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ABSTRACT 
w e  ppose a new algorithm for enhancing noisy speech which 

have  been degraded by statistically  independent additive noise. The alp 
rithm  is based upon modeling  the  clean  speech as a hidden  Markov  pro- 
cess with  mixtures of Gaussian autoregressive (AR) output processes, and 
the  noise process as a sequence of stationary, statistically independent, 
Gaussian AR vectors. The parameter sets of the  models  are  estimated 
using  training sequences from the  clean  speech  and  the  noise  process. The 
parameter set of  the  hidden  Markov  model  is estimated by the  segmental 
k-means algorithm. Given  the estimated models,  the  enhancement of the 
noisy  speech  is  done by alternate maximization of the  likelihood function 
of the noisy speech, once over all sequences of states and mixture  com- 
ponents assuming that the clean  speech  signal is given, and  then  over all 
vectors  of  the original speech using  the resulting most probable sequence 
of states and  mixture  components. This maimization is 
equivalent to first estimating the  most  probable sequence of AR models 
for the speech signal using the Viterbi algorithm, and then applying these 
AR models for constructing a sequence of Wiener  filters  which are used 
to enhance the  noisy speech. 

1. Introduction 
The problem of enhancing noisy  speech is basidly an  estimation 

problem  which requires knowledge of  the  probability distributions (PD’s) 
of the speech signal and the  noise process .  In practice, however,  these 
PD’s are not known and  the  best  which can be done is to use h i n g  
sequences from the  speech  and  the  noise processes through  which the 
unavailable statistics are learned.  Direct application of the  training 
sequences for approximating  the  conditional  expected  value results is a 
practically unacceptable  solution [l]. An alternative approach,  which has 
been proved useful in  speech c d n g  and  recognition  application$ is first 
to use training sequences for estimating parametric  models for the PD’s of 
the s o w e  and the noise, and  then to implement  the  desired estimator of 
the original speech based upon the estimated PD’s. 

In this pepex we  apply  the above modeling  approach for enhancing 
speech signals which  have  been  degraded  by  stationary. statistidy 
independent, additive noise.  The  approach,  however,  can  be  extended Fo 
noise processes which are neither additive nor  strictly  stationary  without 
any  major difficdties. We use hidden  Markov  models W’S) with 
mixtures of Gaussian autoregressive (AR)  output PD’s for the s F h  
s ipd l  .rd a Gaussian AR model  for the noise process. The estimation of 
the parameta sets of  the models, and the enhancement  process  itself,  are 
both optimal in the maximum likelihood (ML) sense. The  estimation of 
the parameter set of the HMM is done using the segmental t-means 
algorithm.  which jointly estimates the panuneter set of  the  model  and  the 
sequence of sta tes  and mixture components  which maximize the likeli- 
hood function of the clean  speech [2]. The model for  the noise is simply 
the centroid of the training sequence from that process. 

Given  the meter sets of the  speech  and  noise  models,  the 
enhancement of the noisy  speech is done by altemate maximization of the 
likelihood fundm of the noisy speech, once over all sequences of states 
and mixture  components assuming that  the  clean  speech  vectors are given, 
and then over all speech vectors using  the  most  likely  sequence  of  states 
and mixture  components. The estimation of the mast likely  sequence of 
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states and  mixture  components  is  done  using  the  Viterbi algorithm, and  it 
results in a sequence of AR models  which are associated with the current 
estimate of the vectors of the clean speech  signal.  The  estimation of the 
most likely sequence of clean speech  vectors is done by Wiener  filtering 
of the individual noisy  speech  vectors.  The  Wiener  filter  for  each  speech 
vector uses the AR model  corresponding to this vector,  from  the  most 
likely  sequence of AR models, and the AR models  for  the  noise  process. 
The iterative procedure  proceeds  until  some  convergence  criterion  is 
satisEd. 

The paper is organized as follows. In Section 2 we formulate  the 
problem  and  specify  the  statistical  models we use here. In Section 3 we 
describe the mining procedure. In  Section 4 we describe the  enhancement 
algorithm. Finally, in  Section 5 we describe the  experiments  used to 
evaluate the algorithm. 

2. Problem Formulation 

2.1 H M M s  for Clean  Speech 
Let ph be the pdf of an HMM for  the  clean  speech signal, where 

k, denotes  the  parameter set of  the  model.  We  consider  here H M ” s  with 
M states and  mixtures of L Gaussian AR output  processes at each  state. 
Let y $ ~ y , ,  14 , . . . , T I ,  ~ , E R ~ ,  be a sequence of K-dirnensiond vec- 
tors which  represent  the  output  from  the  model. Let 
x${xl, t = O  , . . . , T I ,  xIe {I , , , , , M I ,  be a sequence of states. Let 
h i { h , ,  t = O ,  . . . , T I ,  ~ , E { I  , . . . , L}, be a sequence of mixture com- 
ponents. The p d f p ~ ,  is  given by 

~x.6) = C Z p x a ( x , h . y )  
x h  

= C C P a ( x l P X , ( h  I x l P k . 6  I h J ) .  (1) 
z h  

p&) in (1) is  the  probability of  the sequence of states x ,  and it is  given 
by 

7 
P & W  = na*.,,9 (2) 

I d  

where, %.,, is the  probability of being in state x,-1 (at  time 1-1) and  in 
state x,  (at time t).  a z . t x o = ~ o  denotes  the  probability of the  initial state 
10.  For p l , ( h  I x ) .  the  probability of choosing  the  sequence of mixture 
components, h. given  the sequence of states x ,  and p&(y 1 h,x),  the pdf of 
the output sequence y given {x,  h } ,  in (l), we  make  the  following stan- 
dard assumptions: 

T 7 

Id) f d  
Pi , (h  I x )  = n P x , ( h t  I x,) k 14, (3) 

and 
i-  i- 

PL,,CV I h J )  = ~ P L , C ~ I  I ~ J I )  =b nb,CVt I ~IJI), (4) 
1 4  1 ; o  

where, c4 1 II is the probability of choosing  the  mixture h, given that the 
process is  in state x,. and b(y, I h,,.z,) is  the pdf of  the  output  vector y, 
given ( h , ~ , ) .  For N,-th order Gaussian AR output processes, we have 
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exp{-p:S;t Byf} 

(2n)K/2det1'Z(SIl e )  ' 

1 

bbr I hr=Y.xr=B) = (5) 

where, S , l p ' ~ ~ ~ p ( A : ~ p A ~ l p ) - ~ .  u$lp is the  variance  of  the  innovation 
process of the AR source, and A , I B  is a KxK lower  lriangular  Toeplitz 
maeix in which  the  Erst N,+1 elements of the Erst column  constitute  the 
coefficients of the AR process, g,lpkb,ip(O),  g,lp(l) , . . . , g,lp(N,)), 
g, lp(Otl.  

The  modeling  problem is that of estimating  the  parameter  set 
k,,=(x.a,c,S), where, x k { x p l .  ap{aa,p}, c k { c , ! p } .  and S k { S , , p } ,  for 
a,k1 , . . . , M and ~1 , . . . , L, given  a aainlng sequence y from  the 
speech  signal. The ML estimate  results  from 

max In P L , O ~ )  = m r  In C C p k ( x , h , y ) ,  (6) 1. x h  

and  this  estimate is efficiently  achieved using  the  Baum  algorithm. In this 
work,  however,  we  shall use the  segmental k-means algorithm,  which is 
significandy  simpler to implement,  yet it produces  comparable  results to 
the Baum  algorithm.  The  estimation of the  parameter set k, by the  seg- 
mental k-means algorithm  results  from  [2] 

z,h 1. 
max In p ~ , ( x , h , y ) .  (7) 

"'his estimate can be thought of as an  approximation  to  the Baum estima- 
tor since it is obtained by replacing  the  double  summation in (6) by the 
maximal term  taken  over all possible  pairs of sequences (x ,h) .  
2.2 AR Model for the Noise Process 

Let p L  be the pdf of the  model  for  the  noise  process,  where 5 is 
the  parameter  set of the  model.  Assume  that  the  output  from  this  model is 
a  sequence of stationary, statistically  independent,  Gaussian AR 
K-dimensional vectors. Let N ,  be the  order of  the AR process. Let 
vL{vr, t = ~ ,  . , . , T I  be a  sequence of T+I output vectors from the 
model.  We  have  that 

1 
2 exp{--v:V-'v,] 

'k") = (2*)X/2det1/2(V) ' (8) 

where, V=at(A:A,)-', and ut and A,  are  defined  similarly to of ,  p and 
A., p ,  respectively. A, is a K x K  iower  uiangular  Toeplitz  matrix in which 
the Erst N,+1 elements  of the first  column  constitute  the  coefficients of 
the AR process, gv='Qy(0), g d l )  , . . . , g v ( N A  gdOk1. 

The noise modeling  problem is that of finding the  parameter set 
5,4(u2. gV(m),  m=l . . . . . NJ by 

m y  In p ~ . ( v )  (9) 

for  a  given training sequence v from  the  noise process. 

2 3  Speech Enhancement Problem 
Given  the  parameter set k, of an HMM for the clean speech  si@. 

the parameter set k, for  the AR model for the  noise  process,  and  a 
sequence of K-dimensional noisy  vectors z k { z r ,  fa , .  . . . TI, 
z ,=~,+v, ,  the  enhancement  problem is that of estimating  the sequence Y of 
clean  speech  vectors by 

max P&LcyJ). (10) 

P G c y J )  4 PL,b)PL(Z I Y )  = Pk,(YIPX.(z-Y)* (1 1) 

where, 

due to the  fact  that  the  noise is admtive  and  statistically  independent Of 
the signal.  Note  that  the  enhancement  problem  stated in (10) is consistent 
with  the  training  procedure  described  in (6). It therefore  has  complexity 
similar to that associated  with  the  maximization in (6). Here  we perfom 
the enhancement in a  consistent  manner  with our W i n g  procedure 
which  is  described  in (7). Specifically.  the  estimation of  the  speech  signal 
results from 

max In p ~ , ~ ( x . h . y , z ) ,  (12) 
shr 

where, 

PkL(x>h,YJ) = PL(Z I x,h,Y)P&(x,h,Y) 

= Pk(Z I YlPl,(x.h*Y) 

= PL(z-Y)pL(x .h .Y)  (13) 

due to the  fact  that  given y ,   z  and ( x , h )  are  statistically  independem 

3. Training of Speech  and  Noise  Models 

3.1 HMM Estimation 
The  estimation of  the  parameter  set h, of  the HMM for  the  clean 

speech is done by alternate  maximization of the  log  likelihood 
In pb(x,h,y), once  over (x,h) assuming  that X, is given,  and then over h, 
assuming that (x ,h)  is known.  Thus if each  iteration  comprises  the  estima- 
tion of (x,h) for  a  given k, and  the  estimation of a new k8 based  on ( x , h ) ,  
then the mining algorithm  generates  a  sequence of models  with  increas- 
ing  likelihood. The procedure is stopped when a  convergence  criterion is 
satisfied,  e.g.,  when  the  difference of  the  values of the  log  likelihood 
function (7) in two  consecutive  iterations is smaller  than  a  given  thres- 
hold.  We now show  how  each  of  the two phases of each  iteration  is per- 
formed.  We  shall  not  discuss  the  convergence of the  algorilhm  which can 
be shown by a  standard  argument  from  optimization  theory. 

Assume that an initial estimate  of the panrmeter set of the  model is 
given. Then, the estimation of (x,h) which maximizes lnp&(x,h ,y )  can 
be done by applying  the  Viterbi  algorithm  using  the  following path metric 

In xp +In c y /  p +In bOlo I xo=P,ho=$, (14) 

for GO, and 

In ( 1 % ~  +In CII p + In bOlr I xr=P,ht=Y). (15) 

for IYST, where a,f3=1,. . . , M and y=l , . . . , L. Let  the resulting 
sequences of states  and  mixture  components be denoted by (x',h'). 

Assume that (x',h*) is given.  Then,  the  estimation of a new param- 
eter set say hi. is done  by 

max lnpk;(x*,h',y) = my{h n:; + x~n 
1; 5. I =1 

T 

T T 
+ Ch 4: 1.: + C h  b'bf I x:.h:)l. (16) 

f . 4  r . 4  

subject to the  following  consuaints. 

and S;, pis  positive  definite,  for all a,k1 , . . . , M and p1 , , . . , L. 

Hence, 
The  maximization of (16) over x i  is trivial  since x i  is given. 

x i  = 1 for kx;, and x i  = 0 for P+xi. (18) 

The  maximization of (16) over abe. subject  to  the  constraints (17), 
is equivalent to the  following  problem. 

M 

c--hs& &lf€%B 

max {C C a::-lz: I 
M 

subject to: ahp20, Ca&,p=l ,  (19) 

where, .r,pi{lYIT; &=a, x:=P}.  From  the  definition of 7 % ~  we 
have  that (19) is equivalent to 

&1 

M 

t.he,L p - 1  
{ C I 7a.p I In ah,p I 

M 
subject to: ahpal, Cah,e=l,  (20) 

B-1 

where, I h p  I is the cardinality of 7 % ~ .  The  solution of this  problem is 
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provided  that l ~ ~ p  1 >O. Otherwise, ah,p can  be  arbitrarily  chosen,  sub- 
ject to  the constraints in (19),  since its value  does  not  affect  the  likelihood 
function.  Note  that  the  estimate in (21) has the  intuitive  interpretation  of 
being  the  number of transitions  along  the  most  probable path  from  state a 
to  state p, normalized  by  the  number of instances in which  state a has 
been visited. 

The estimation of c;la by maximizing  (16)  subject to the  con- 
straints (17) is done  similarly to the  estimation of a&. It results in 

L 
C;lp= l'lrlp I I'lrlB 1 ,  (22) 

where, qylpk{wg; h i q ,  x:=p},  provided that I q r l p  1 >O. Other- 
wise, c ; ~  c8n be  arbitrary chosen from the  feasible set, since its value 
does  not  affect the likelihood function (16). This estimate of c;l e has  the 
intuitive  interpretation  of  being  the ratio of  the  number of time mstances 
for which the y-th mixture  component associared with  state p has been 
chosen far the most  probable  path,  and  the  number of time  instances  any 
other mixture component associated with  the  p-th  state  has been chosen 
for the same path. 

The parameters of the AR process associated  with  state p and  mix- 
ture component y, results from 

F1 

Il?in{@Rr~pS;~p-'-h detR,IgS;lp-'} (23) 
S,I P 

where, 

provided that the  set qrl p is not empty.  Otherwise, any positive  definite 
covariance matrix of the  given AR structure, Si1 8 ,  can be  chosen  without 
affecting the  value of the log  likelihood (16). The minimization  problem 
in (23) has a  unique solution provided  that R , I ~  is positive  definite [3]. 
This  unique solution results from a  set of linear equations similar  to  those 
associated  with  the  "covariance  method" of linear prediction  analysis. 

A simpler solution to the  estimation of the parameters of each AR 
process is possible if the pdf ( 5 )  is approximated by 

where 

r,(m)= L l K - I m 1 - '  C y,(n)M+ ! m I 1 

rYlp(m)& 2 gylp(n)gyidn+ I m 1 ) .  (26) 

This  approximation  results  from  replacing  the  vector A ,  I pyl in ( 5 )  by 
g,Ip@y,, which is the  convolution of  the  two  sequences gylp(n) and 
y,(n) .  Such an approximation is reasonable if KsN,. On substitumg (25) 
into (16)  the  problem  becomes 

1.4 

N,- I m 1-1 

"=a 

N. 

where, 

The  minimization in (27) is a  standard  problem in linear  prediction 
analysis  and it is achieved by applying  the so called  "autocorrelation 
method" of linear  prediction to the  autocorrelation  sequence F(m)} ,  prc- 
vided that this sequence is positive  definite. 

The i m t i v e  algonthm described above  for  estimating  the  parameter 
set of the HMM for the speech  signal is started from some initial estimate 
of &. This estimate is obtained  here  by  initial  clustering of the  training 
sequence into MxL AR models,  using  the  standard  generalized  Lloyd 
algorifhm for AR model  vector quantization. First  a  code book of size M 
is designed and the training  sequence is decoded  into  the M state  code- 
words.  For  each state we  design  a  code book of size L, using  the  subtrain- 

ing  sequence  assigned to that  state,  by  repeatedly  splitting  the  codeword 
representing that state. The resulting M x L  codewords are used as the ini- 
tial parameters  for  the AR processes of the HMM. An initial estimate  for 
c, I p is obtained  by first decoding  the  subtraining  sequence  corresponding 
to the p-th  state  codeword  using  the L mixture  codewords,  and  then 
counting  the  relative  frequency of appearance of each of the L "mixture" 
codewords. The probability of the initial state is chosen  to  be  equal  for 
each of the M states. The state  transition  probability  was  chosen to be 
aa,,=0.8, a=l , . . . , M ,  and aa,p=0.2/(M-l), a , b 1  , . . . , M, a@. 

3.2 Noise Model Estimation 
The estimation  problem of  the  parameter  set  of  the AR model  for 

min{tr  R,V-l-h  det R,V- ' } ,  (29) 

the noise  process  results  from  substituting (8) into (9). It is  given  by, 

where, 
7 

R,&Cv,v: .  

This is the Same problem as that  associated  with  the  estimation of the 
parameters of each AR output  process of the HMM. As done  in  that  case, 
we  approximate p L  by 

1 . 4  

exp{-TC C p f ( m ) p v ( m ) / 0 5 }  
1 Nv 

I=on=-N.  

where 

P l ( m ) 4  2 v l (n)v , (n+ ! m 1 

p,(m)& g,(n)g,(n+ I m I ). (3 1) 

The  estimation of h, is  done by applying the "autocorrelation  method" 
of linear  prediction  analysis  to  the  autocorrelation  sequence  given by 

K - 1 m I - l  

"4 
N.- 1 m I -I 

"=a 

provided  that  this  sequence is positive  definite. 

4. Speech  Enhancement  Algorithm 
The enhancement of the  noisy  speech is performed  iteratively by 

alternate  maximization of the log likelihood In p l ,L (x ,h , y , z ) ,  defined in 
(13), once  over (x,h),  assuming  that y is given,  and  then  over y, assuming 
that (x ,h)  is h o w .  Given an initial  estimate of the  clean  speech to be 
enhanced,  the  estimation of the  best  sequence of states and  mixture  com- 
ponents is done by applying  the  Viterbi  algorithm  using  the  following 
path  metric 

In q + h  c,lp+In bOlo I xo=Pho=$+h PL(ZO-YO) .  (33) 

for 1 4 ,  and 

In u,,p+ln c,lp+h bCvl I xl=P,hl=$+In p ~ . ( z , - y J ,  (34) 

for IYIT, where a , p 1  , . . . , M and p l  , , , , , L. Let  the  resulting 
sequence of states and  mixture  components be denoted by (x ' ,h*) .  

Assume  that (x' ,h')  is given.  Then,  a new estimate of the  speech 
signal,  say G1}, is obtained by 

On substituting (5) and (8) into (35) the  problem  becomes 

(35) 

(36) 

The solution of (36) is easily  shown to be 

k s r ;  1 z; (&; 1 x; + VI-' 21 9 ( 3 7  

which is equivalent to Wiener  filtering of the  noisy  speech  using  the 
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cbvariance math of the AR process  corresponding to the most  probable 
state and  mixture  component at time t and  the  stationary  covariance 
matrix  of  the  noise. 

The estimate jl, can be efficiently  implemented  in  the  frequency 
domain if SI; 1.; and V are  approximated by  their  asymptoticaUy 
equivalent  circulant  covariance  matrices.  Since  both  covariance  mauices 
correspond to some AR processes, such  approximations  are  always psi- 
ble. Let 

and 

(39) 
where, C(fh; I {(e)) and C(f,(e)) are the asymptotically  equivalent  circu- 
lant  covariance  matrices  of s,,; 1; and V, respectively.  Using  some basic 
properties of circulant  matrices and their  inverses, we have that 

and,  hence, 

where,  and z ~ , ~  are  the Fourier transforms of j ,  and 2,. respectively. 
The iterative  enhancement  algorithm  described  above is started from 

jll=z,, i.e., we use the  noisy  source as our  initlal estimae of the  clean 
speech. 

5. Experimental Results 
The algorithm  for  speech  enhancement  described  above  was used to 

enhance  speech  signals  which  were  degraded by statistically  independent 
additive  white  noise  at  signal  to  noise ratio (ShR) values of 0, 5 ,  10, 15, 
and 20 dB. The  values of the  parameters of  the algorithm,  namely the 
number of states M, the  number  of  mixture  components  for  each  states L, 
the order of each  autoregressive  output  process N , ,  and  the  order  of the 
AR model  for  the  noise N , .  were  experimentally  determined.  Since the 
noise  examined  here is white  with  theoretically  flat  power spectral den- 
sity, the order of its AR model  was  chosen  to  be N , 4 .  The  order of each 
AR output process of the K“ for  the  clean  speech  was  chosen to be 
N,=lO, which is a  commonly used value in linear  predictive  analysis  of 
speech  signals. The product MxL, determines  the  total  number AR code- 
words used in modeling  the  clean speech signal. To determine  this 
number we  performed  the  following  experiment 

We  designed AR model  vector  quantizers  for  the  clean  speech, 
using the  generalized  Lloyd  algorithm,  with 6 4 ,  128, and 256 codewords. 
Each of these quantizers can be considered as an H” with one state 
and  equiprobable  mixture  components, or alternatively, as an H” with 
as many states as codewords,  one  mixture  component per state, with all 
initial  and state transition  probabilities  the  same. In this  experiment,  the 
vector quantizers replace  the HMM for  the  clean  speech,  and  the  selection 
of a specific  codeword  for  a  given  input  noisy  speech  was  done by the 
“nearest neighbor”  rule  (in  the  Iakura-Saito  sense)  using  the Clem 
speech  vector  corresponding to the  noisy  input  vector.  Each  vector of the 
noisy  speech  was  filtered  using  a  Wiener  filter  which  was based on the 
chosen  codeword and the AR model for the  noise  process. No iterations 
were  needed  here  since  the  selection  of  an AR codeword  from  the  code 
book for the  clean  speech  was  done  using  the  clean  signal  itself and 
hence  was  the  best  possible  codeword  selection.  The  quality of the 
enhanced  speech  signal  obtained  in  this  manner  was  surprisingly  good 
even  when  only 64 codewords  were used. At 10 dB input SNR the 
enhanced  speech  obtained  using 256 codewords  sounded  almost  the  same 

as the original clean  speech. 
The experiment  described  above  obviously  demonstrates  the best 

performance  which  may  never be achieved by a system of the  type  exam- 
ined here,  since the selection of  an AR model  for  a  given  input  noisy 
speech is based on the ckan speech.  This  experiment does, however,  cast 
light on several iqmtant  aspects of the  speech  enhancement  problem. 
First, it  shows  that  the  concept  of  representing  the  power spectral density 
of  a  given  vector of speech  by  the  power spectral density of a  finite order 
AR Process is adequate  for  speech  enhancement  purposes.  Second, it 
shows  that  only Coarse quantized  versions of  the power  spectral  densities 
of  speech, ex., those  obtained  using  a 64 vector  code  book,  are n&d in 
speech  enhancement  applications.  Third,  the  experiment  proves  that  the 
proper s e l e c t i o n  of an AR codeword  for  a  given  noisy  input  vecux is the 
key  the success of the  algorithm. In our  system,  where  only  the  noisy 
speech is given,  the selection of an AR codeword  for a given  noisy  input 
vector is performed  using  the  Viterbi  algorithm  which  chooses  the most 
probable  codeword based on the current noisy  input  vector, as well as 
orher speech frarnes in the  neighborhood of the  analysed  vector. 

The above  experiment  provides some guidelines  for  choosing thc 
number of states  and  the  number of mixture  components for each state. It 
shows  that  the  product  of M and L should be in the range  of  from 64 to 
256. In our experiments we obtained the best results using 32 states and a 
maximum  of 8 mixhue  components per state.  The  actual  number of mix- 
ture  component per state  was  automatically  determined by the  algorithm 
for  initial  clustering of the mining sequence (see Section 3.1). We used 
here  the  rule  of  continuing  splitting  the  codewords  corresponding u) a 
given  state,  until  either  the maximum  number  of  mixture  components per 
state is achieved or an empty  cell is detected,  whichever  occurs  first. 

Table 1 shows  typical S N R  improvement  obtained  using  the p m  
posed algorithm. In these  experiments we  used 100 sentences of clean 
conversational speech, spoken by 10 different  speakers, recorded using a 
telephone handset, for training  an HMM for the  clean  speech. For testing 
we used 2 sentences  from 2 speakers,  where  the  speech  material  and the 
speakers were  different  from  those used for training,  The AR model fa 
the noise was estimated  from  the  actual  noise  sample  which  was  added to 
the clean  speech to produce  the  noisy  speech.  The  enhancement of the 
entire  tested  speech  sample  was  done  simultaneously,  Le., in each  itera- 
tion the  most  probable  sequence  of  states  and  mixture  components 
corresponding to the entire speech  sample to be enhanced  was  first  found 
and  then  the  Wiener  filters  were  applied.  We used frames of 128 samples 
of speech,  sampled  at 8 kHz, which overlap each  other by 64 sampSes. 
The  synthesis of  the  enhanced  signal  was  done  using  the standard overlap 
and add  technique. 

Informal  listening  tests  showed  that the noise  level of the  enhanced 
signal  was  significantly  lower than that of the  input  noisy  speech and this 
was  achieved  without  noticeable  degradation of  the speech  signal itself. 
The  crispness  of  the  original  speech  was  preserved  and no muffling of 
sounds, which  is  usually  associated  with  enhanced  speech  signals,  was 
detectable. The enhanced  signal was,  however,  accompanied  by a residual 
noise  which  sounded  like  a  mixture of wide  band  noise  and  “musical 
noise.”  The  level of  the  musical  noise is significanth lower than that 
obtained  using “spechal subtraction’’  based  speech  enhancement  systems. 

Sh’R ci SXROUT Sh’R IN SAX ObT 

11.02 20.0 20.61 
10.0 14.65 
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