform (DSTFT)  analysis [23], 
[24] using a Hanning window. The STSA  of the speech signal 
is then  estimated, and combined with  the complex exponential 
of the noisy phase. The estimated DSTFT  samples in each 
analysis frame are  used for synthesizing the enhanced speech 
signal by using the well-known  weighted  overlap  and add 
method [24] . 

In applying the MMSE amplitude estimators (7) and  (30) in 
the proposed system, we examined their implementation 
through exact calculation as  well  as by using lookup tables. 
Each lookup table contains a  finite number of samples  of the 
corresponding gain function in a prescribed  region of ( E ,  7). 
We found,  for example, that when the  input  SNRis in the range 
[- 5,5] dB, and the “decision-directed’’ a priori SNR is utilized, 
it suffices to use 961 samples of each gain function, which are 
obtained by uniformly sampling the range - 15 < [ ( E ,  y - 1) or 
(7, y - l ) ]  < 15 dB.  As judged by informal listening, this sam- 
pling of the gain functions results in  a negligible additional 
residual noise to the enhanced signal. Therefore, the proposed 
system operating with  the MMSE amplitude estimator can  be 
implemented with  a similar complexity to that of other com- 
monly used systems, although a more complicated amplitude 
estimator is  used here. 

The proposed system is examined here for enhancing speech 
degraded by  stationary noise. Therefore, the variances of the 
noise spectral components are estimated only  once, from an 
initial noise  segment havig a  duration of 320 ms.  The estimated 
variances  are  used in the estimation of yk,  and ik by either (47) 
or (51). 

Performance  Evaluation 
In this section we describe the performance of the above 

speech enhancement systems when each of the STSA estima- 
tors considered in this paper is applied. Both a  priori SNR 
estimators (Le., the ML and the “decision-directed”) are ex- 
amined, The values  used here for the parameters a and 0 in 
(47) and (51) are the best ones found by simulations. Fig. 7 
describes a  chart of the comparison tests made here. 

In each test, speech signals which were  degraded by stationary 
uncorrelated additive wide-band noise with SNR values of 5,0, 
and -5 dB  were enhanced. The speech material used includes 
the following sentences, each spoken by  a female and a male: 

A lathe’is a big tool. 
An icy wind raked the beach. 
Joe brought a young girl. 

In addition the sentence “we  were  away a year ago,” spoken 
by another male, was examined. Six listeners participated in 
the comparison tests.  In each test  a pair of the enhanced speech 
signals  were presented to the listeners (through earphones), 
and they were  asked to compare them  on  the following basis: 
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Fig. 7. Comparison listening tests chart. 

amount of noise reduction,  the  nature of the residual noise 
(e.g., musical versus uniform), and distortion in the speech sig- 
nal itself. 

Let us consider first the  tests in which STSA estimators 
whose derivation is based on  the assumption that  the speech is 
surely present in  the noisy observations are used. 

Case I: Using either the MMSE amplitude estimator (7) or 
the Wiener amplitude estimator (1 2), when the a priori SNR is 
estimated by  the ML estimator (47) with a! = 0.725,p = 2,gives 
a very  similar enhanced speech quality. A significant reduction 
of the noise is perceived, but a “musical noise” is introduced. 
The power of this “musical noise” is very low at  the 5 dB SNR 
value, and it increases as the  input SNR decreases. The distor- 
tions caused to the speech signal  seem to be  very  small at  the 
high SNR value of 5 dB, and increase as the  input SNR decreases. 
Nevertheless, at  the SNR value of - 5  dB, the enhanced speech 
is still very intelligible. 

Case II: The enhanced speech obtained by using the “spectral 
subtraction”  amplitude estimator (46) with = 2, suffers from 
a strong “musical  noise.”  This  “musical noise” is of higher 
power level and wider band than  the “musical noise” obtained 
in the above MMSE and Wiener amplitude estimations (Case I). 
This is especially prominent at  the low input SNR values of 
0 dB and -5  dB. For  this reason, the  quality  of the enhanced 
speech obtained  by using either the MMSE or  the Wiener ampli- 
tude estimator is much  better  than  that  obtained  by using the 
“spectral subtraction”  estimator. 

Case III: Using the MMSE amplitude estimator (7) when the 
a priori SNR is estimated by  the “decision-directed’’ estimator 
(51) with 01 = 0.98 results in a great reduction of the noise, and 
provides enhanced speech with colorless residual noise. This 
colorless residual noise was found to be much less annoying 
and disturbing than  the “musical noise” obtained when the 
a priori SNR is estimated by the ML estimator (47). As could 
be judged by informal listening, the  distortions in the enhanced 
speech obtained  by using the MMSE amplitude estimator with 
either the ML or  the “decision-directed’’ a priori SNR estima- 
tor, are very similar. 

Case IV: Using the Wiener amplitude estimator with the 
“decisiondirected” a priori SNR estimator and (Y = 0.98 results 
in a more distorted speech than  that  obtained  by using the re- 
cently described MMSE amplitude estimator (Case 111). How- 
ever, the residual noise level in  the Wiener estimation is lower 
than  that in the MMSE estimation. Lowering the value of a! 

reduces the  ,distortions  of the enhanced speech, but  introduces 
a residual “musical noise” as well.  This  “musical noise” is 
probably contributed to by  the second term of the “decision- 

directed’’ estimator [i.e., P [ y k ( n )  - 11 in (51)], whose relative 
weight increases as the value of a! decreases. We found that us- 
ing a! = 0.97 results in  an enhanced speech whose distortion is 
similar to that  obtained  by using the MMSE amplitude esti- 
mator.  In  addition,  the level of  the residual “musical noise” 
obtained  then is lower than  that obtained by using the ML 
a priori SNR estimator. 

Case V: The MMSE amplitude estimator (30), which takes 
into  account  the  uncertainty  of signal presence in the observed 
signal, results in a  better enhanced speech quality  than that  ob- 
tained by using the MMSE estimator (7). Specifically, by using 
(30) with q k  = 0.2, a,nd the “decision-directed” a priori SNR 
estimator (51) [when k(n)  is replaced by  with LY = 0.99, 
we get a  further  reduction  of  the colorless residual noise, with 
negligible additional  distortions  in  the enhanced speech signal. 

Case VI: The enhanced speech obtained by using the above 
MMSE amplitude estimator [(30) with qk = 0.2, and (51) with 
a = 0.991 , was compared with  the enhanced speech obtained 
by using the McAulay-Malpass amplitude estimator [3] (see 
Section 111). The latter estimator was operated  with  the “best” 
value  (as judged by informal listening) of the a priuri SNR 
parameter, which was found to be 12 dB in our experiment. It 
was found that  the main difference between the  two enhanced 
speech signals  is in the  nature of the residual noise. When the 
MMSE estimator is  used the residual noise is colorless, while 
when the McAulay-Malpass estimator is used, musical residual 
noise results. 

VII. SUMMARY AND DISCUSSION 

We present in this paper an algorithm for enhancing speech 
degraded by uncorrelated additive noise when the noisy speech 
alone is available. The basic approach taken here is to optimally 
estimate (under the MMSE criterion and an assumed statistical 
model) the  short-time spectral amplitude (STSA) and complex 
exponential of the phase of the speech signal. We use this  ap- 
proach of optimally estimating the  two  components of the 
short-time Fourier transform (STFT) separately, rather  than 
optimally estimating the  STFT itself, since the STSA of a 
speech signal rather  than  its waveform  is of’major importance 
in speech perception. We showed that the STSA and the com- 
plex exponential  cannot be estimated simultaneously in an 
optimal way. Therefore, we use  an optimal MMSE STSA esti- 
mator, and combine it with an optimal MMSE estimator  of  the 
complex exponential of the phase which does not affect the 
STSA estimation. The latter constrained complex exponential 
estimator is found to be the complex exponential of the noisy 
phase. 

In this paper we derive the MMSE STSA estimator and an- 
alyze its performance. We showed that  the MMSE STSA esti- 
mator, and the Wiener  STSA estimator which results from  the 
optimal MMSE STFT  estimator, are nearly equivalent at high 
SNR. On the  other  hand,  the MMSE STSA estimator results 
in significantly less MSE and bias when the SNR is low. This 
fact  supports  our  approach to optimally estimate the percep- 
tually important STSA directly from the noisy observations 
rather  than deriving it from  another  estimator (e.g., from the 
Wiener one). 

A MMSE STSA estimator which takes into account  the  un- 
certainty  of signal presence in the noisy spectral components 
is also  derived in this paper, and examined in enhancing speech. 
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The MMSE STSA estimator depends on  the parameters of 
the statistical model it is  based on. In the proposed algorithm 
these are the a priuri SNR of each spectral component,  and  the 
variance of each noise spectral component. The a priuri SNR 
was found to be a key parameter of the STSA estimator. It is 
demonstrated here that  by using different estimators for the 
a priori SNR, different STSA estimations result. For example, 
using the “power spectral subtraction”  method for estimating 
the a priuri SNR results in an STSA estimator which is nearly 
equivalent to the “spectral subtraction” STSA estimator. 

We proposed here a “decision-directed’’ method  for  estimat- 
ing the a priori SNR. This method was found to be useful when 
it is applied to either the MMSE or  the Wiener  STSA estimator. 
By combining this estimator with  the MMSE STSA estimator 
which takes into account the  uncertainty of signal presence in 

2n 

E{ cos pk I y k )  = cos ( 8 k   a k ) p   ( a k  I Y k ) d  Olk 

r -  r 2 n  

where uk is defined by (8), and X(k) satisfying 

1 1  1 ---+- - 
A(k) M k )  X&>. 

By using [13, eq. 6.631.1, 8.406.3,9.212.1] we  get from(A.2) 

A k = h ( k ) ” ’  r ( is)M(-0.5;  l ; - U k ) .  
A 

(A.4) 

i i k ,  as  given by (7), is obtained fro,m (A.4) by using  (A.3) and 
(8)-(10). The equivalent form of A k  as  given in (7) is obtained 
by using [4, eq. A.1.31aI . 

APPENDIX B 

In this Appendix we derive the MMSE estimators of cos p k ,  

and sin q k ,  given the noisy spectral component Y k .  

Jo Jo 
cos (8k - & k ) p  ( yk I ak ,  Ork)p  (ak > Olkld Olk dak 

- - lm [’* p ( y k  I ak ,   ak )p   (ak ,  OlkId @k  dak 

On substituting ( 5 )  and (6) into  (B.l), and using (A.l), we obtain 

the noisy observations, we obtained the best speech enhance- where uk and h(k) are defined by (8) and (A.3), respectively. 
ment results. Specifically, a significant reduction of  the  input By using [13,  eq. 6.631.1,8.406.3,9.212.1] ,weget from(B.2) 
noise is obtained, and the residual noise sounds colorless. 

We believe that  the full potential of the proposed approach E{cospkI  Yk}=r(1.5). \ /;;;M(0.5;2;-uk).  

is not yet exploited, although very encouraging results were ob- The equivalent form of E{ cos pk 1 Y k } ,  as  given in (34), is ob- 
tained. Better results may be obtained if the a priuri SNResti- tained by using [4,  eq. A.1.31dI . 
mation could be improved. Thisissueisnow beinginvestigated. To show that E{ sin p k  I Y k }  = 0 we substitute ( 5 )  and (6) 

-~ 

APPENDIX A 
In this Appendix we derive the MMSE amplitude estimator 

(7). On substituting ( 5 )  and (6) into (4), and using the integral E{ sin p k  
representation of the modified Bessel function  of  the nth order 
[13, eq. 8.431.51, 

into 

1 27r 
I,(z) = cos on exp (z cos 0) do 

we obtain E { sin p k  

1- ak exp (- *) h(k) IO (20. p) V k )  dak 
where - denotes proportionality. Now it is  easy to see that 

(A.2) the inner integral in (B.5) equals zero. 
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