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Abstract: The paper deals with the problem of improving the performance of the adaptive transform coder
which operates on noisy speech. We propose to estimate the short-time spectral amplitude (STSA) of the orig-
inal speech and to utilise the noisy phase prior to the encoding process. The appropriate minimum mean-square
error STSA estimator is derived and the system is examined in encoding speech which has been degraded by
uncorrelated additive wideband spectrally flat noise. The above approach improves the quality of the encoded
speech in the sense that the output noise level and the irregularities characteristic to the directly encoded noisy
speech are reduced. However, the encoded speech loses some of its crispness.

1 Introduction

The adaptive transform coder (ATC) is a waveform coder
which was found to be very efficient for encoding speech at
rates of 7.2-16 kbit/s. At the rate of 16 kbit/s or above it
gives toll quality, while at the rate of 7.2 kbit/s it results in
communication quality [1-3]. The ATC quantises the
speech spectral components in each analysis frame, in
accordance with a dynamic bit allocation and a variable
quantisation step size. Thus, the perceptually more impor-
tant spectral components can be traced and better quan-
tised. The bit assignment and the step size used for each
spectral component are determined on the basis of knowl-
edge of its variance. The variances of the spectral com-
ponents are obtained from a parametric estimated
spectrum of the speech signal in the analysed frame. The
estimated parameters of the spectrum are encoded and
transmitted as side information to the receiver.

While the ATC belongs to the class of waveform coders,
which are supposed to be robust, it turns out that it is
sensitive to background noise. Unlike other speech wave-
form coders (e.g. PCM, DPCM etc.), in which the input
noise is just reflected to the reconstructed output speech,
here the noise has an additional effect; it adversely influ-
ences the extraction of the parameters representing the
speech short-time spectrum. This results in wrong bit allo-
cation and quantisation step size, which cause further deg-
radation of the reconstructed speech.

The structure of the ATC calls for a very convenient
way for improving the quality of the reconstructed speech
obtained under noisy environments. Specifically, since the
encoding is already done in the frequency domain, we can
estimate the perceptually important short-time spectral
amplitude (STSA) of the speech signal, and use the noisy
phase, prior to the encoding process. This STSA estima-
tion reduces the level of the input noise which is reflected
to the output of the encoder, as well as improving the esti-
mation of the side information which depends solely on
the STSA of the speech signal (Section 2).

We consider here a minimum mean-square error
(MMSE) estimator of the amplitude (or magnitude) of the
discrete cosine transform (DCT) of the original speech in
the analysed frame, which is the transform used by the
ATC. This has the perceptual significance of estimating the
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STSA of the original speech, since the DCT and the dis-
crete Fourier transform (DFT) have, up to a constant, the
same spectral envelope (see eqn. 5). The system developed
here is examined in encoding speech which has been
degraded by uncorrelated additive wideband spectrally flat
noise.

The above enhancement approach is similar to that
taken in Reference 4, where the amplitude of the DFT of
the original speech is estimated. The emphasis in both
papers is, however, different, as in Reference 4 we aimed at
enhancing speech prior to its presentation to listeners,
while here the enhancement is done in the encoding
context. Our work is related to that of McAulay and
Malpass [5], who consider improving the performance of
the channel vocoder under noisy environment by using a
maximum likelihood STSA estimator.

The paper is organised as follows. In Section 2 we
briefly describe the ATC scheme used in this work. Then,
in Section 3, we formulate the estimation problem and
derive the MMSE STSA estimator. In Section 4 we
describe the performance of the ATC operating on noisy
speech with and without the above enhancement. In
Section 5 we discuss the results obtained here, and briefly
describe some experiments we have done to also reduce
the quantisation noise level.

2 Adaptive transform coding

The ATC has been extensively investigated and several
schemes were proposed [1-3]. In this paper we focus on
the so-called ‘speech-specificc ATC, which is well docu-
mented in Reference 3. Before describing that scheme, we
briefly discuss the DCT and some of its properties. The
DCT is used by the ATC rather than other transforms like
the DFT, since, on the basis of a mean-square error (MSE)
criterion, the DCT was found to be nearly optimal for
speech encoding relative to the optimal Karhunen-Loeve
transform [1, 6]. In addition, on an experimental basis, the
DCT was found to perform better than the DFT [1].
Finally, the DCT reduces block-end effect problems [3].

The DCT of a real M-point sequence x, is defined by

M1
X =Y, x,¢ cos [(2n + 1)nk/2M]

n=0

k=0,1,....M—1 (1)
where
1, k=0
== ? 2
B {\/2, k=12, M—1 @)
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The inverse DCT is defined similarly as

M-1

1
X, =— 3 X, cos [2n + 1)mk/2M]
Mk=0

n=0,1,..,M-1 (3

The DCT can be efficiently calculated by using an FFT of
M points [7]. However, it can also be obtained by apply-
ing a 2M-point DFT on the sequence u,, defined by
u, & X,, n=01,...,M-1 @
0, n=M,...,2M —1
By so doing it can be shown that the DCT X, and the
DFT U, are related by

X, = c,| Uyl cos (0, — nk/2M) k=0,1,..., M —1
(%)

where 6, represents the phase of U,. This form supplies an
interesting spectral interpretation of the DCT. It shows
that the DCT and the DFT have the same spectral
envelopes (up to the constant ¢,) [3].

The speech-specific ATC scheme is depicted in Fig. 1.
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Each frame of the input speech is first cosine-transformed.
Then the parameters representing the estimated spectrum
of the speech in the analysed frame are extracted and
quantised. These parameters include the linear prediction
coefficients (LPCs), the pitch period and the gain, which
appear in the basic model of speech production. They are
calculated from an estimate of the speech sample autocor-
relation function, which is taken to be the inverse Fourier
transform of the square of the DCT components. This esti-
mate utilises the fact that the DCT and the DFT have the
same spectral envelope (up to a constant).

The LPC and the gain are used for estimating the
speech spectral envelope, while the pitch period and the
so-called ‘pitch-gain’ [3] are used for estimating the fine
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details of the spectrum, called the pitch pattern. The spec-
tral envelope and the pitch pattern are combined (via
multiplication) to produce the estimated parametric spec-
tral magnitude of the speech in the analysed frame. The
estimated parametric spectrum (i.e. the square of the esti-
mated parametric spectral magnitude) is used in the trans-
mitter for allocating the B bits available for encoding each
frame, and the estimated parametric spectral magnitude is
used for normalising the DCT components prior to their
optimal quantisation.

The optimal bit allocation and quantisation of the DCT
components are based on the observation that they are
approximately Gaussian-distributed [1, 3]. The bit assign-
ment rule results from the solution of the following opti-
misation problem:

1 M-1 6
min — W, €
in 7. 3. we s ©)
subject to
M-1

Y B,=B
k=0

where B, is the number of bits assigned to the kth DCT
component, ¢, is the resulting distortion in that component
and w, is a positive weighting function. B, and ¢, are
related by the rate-distortion function of a Gaussian
source:

1 ot

B, = 3 log, -Ff

where ¢} is the variance of the kth DCT component. The

optimal bit allocation and the resulting distortion are
given by

™

Wy Uf

TM-1T UM (8)
[ [T w 0,2}
I=0

M-t UM
g =222 T] wot? w, !
=0

here B £ B/M. 6% is obtained as the kth component of the
estimated parametric spectrum. A useful weighting func-
tion was proposed in Reference 3. It is given by

=~ 1
B,,=B+§log2

k=0,1,....M—1 (9

we=0y —1<y<0

(10)

where o, is the estimated parametric spectral magnitude
without the pitch pattern, i.e. it is the estimated spectral
envelope. Since g, is proportional to w, ! (eqn. 9), this
weighting function results in a quantisation noise spectrum
which follows the spectrum of the speech. As a conse-
quence, low-energy spectral components will not be totally
masked by the quantisation noise.

The quantisation of the kth DCT component is
achieved by first normalising it by the kth sample of the
estimated parametric spectral magnitude, and then using
the optimal normalised quantisation step size for a Guass-
ian source derived by Max [8].

At the receiver the bit stream is decoded, and the para-
metric spectrum is reconstructed from the side informa-
tion. With this available spectrum, the receiver can follow
the bit allocation and the DCT normalisation performed
in the transmitter.

In this paper we examined the ATC at 12 and 16 kbit/s.
The specific parameters of the coder used here are those
recommended in Reference 3. Specifically, the transform
size M is 256, the speech sampling rate is 8 kHz, the block
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overlap is 16 samples using a trapezoidal window, the
maximal number of quantiser bits is four, the quantiser
loading parameter (to multiply Max’s quantisation step
size) is 1.3 for 12 kbit/s and 1.5 for 16 kbit/s, the noise-
shaping parameter y = —0.125 and the number of LPCs is
nine. In this paper the side information parameters are not
quantised, but the number of bits needed for their quanti-
sation (44) was taken into account. We refrained from
quantising these parameters, as our main objective here is
to examine the enhancement of the encoded noisy speech.
In addition, very efficient algorithms for quantising these
parameters are available [9, 10].

3 MMSE spectral amplitude estimator

In this Section we derive the MMSE estimator of the
amplitude (i.e. the absolute value) of each DCT component
of the original speech given the noisy DCT components.
We use a statistical mode! which utilises asymptotic sta-
tistical properties of the DCT components. Specifically, we
assume that the DCT components of the speech signal, as
well as of the noise process, can be modelled as statistically
independent Gaussian random variables. The Gaussian
assumption is motivated by the central limit theorem, as
each DCT component is a weighted sum of random vari-
ables. The statistical independence assumption results from
the Gaussian model and the fact that the correlation
between the DCT components reduces as the analysis
interval length increases. It is satisfying to note that Zel-
inski and Noll arrived at the same statistical model for the
speech signal on an experimental basis [1, 3]. This fact has
already been utilised in Section 2, where we discussed the
optimal bit allocation and quantisation of the speech DCT
components. For the noise process one can obtain the
above model or simply assume that the noise is Gaussian.

Let X,, D,, and Y, denote, respectively, the DCT com-
ponent of the speech, the noise and the noisy process.
Owing to the statistical independence of the spectral com-
ponents, the MMSE estimation of | X | can be carried out
from only Y,. Therefore, the MMSE estimator of | X, | is
given by (see Appendix)

|Xk|=E{IXkHYOa Y., ..
= E{| X, || Y}

1
K YM—II

:j | xi | plxic | Yy ) dx;,

where

umé%ﬂ“eﬂm (12

0

&
> —— % & 13
“lre Tk Sk (13)
and A k) 2 E{|X,|?}, k) £ E{|D,|*}. & and 7y, are
interpreted as the a priori and a posteriori signal/noise
ratios (SNRs), respectively [5]. The MMSE estimator [ 11]
is conveniently described by a gain function defined by

| X,
| Yl
This gain function is described in Fig. 2 by means of para-

metric gain curves. The behaviour of these gain curves is
similar to that of the gain curves obtained in Reference 4,

Gy, 70 =

(14)
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where the amplitude of a DFT component is estimated.
The explanation given there for the shape of the gain
curves holds as well for the estimator discussed here.

log (gain)
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Fig. 2  Parametric gain curves describing spectral amplitude estimator
(egn. 11) of DCT

The estimate of the kth speech DCT component is
obtained by combining the above MMSE amplitude [11]
with the phase (i.e. the sign) of the kth noisy spectral com-
ponent, that is

o A o,
X 21X,
W= kllykl
= G(&e, 7)Y (15)

To implement the above estimator, the noise variance 4,(k)
and the a priori SNR &, should be known. In the experi-
ments we carried out here we examined stationary noise
and estimated its variances once only from an initial non-
speech interval 640 ms in duration. The a priori SNR is a
slowly varying parameter due to speech quasistationarity.
Its value in each analysis frame is estimated by the
‘decision-directed’ estimator proposed in Reference 4. This
estimator is given by

le,n—l |2
Ak, n—1)

where & .| Xy .|, Adk, n) and v, , are, respectively, the a
priori SNR, the speech spectral amplitude, the noise
variance and the a posteriori SNR of the corresponding
kth DCT component in the nth analysis frame. * denotes
‘estimated value’, and P[.] is an operator defined by

Sen=2c + (1 —aP[fy,, — 1] (16)

x, x=0

Hﬂ={ (17)

0, otherwise

whose function is to prevent {f," . from being negative if
(76, — 1) is negative. o is an averaging parameter whose
value is determined on the basis of listening tests. We have
found, for example, that, for the voiced sentence ‘we were
away a year ago’, the best values are « = 0.94 for 10 dB
SNR and o = 0.85for 5 dB SNR.

Fig. 3 shows the estimation procedure of the speech
DCT components from the noisy speech. In the proposed
algorithm for encoding noisy speech, the block labelled
‘discrete cosine transform’ in Fig. 1 is replaced by the
system described in Fig. 3.
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Fig. 3  Block diagram for estimation process of DCT components

4 Performance evaluation

The STSA estimator [11] was applied in the ‘speech-
specific’ ATC described in Section 2, and the system was
examined in encoding noisy speech at 12 and 16 kbit/s.
Speech signals which were degraded by uncorrelated addi-
tive wideband spectrally flat noise, with SNR of 10 and
5 dB, were examined.

We now demonstrate our results by focusing on the
analysis of the simulation outcomes obtained for the
16 kbit/s encoding rate and the 5 dB input SNR. For that
case, subjective listening tests were carried out with seven
listeners (the authors and five students). The following
three sentences, each spoken by a male and a female, were
examined:

(a) A lathe is a big tool.
(b) An icy wind raked the beach.
(c) Joe brought a young girl.

The other cases of either 10 dB SNR or 12 kbit/s encoding
rate were examined similarly by the authors alone, who,
however, arrived at similar conclusions to those described
below.

The directly encoded and the enhanced-encoded noisy
sentences were presented in that order through earphones
to the listeners. The test was blind for the five students, as
they did not know whether the material was directly
encoded noisy speech or the enhanced-encoded speech.
They were asked to judge the quality of the material they
have heard on the basis of its clarity, crispness, the level of
the residual noise and its nature. In addition, they were
asked to give their preference in comparing the directly
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encoded noisy speech with the enhanced-encoded noisy
speech. Three of the listeners were unfamiliar with the
original speech material. The following description is a
summary of the subjective evaluation of the listeners.

When the ATC was operated on the noisy speech but
no enhancement performed, a noisy reconstructed speech
results. In addition, it has some noticeable irregularities
which strongly influence its quality and intelligibility.
These irregularities are probably a result of using a wrong
bit allocation and an incorrect quantisation step size,
owing to the poor estimate of the speech spectrum from
the noisy input speech. By applying the STSA estimator
[11] to the above ATC system, the quality of the recon-
structed speech is improved in the sense that the noise
level and the above-mentioned irregularities in the
encoded noisy speech were reduced. However, the encoded
speech loses some of its crispness. Nevertheless, all the lis-
teners preferred the enhanced-encoded noisy speech rather
than the directly encoded noisy speech. The three listeners
who were unfamiliar with the original material also indi-
cated that the enhanced-encoded noisy speech is better
understood than the directly encoded noisy speech;
however, even then the material was not fully understood.
Two listeners pointed out that the enhancement is more
effective for the sentences spoken by the male speaker.

Fig. 4 demonstrates by means of waveform plots the
above results. Table 1 gives the SNR and the segmental
SNR values (in the time and frequency domains) for the
various cases examined here. The segmental SNR mea-
sured in the log-spectral domain is also provided.

Table 1: Measured SNR for encoded noisy speech at 16 kbit/s

Time domain Frequency domain

SNR, dB SNR, dB
SNR Seg. SNR Seg. SNR Log. Seg. SNR
Encoded noiseless 11.2  11.0 26.3 23.6
Speech
Encoded noisy 7.3 5.0 155 131
speech
Enhanced-encoded 8.6 6.8 185 16.3
noisy speech
Noisy speech 5.0 33 12.8 9.3
(no coding)

An interesting observation realised in this research is
that the encoding itself (without enhancement) has some
filtering effect on the noisy input speech. This effect is
demonstrated in Table 1 by the higher SNR of the directly
encoded noisy speech than that of the input noisy speech.
This seemingly odd phenomenon can be explained on the
basis of the following three facts: (i) the bit allocation for
the noisy spectral components is proportional to their
power (eqn. 8), (ii) we use here wideband spectrally flat
noise, which means that each of its spectral components
has approximately the same power, and (iii) for the range
of encoding rates examined here, some of the noisy spec-
tral components are not encoded as zero bits are assigned
to them. Now, owing to the wideband spectrally flat noise
used here, the spectrum of the noisy speech is similar to
that of the original speech, except that it is raised by the
approximately constant noise spectrum. Therefore, the
noisy spectral components for which zero bits are assigned
are those corresponding to low-energy spectral com-
ponents of the original speech. Hence, the removal of those
spectral components has an insignificant effect on the total
energy of the signal, but reduces the noise power by an
amount proportional to the number of noisy spectral com-
ponents for which zero bits were assigned. These two
effects result in the above increase of the SNR. It should,
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however, be clear that the application of the above
enhancement procedure results not only in a greater

e

Fig. 4  Waveform plots for 16 kbit/s encoding rate and 5 dB input SNR

a Original speech (64 ms)

b Encoded original speech

¢ Noisy specch

d Directly encoded noisy speech
e Enhanced-encoded noisy speech

reduction of the noise power in the encoded speech com-
pared to that obtained as a byproduct of the encoding
process (see Table 1), but, more importantly, it also
reduces the irregularities characteristic to the directly
encoded noisy speech.

5 Discussion

In this paper we examine the ATC under a noisy
environment. It was noted that its performance signifi-
cantly degrades when the input speech is noisy. However,
the application of an MMSE STSA estimator prior to the
encoding process improves its performance. As the ATC is
already operated in the frequency domain, the above
enhancement method is well suited to its structure and can
be easily implemented. For example, a look-up table which
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contains a finite number of samples of the multiplicative
enhancing gain function can be used in a similar manner
to that described in Reference 4.

It is worthwhile noting that in the course of this work
we also examined the possibility of improving the ATC
performance when it operates on clean speech. Specifically,
we examined three alternative approaches. In the first, we
reduced the quantisation noise level in each quantised
DCT component by estimating the speech DCT com-
ponent from the quantised (and therefore noisy) one. In the
second alternative, we decorrelated the speech and the
quantisation noise in each DCT component by using
dithered quantisation [12, 13]. In the third alternative, we
unified the above two approaches and estimated the
speech DCT component from the dithered quantised one.
The first and third approaches are, of course, reasonable
only if the quantiser used is not optimal. Here, however,
this is the case, since a uniform quantiser is used. In both
cases the estimated speech DCT component, given the
quantised component, is the centroid of the partition cell
of the quantiser to which the quantiser component belongs
[14]. We note that here we estimate the speech DCT com-
ponent rather than its absolute value, since in this applica-
tion the sign of the DCT component is known exactly, and
both approaches are identical.

Unfortunately, the above three approaches do not
noticeably improve the ATC performance. A possible
explanation is that, on the basis of the MSE criterion, the
expected improvement is limited by that which can be
obtained by using Max’s nonuniform optimal quantiser.
The reason is that Max’s quantiser was optimised for both
the partition cells and the reproduction values, where in
our case the partition cells are identical and are given, and
the reproduction values alone are optimised for those
given partition cells. As can be seen from Fig. 5 of Refer-
ence 8, the nonuniform quantiser can reduce the MSE (in
comparison with the uniform quantiser) by, at most, 20%
if the number of bits is less than or equal to four (as in the
discussed case).
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7 Appendix

We derive here the MMSE estimator [11]. Applying
Bayes’s rule and then using the symmetry of the Gaussian
probability density function of X, give

|Xk| =J | x| p(xi | i) dx,

1 [oa]
J | x| (Y | x,)p(x,) dox

T (%))
L 18
= X [p(Yel x) + p(Ye| — x)]p(x) dx (18)
p(Yd Jo
From the Gaussian statistical model we assumed, we have
1 x?
1= 7~ 3im) )

B 1 e
p(Y) = o) + i) <P (_ 22,(k) + Mk))) 2

(Y - xk)2> 1)

1
p(Yelx) = N0 exp <— k)

On substituting eqns. 19-21 into eqn. 18 and rearranging
the resulting expression, we obtain

- 21 ve) [® x?
Xl = /n 2 "X"(“ 2)[ % “"(‘2»:)

X €OS h<x," Yk) dx, (22)

Adey

where 1, satisfies

1 1 + 1
Ay Adk)  A(k)
Now, using eqn. 3.562.4 of Reference 11 to solve the inte-

gral in eqn. 22 and rearranging the resulting expression, we
obtain the estimator [11].

(23)
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